research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two polymorphs of trans-[3-(3-nitro­phen­yl)oxiran-2-yl](phen­yl)methanone

CROSSMARK_Color_square_no_text.svg

aChemistry Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, NY 14222, USA
*Correspondence e-mail: nazareay@buffalostate.edu

Edited by M. Zeller, Purdue University, USA (Received 14 June 2016; accepted 22 June 2016; online 28 June 2016)

The title compound, C15H11NO4, crystallizes in two polymorphic forms, centrosymmetric monoclinic and chiral ortho­rhom­bic. The geometry of the mol­ecules in the two polymorphs is slightly different, possibly due to inter­molecular inter­actions. There are no classical hydrogen bonding in these two structures. However, a number of C—H⋯O inter­molecular inter­actions, involving both O atoms of the nitro as well the benzoyl groups, stabilize the crystal structures.

1. Chemical context

The title compound is a substituted chalcone oxide, a representative of a large group of organic compounds which are precursors for pharmaceutically significant flavonoids (Marais et al., 2005[Marais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochemistry, 66, 2145-2176.]). As for most biologically important mol­ecules, chirality plays an important role in their reactions. These compounds can be also considered as isomers of substituted di­benzoyl­methanes.

[Scheme 1]

The simplest compound of this group, 1,3-diphenyl-2,3-epoxy­propan-1-one (2-benzoyl-3-phenyl­oxirane, benzal­aceto­phenone oxide) was isolated by Widman (1916[Widman, O. (1916). Ber. Dtsch. Chem. Ges. 49, 477-485.]) using Darzens condensation of benzaldehyde and bromo­aceto­phenone in the presence of sodium ethoxide. When m-nitro­benzaldehyde was employed in this reaction, the title compound was obtained (Bodforss, 1916[Bodforss, S. (1916). Ber. Dtsch. Chem. Ges. 49, 2795-2813.]). The original publication mentioned the possibility of two different types of colorless crystals, both having the same melting point of 391 K. Later, a number of alternative synthetic routes were developed, including Claisen condensation of m-nitro­benzaldehyde with aceto­phenone with subsequent oxidation (Roth & Schwarz, 1961[Roth, A. G. & Schwarz, M. (1961). Arch. Pharm. Pharm. Med. Chem. 294, 478-483.]). The authors described the title compound as pale-yellow needles. A one-pot version of this synthesis was reported recently (Ngo et al., 2014[Ngo, D., Kalala, M., Hogan, V. & Manchanayakage, R. (2014). Tetrahedron Lett. 55, 4496-4500.]). Preparation of nitro­chalcone oxides seems to be one of the simplest condensation reactions and therefore attractive for use in undergraduate organic chemistry teaching laboratories. The inter­esting observation of possible polymorphism in the original publication encouraged us to conduct a structural study, exactly one hundred years after the first preparation of this compound had been reported.

2. Structural commentary

The title compound, C15H11NO4, crystallizes in two polymorphic forms, centrosymmetric monoclinic (1) and chiral ortho­rhom­bic (2). Bond lengths and angles in the mol­ecules of both polymorphs are very similar (Figs. 1[link] and 2[link]). However, a mol­ecular overlay (Fig. 3[link]) reveals some difference in conformation, possibly because of different types of inter­molecular inter­actions.

[Figure 1]
Figure 1
Numbering scheme of the title compound with 50% probability ellipsoids (monoclinic polymorph).
[Figure 2]
Figure 2
Numbering scheme of the title compound with 50% probability ellipsoids (ortho­rhom­bic polymorph).
[Figure 3]
Figure 3
Overlay of the two polymorphic mol­ecules (nitro­phenyl group matching atoms). Pink: monoclinic (after inversion); purple: ortho­rhom­bic.

All atoms of the title polymorphs, except the oxiran ring hydrogen atoms, are located close to one of three planes: the benzene ring mean plane of the nitro-phenyl group (A), the oxiran ring plane (B), and the benzene ring plane of the benzoyl group (C). The largest deviations from these planes are −0.2003 (14) and 0.0457 (15) for O3 and O4 (monoclinic polymorph), 0.091 (4) and −0.189 (3) for O3 and O4 (ortho­rhom­bic), and 0.3398 (14) and 0.065 (3) for atom O1 in the monoclinic and the ortho­rhom­bic forms, respectively. Planes A and B are almost perpendicular in both polymorphs (Table 1[link]). The angles between the two other planes differ significantly (Table 1[link]).

Table 1
Angles between planes (°)

Plane A: mean plane of the m-nitro­phenyl benzene ring; plane B: oxirane ring; plane C: mean plane of the benzoyl benzene ring.

Planes monoclinic polymorph ortho­rhom­bic polymorph
A/B 99.78 (3) 97.97 (10)
A/C 102.36 (3) 66.21 (6)
B/C 55.53 (5) 75.54 (10)

3. Supra­molecular features

There are no classical hydrogen bonds in these two polymorphs. In the mol­ecules, areas of negative electrostatic potential are located in the vicinity of all four oxygen atoms. Areas near hydrogen atoms are obviously positive, providing a tool for inter­molecular inter­actions. This expectation is supported by the packing data. In both polymorphs, the two oxygen atoms O3 and O4 of the nitro group and oxygen atom O1 of the carbonyl group act as acceptors for C—H⋯O hydrogen bonds. Despite being relatively weak, such bonds play a significant role in inter­molecular inter­actions (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]). Hydrogen atom H5 of the nitro­phenyl group makes short contacts with the O1 oxygen of the carbonyl group in both cases. However, the short contacts involving the nitro group oxygen atoms O3 and O4 (Tables 2[link] and 3[link]) are different in the two polymorphs. In the ortho­rhom­bic polymorph, the oxiran ring hydrogen atom H8 makes a short contact to one of the nitro group oxygen atoms. Another oxiran ring hydrogen atom makes a contact with carbonyl group oxygen O1 that is slightly longer than usual for C—H⋯O bonding [D—H 1.000 (19), H⋯A 2.64 (2), DA 3.419 (2) Å; D–-H⋯A 134.7 (2)°]. There are a number of C—H⋯π contacts that are on the long side of what is still considered to be an attractive inter­action: C12—H12⋯C14(x, [{3\over 2}] − z, [{1\over 2}] + z) and C1—H1⋯C13(1 − x, 1 − y, 2 − z) in the monoclinic form with C⋯C distances of 3.7870 (15) and 3.7637 (12) Å, respectively, and C14—H14⋯C2([{1\over 2}] − x, 1 − y, −0.5 + z) in the ortho­rhom­bic form with a C⋯C distance of 3.731 (3) Å.

Table 2
Hydrogen-bond geometry (Å, °) for the monoclinic polymorph[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.962 (13) 2.335 (13) 3.2791 (11) 167.0 (11)
C13—H13⋯O3ii 0.945 (17) 2.490 (17) 3.3530 (13) 152.0 (13)
C15—H15⋯O4iii 0.992 (14) 2.381 (15) 3.2426 (13) 144.8 (12)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z+1; (iii) -x+1, -y+1, -z+1.

Table 3
Hydrogen-bond geometry (Å, °) for the orthorhombic polymorph[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.94 (1) 2.35 (1) 3.209 (2) 151 (1)
C8—H8⋯O4ii 0.96 (2) 2.49 (2) 3.401 (2) 158 (2)
C15—H15⋯O3iii 1.00 (1) 2.51 (2) 3.411 (2) 150 (1)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Without strong inter­molecular bonding, the close-packing principle directs the assembly of mol­ecules in the crystal. A multi-step approach to assembling is sometimes referred as the Kitaigorodskii Aufbau Principle (KAP) and may consist of the following sequence (Kitaigorodskii, 1961[Kitaigorodskii, A. I. (1961). In Organic Chemical Crystallography. New York: Consultants Bureau.]; Perlstein, 1994[Perlstein, J. (1994). J. Am. Chem. Soc. 116, 11420-11432.]): (a) a single mol­ecule or a number of mol­ecules forming a unit; (b) units join up to form a chain; (c) chains assemble to make a 2D surface and (d) surfaces are stacked to form a crystal.

This sequence can be traced in the structure of the ortho­rhom­bic polymorph. Mol­ecules of the title compound are stacked to form a chain along [100] axis (Fig. 4[link]). An oxiran group forms a `wedge' that fits into a concave `pocket' between two phenyl rings of the next mol­ecule. The inter­atomic distances between oxiran oxygen atom O2 and the corresponding carbon atoms are unusually short: O2⋯C7(1 + x, y, z) = 3.113 (2), O2⋯C8(1 + x, y, z) = 2.960 (2) and O2⋯C9(1 + x, y, z) = 2.979 (2) Å. Two separate causes can make these short contacts possible: (i) dipole–dipole attraction of consecutive oxiran groups and (ii) close packing of recurrent flat benzoyl and nitro­phenyl groups with the distances between their mean planes being 3.472 (2) and 3.493 (2), respectively. Because all these groups are parallel, there is no hydrogen bonding within the chain. At the next level, chains are packed in the (001) plane via a 21 symmetry operation, with all oxiran groups oriented in one direction (Fig. 5[link]). Finally, chains are closely packed with the next 21 operation, forming a crystal with favorable hydrogen bonding (Fig. 6[link]).

[Figure 4]
Figure 4
Packing diagram for the ortho­rhom­bic polymorph. One chain of mol­ecules along the [100] axis is shown.
[Figure 5]
Figure 5
Packing diagram for the ortho­rhom­bic polymorph. Chains of mol­ecules with one direction are stacked in the (001) plane.
[Figure 6]
Figure 6
Packing diagram for the ortho­rhom­bic polymorph. View along the a axis. Hirshfeld surface shown for one mol­ecule (calculated using CrystalExplorer; Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]).

The monoclinic form of the title compound is possible only if the starting solution contains a racemic mixture. In the first step, two mol­ecules are π-stacked via inversion centers via their nitro­phenyl groups and two symmetric hydrogen bonds (Fig. 7[link]). The distance between the parallel planes of these phenyl rings is 3.4115 (10), which is slightly longer than in polyaromatic hydro­carbons (3.38 Å; Kitaigorodskii, 1961[Kitaigorodskii, A. I. (1961). In Organic Chemical Crystallography. New York: Consultants Bureau.]) and indicates very close packing. These centrosymmetric units are assembled in the (100) plane via a system of hydrogen bonds (Fig. 8[link]). The stacking planar assemblies in the 3D crystal uses no additional hydrogen bonding.

[Figure 7]
Figure 7
Packing of the monoclinic polymorph. Two mol­ecules are related by inversion.
[Figure 8]
Figure 8
Packing diagram of the monoclinic polymorph. Mol­ecules are assembled in the (100) plane.

The assembling sequence is mechanically more straightforward in the case of the chiral ortho­rhom­bic form, which results in favorable formation of the ortho­rhom­bic polymorph. The absence of an enanti­omer requirement may also make it kinetically more favorable. These two factors can serve as a qualitative explanation of the preferred formation of the ortho­rhom­bic form upon crystallization from alcohols or from hexane. The monoclinic form has a slightly smaller cell volume (see Table 4[link]) and, therefore, closer packing of mol­ecules, an indication that the monoclinic form might be the thermodynamically slightly more stable of the polymorphs according to Burger and Ramberger's Density Rule (Burger & Ramberger, 1979a[Burger, A. & Ramberger, R. (1979a). Mikrochim. Acta, 72, 259-271.],b[Burger, A. & Ramberger, R. (1979b). Mikrochim. Acta, 72, 273-315.]). Nevertheless, the packing of the two forms is significantly different and transition from one form to another requires dissolution of the crystal. This observation explains the kinetic stability of both forms at room temperature and at 173 K.

Table 4
Experimental details

  monoclinic polymorph orthorhombic polymorph
Crystal data
Chemical formula C15H11NO4 C15H11NO4
Mr 269.25 269.25
Crystal system, space group Monoclinic, P21/c Orthorhombic, P212121
Temperature (K) 173 173
a, b, c (Å) 7.8463 (5), 16.2514 (9), 10.2032 (6) 4.1615 (2), 14.7498 (6), 20.3168 (8)
α, β, γ (°) 90, 108.839 (2), 90 90, 90, 90
V3) 1231.35 (13) 1247.07 (9)
Z 4 4
Radiation type Mo Kα Cu Kα
μ (mm−1) 0.11 0.88
Crystal size (mm) 0.5 × 0.45 × 0.4 0.44 × 0.07 × 0.06
 
Data collection
Diffractometer Bruker PHOTON-100 CMOS Bruker PHOTON-100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.942, 0.969 0.798, 0.950
No. of measured, independent and observed [I > 2σ(I)] reflections 60976, 5593, 4604 39306, 2640, 2435
Rint 0.031 0.037
(sin θ/λ)max−1) 0.820 0.636
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.06 0.029, 0.071, 1.06
No. of reflections 5593 2640
No. of parameters 225 197
H-atom treatment All H-atom parameters refined H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.23 0.13, −0.15
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.3 (2)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and CrystalExplorer (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]).

4. Database survey

There are sixteen reported chalcone oxide structures deposited in the Cambridge Structural Database (CSD Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Of these structures, six report hy­droxy- and meth­oxy-substituted mol­ecules with strong inter­molecular inter­actions. The closest to our study is [3-(4-nitro­phen­yl)oxiran-2-yl](phen­yl)methanone (refcode COVKAB; Obregón-Mendoza et al., 2014[Obregón-Mendoza, M. A., Escobedo-Martínez, C., Lozada, M. C., Gnecco, D., Soriano-García, M. & Enríquez, R. G. (2014). J. Chem. Crystallogr. 44, 512-519.]). In this case, the oxiran oxygen atom makes short contacts instead of the benzoyl group; the p-nitro­phenyl ring is practically flat. The simplest unsubstituted chalcone oxide was recently reported (refcode TIBXIM; Zaidi et al., 2007[Zaidi, J. H., Mehmood, T., Zareef, M., Qadeer, G. & Wong, W.-Y. (2007). Acta Cryst. E63, o1721-o1722.]). In this structure, like in our case, only the benzoyl group oxygen atom makes short inter­molecular contacts. Chains similar to those in the ortho­rhom­bic form of the title mol­ecule are present in the chiral P21 crystal of [3-(4-chloro­phen­yl)oxiran-2-yl](phen­yl)methanone (refcode QECFAF; Bakó et al., 1999[Bakó, P., Czinege, E., Bakó, T., Czugler, M. & Tőke, L. (1999). Tetrahedron Asymmetry, 10, 4539-4551.]). However, the distances between oxiran oxygen atom and the subsequent carbon atoms are much longer than in the present case.

5. Synthesis and crystallization

The title compound was obtained via the classic route (Bodforss, 1916[Bodforss, S. (1916). Ber. Dtsch. Chem. Ges. 49, 2795-2813.]). Mass-spectrum (EI): 269 (M+, 20%), 105 (PhCO+, 100), 77 (Ph+, 60). Because all precursor compounds were non-chiral and synthetic conditions should not induce chirality, we expected to see a racemic product. Crystallization from hexane yielded colorless thin needles suitable for single-crystal investigation. X-ray diffraction data revealed the chiral ortho­rhom­bic space group P212121. Crystallization from ethanol produced better quality crystals of the same polymorph, one of which was used in this study. After two weeks of standing at 273 K, a number of large (up to 1 mm) crystals were observed in the remaining ethanol solution (Fig. 9[link]). A suitable crystal was cut to dimensions appropriate for X-ray analysis. It turned out to be a monoclinic P21/c polymorph of the same compound. Several crystals of different shape, also formed from the same solution, resulted to be of a benzoin admixture.

[Figure 9]
Figure 9
Crystals of different polymorphs in solution. Large blocks are monoclinic, needles are ortho­rhom­bic.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The structure of the ortho­rhom­bic polymorph was refined as a two-component inversion twin. All hydrogen atoms in the monoclinic form were refined in isotropic approximation. In the ortho­rhom­bic form, the oxiran ring hydrogen atoms H7 and H8 were refined in isotropic approximation with Uiso = 1.2Uiso(C). All aromatic hydrogen atoms in this mol­ecule were refined with riding coordinates and Uiso = 1.2Uiso(C).

For the monoclinic polymorph structure, positive residual density was observed at all bonds between non-hydrogen atoms, demonstrating the limitations of the atom-in-mol­ecule approach for high-resolution structures of organic mol­ecules.

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b). Molecular graphics: OLEX2 (Dolomanov et al., 2009) and CrystalExplorer (Spackman & Jayatilaka, 2009) for (1); OLEX2 (Dolomanov et al., 2009) for (2). For both compounds, software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(1) [3-(3-Nitrophenyl)oxiran-2-yl](phenyl)methanone top
Crystal data top
C15H11NO4F(000) = 560
Mr = 269.25Dx = 1.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.8463 (5) ÅCell parameters from 9972 reflections
b = 16.2514 (9) Åθ = 3.0–30.6°
c = 10.2032 (6) ŵ = 0.11 mm1
β = 108.839 (2)°T = 173 K
V = 1231.35 (13) Å3Block, colourless
Z = 40.5 × 0.45 × 0.4 mm
Data collection top
Bruker PHOTON-100 CMOS
diffractometer
4604 reflections with I > 2σ(I)
Radiation source: sealedtubeRint = 0.031
φ and ω scansθmax = 35.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1112
Tmin = 0.942, Tmax = 0.969k = 2625
60976 measured reflectionsl = 1614
5593 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044All H-atom parameters refined
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.211P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5593 reflectionsΔρmax = 0.49 e Å3
225 parametersΔρmin = 0.23 e Å3
Special details top

Experimental. SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0614 before and 0.0562 after correction. The Ratio of minimum to maximum transmission is 0.8403. The λ/2 correction factor is 0.00150.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25037 (8)0.71203 (4)0.99764 (7)0.02695 (13)
O20.10970 (8)0.58236 (5)0.82016 (7)0.03095 (15)
O30.36177 (10)0.64512 (4)0.29974 (8)0.03355 (15)
O40.32859 (13)0.52785 (6)0.19647 (8)0.0453 (2)
N10.32668 (10)0.57168 (5)0.29372 (7)0.02557 (14)
C10.21037 (11)0.46686 (5)0.63244 (8)0.02330 (14)
H10.1830 (17)0.4424 (8)0.7101 (13)0.031 (3)*
C20.22642 (12)0.41642 (5)0.52697 (9)0.02570 (15)
H20.2120 (17)0.3571 (8)0.5326 (14)0.033 (3)*
C30.26219 (11)0.44992 (5)0.41329 (8)0.02357 (14)
H30.2706 (18)0.4158 (8)0.3413 (14)0.032 (3)*
C40.28236 (9)0.53439 (5)0.40956 (7)0.01988 (13)
C50.26492 (10)0.58642 (5)0.51200 (7)0.01960 (13)
H50.2789 (16)0.6449 (8)0.5052 (13)0.027 (3)*
C60.22844 (9)0.55193 (5)0.62477 (7)0.01941 (13)
C70.21159 (10)0.60861 (5)0.73395 (8)0.02193 (14)
H70.1953 (17)0.6670 (8)0.7099 (14)0.032 (3)*
C80.29883 (10)0.59190 (5)0.88324 (8)0.02108 (13)
H80.3656 (16)0.5410 (8)0.9094 (13)0.029 (3)*
C90.35983 (10)0.66437 (4)0.97908 (7)0.01953 (13)
C100.55753 (10)0.67524 (4)1.04317 (7)0.01900 (12)
C110.62448 (11)0.72792 (5)1.15652 (8)0.02299 (14)
H110.5381 (18)0.7560 (9)1.1946 (14)0.033 (3)*
C120.80912 (12)0.73856 (5)1.21587 (10)0.02919 (17)
H120.856 (2)0.7750 (10)1.2949 (15)0.043 (4)*
C130.92704 (12)0.69765 (6)1.16210 (12)0.0331 (2)
H131.053 (2)0.7034 (10)1.2027 (17)0.048 (4)*
C140.86192 (12)0.64582 (6)1.04894 (12)0.03278 (19)
H140.948 (2)0.6188 (10)1.0128 (17)0.052 (4)*
C150.67737 (11)0.63440 (5)0.98993 (9)0.02569 (15)
H150.6281 (19)0.5978 (9)0.9086 (15)0.039 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0250 (3)0.0243 (3)0.0327 (3)0.0034 (2)0.0109 (2)0.0014 (2)
O20.0229 (3)0.0469 (4)0.0248 (3)0.0096 (2)0.0101 (2)0.0091 (3)
O30.0413 (4)0.0311 (3)0.0333 (3)0.0001 (3)0.0191 (3)0.0067 (3)
O40.0700 (6)0.0447 (4)0.0303 (4)0.0012 (4)0.0286 (4)0.0066 (3)
N10.0262 (3)0.0311 (3)0.0211 (3)0.0044 (2)0.0100 (2)0.0018 (2)
C10.0259 (3)0.0218 (3)0.0206 (3)0.0013 (2)0.0052 (3)0.0019 (2)
C20.0295 (4)0.0191 (3)0.0257 (4)0.0018 (3)0.0051 (3)0.0010 (3)
C30.0246 (3)0.0219 (3)0.0221 (3)0.0010 (2)0.0046 (3)0.0040 (3)
C40.0188 (3)0.0226 (3)0.0175 (3)0.0021 (2)0.0049 (2)0.0002 (2)
C50.0207 (3)0.0189 (3)0.0184 (3)0.0015 (2)0.0053 (2)0.0004 (2)
C60.0191 (3)0.0211 (3)0.0165 (3)0.0017 (2)0.0036 (2)0.0002 (2)
C70.0234 (3)0.0241 (3)0.0180 (3)0.0040 (2)0.0062 (2)0.0001 (2)
C80.0231 (3)0.0205 (3)0.0182 (3)0.0017 (2)0.0048 (2)0.0002 (2)
C90.0221 (3)0.0191 (3)0.0178 (3)0.0001 (2)0.0070 (2)0.0009 (2)
C100.0213 (3)0.0186 (3)0.0183 (3)0.0012 (2)0.0080 (2)0.0003 (2)
C110.0269 (3)0.0198 (3)0.0222 (3)0.0030 (2)0.0079 (3)0.0021 (2)
C120.0297 (4)0.0233 (3)0.0294 (4)0.0077 (3)0.0024 (3)0.0009 (3)
C130.0221 (3)0.0280 (4)0.0459 (5)0.0042 (3)0.0063 (3)0.0093 (4)
C140.0257 (4)0.0331 (4)0.0447 (5)0.0023 (3)0.0186 (4)0.0049 (4)
C150.0270 (3)0.0270 (4)0.0267 (4)0.0007 (3)0.0138 (3)0.0023 (3)
Geometric parameters (Å, º) top
O1—C91.2159 (9)C7—H70.978 (14)
O2—C71.4314 (10)C7—C81.4796 (11)
O2—C81.4225 (10)C8—H80.970 (13)
O3—N11.2220 (10)C8—C91.5067 (11)
O4—N11.2254 (10)C9—C101.4867 (10)
N1—C41.4664 (10)C10—C111.3978 (10)
C1—H10.970 (13)C10—C151.3964 (10)
C1—C21.3905 (12)C11—H110.994 (13)
C1—C61.3945 (11)C11—C121.3888 (12)
C2—H20.974 (14)C12—H120.972 (15)
C2—C31.3895 (12)C12—C131.3882 (15)
C3—H30.939 (13)C13—H130.946 (16)
C3—C41.3838 (11)C13—C141.3866 (16)
C4—C51.3851 (10)C14—H140.969 (16)
C5—H50.962 (13)C14—C151.3895 (13)
C5—C61.3902 (10)C15—H150.992 (14)
C6—C71.4838 (10)
C8—O2—C762.46 (5)O2—C8—C759.07 (5)
O3—N1—O4123.16 (8)O2—C8—H8115.1 (7)
O3—N1—C4118.12 (7)O2—C8—C9116.43 (6)
O4—N1—C4118.72 (8)C7—C8—H8118.0 (7)
C2—C1—H1119.3 (8)C7—C8—C9117.97 (7)
C2—C1—C6120.32 (7)C9—C8—H8117.3 (7)
C6—C1—H1120.3 (8)O1—C9—C8120.45 (7)
C1—C2—H2119.8 (8)O1—C9—C10123.02 (7)
C3—C2—C1120.55 (7)C10—C9—C8116.50 (6)
C3—C2—H2119.7 (8)C11—C10—C9119.79 (7)
C2—C3—H3120.4 (8)C15—C10—C9120.69 (7)
C4—C3—C2117.86 (7)C15—C10—C11119.52 (7)
C4—C3—H3121.7 (8)C10—C11—H11118.9 (8)
C3—C4—N1119.41 (7)C12—C11—C10119.83 (8)
C3—C4—C5123.01 (7)C12—C11—H11121.3 (8)
C5—C4—N1117.58 (7)C11—C12—H12120.1 (9)
C4—C5—H5120.5 (8)C13—C12—C11120.17 (8)
C4—C5—C6118.39 (7)C13—C12—H12119.8 (9)
C6—C5—H5121.1 (7)C12—C13—H13121.1 (10)
C1—C6—C7122.54 (7)C14—C13—C12120.44 (8)
C5—C6—C1119.86 (7)C14—C13—H13118.5 (10)
C5—C6—C7117.60 (7)C13—C14—H14118.5 (10)
O2—C7—C6118.63 (7)C13—C14—C15119.62 (8)
O2—C7—H7112.9 (8)C15—C14—H14121.9 (10)
O2—C7—C858.48 (5)C10—C15—H15118.7 (8)
C6—C7—H7116.7 (8)C14—C15—C10120.42 (8)
C8—C7—C6122.36 (7)C14—C15—H15120.8 (8)
C8—C7—H7114.6 (8)
O1—C9—C10—C1117.50 (11)C5—C6—C7—O2156.24 (7)
O1—C9—C10—C15161.44 (8)C5—C6—C7—C8134.82 (8)
O2—C7—C8—C9105.63 (8)C6—C1—C2—C30.57 (12)
O2—C8—C9—O11.28 (11)C6—C7—C8—O2106.07 (8)
O2—C8—C9—C10178.97 (6)C6—C7—C8—C9148.30 (7)
O3—N1—C4—C3172.68 (7)C7—O2—C8—C9108.23 (7)
O3—N1—C4—C56.50 (11)C7—C8—C9—O166.02 (10)
O4—N1—C4—C36.60 (11)C7—C8—C9—C10111.67 (8)
O4—N1—C4—C5174.22 (8)C8—O2—C7—C6112.36 (7)
N1—C4—C5—C6178.05 (6)C8—C9—C10—C11164.87 (7)
C1—C2—C3—C40.47 (12)C8—C9—C10—C1516.19 (10)
C1—C6—C7—O224.23 (11)C9—C10—C11—C12179.56 (7)
C1—C6—C7—C844.72 (11)C9—C10—C15—C14178.98 (8)
C2—C1—C6—C50.81 (11)C10—C11—C12—C130.61 (13)
C2—C1—C6—C7179.66 (7)C11—C10—C15—C140.05 (12)
C2—C3—C4—N1177.80 (7)C11—C12—C13—C140.05 (14)
C2—C3—C4—C51.33 (11)C12—C13—C14—C150.52 (14)
C3—C4—C5—C61.10 (11)C13—C14—C15—C100.52 (14)
C4—C5—C6—C10.00 (10)C15—C10—C11—C120.61 (12)
C4—C5—C6—C7179.55 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.962 (13)2.335 (13)3.2791 (11)167.0 (11)
C13—H13···O3ii0.945 (17)2.490 (17)3.3530 (13)152.0 (13)
C15—H15···O4iii0.992 (14)2.381 (15)3.2426 (13)144.8 (12)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1.
(2) [3-(3-Nitrophenyl)oxiran-2-yl](phenyl)methanone top
Crystal data top
C15H11NO4Dx = 1.434 Mg m3
Mr = 269.25Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 9668 reflections
a = 4.1615 (2) Åθ = 3.7–77.7°
b = 14.7498 (6) ŵ = 0.88 mm1
c = 20.3168 (8) ÅT = 173 K
V = 1247.07 (9) Å3Needle, colourless
Z = 40.44 × 0.07 × 0.06 mm
F(000) = 560
Data collection top
Bruker PHOTON-100 CMOS
diffractometer
2435 reflections with I > 2σ(I)
Radiation source: sealedtubeRint = 0.037
φ and ω scansθmax = 78.6°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 55
Tmin = 0.798, Tmax = 0.950k = 1818
39306 measured reflectionsl = 2322
2640 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.1972P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.13 e Å3
2640 reflectionsΔρmin = 0.15 e Å3
197 parametersAbsolute structure: Refined as an inversion twin
0 restraintsAbsolute structure parameter: 0.3 (2)
Special details top

Experimental. SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0614 before and 0.0562 after correction. The Ratio of minimum to maximum transmission is 0.8403. The λ/2 correction factor is 0.00150.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6417 (4)0.36468 (8)0.45872 (6)0.0372 (3)
O20.9762 (3)0.34403 (8)0.57437 (6)0.0356 (3)
O30.2003 (5)0.02869 (10)0.71337 (7)0.0606 (5)
O40.2482 (5)0.05976 (11)0.81622 (7)0.0567 (5)
N10.2991 (5)0.07647 (11)0.75797 (7)0.0395 (4)
C10.8151 (5)0.31290 (13)0.71103 (9)0.0335 (4)
H10.934 (3)0.3678 (12)0.7004 (3)0.040*
C20.7899 (5)0.28508 (14)0.77607 (9)0.0383 (5)
H20.894 (2)0.3214 (8)0.8115 (8)0.046*
C30.6211 (5)0.20742 (13)0.79219 (10)0.0363 (4)
H30.6010 (7)0.1885 (4)0.8363 (10)0.044*
C40.4826 (5)0.15840 (12)0.74146 (8)0.0306 (4)
C50.5055 (4)0.18379 (11)0.67600 (8)0.0273 (4)
H50.411 (2)0.1484 (8)0.6426 (7)0.033*
C60.6718 (4)0.26278 (11)0.66071 (8)0.0268 (4)
C70.6967 (4)0.29204 (11)0.59069 (8)0.0264 (3)
H70.633 (5)0.2466 (13)0.5566 (9)0.032*
C80.6695 (4)0.38876 (11)0.57279 (9)0.0272 (3)
H80.635 (5)0.4318 (13)0.6078 (9)0.033*
C90.5571 (4)0.41215 (12)0.50441 (8)0.0266 (4)
C100.3543 (4)0.49418 (11)0.49357 (8)0.0257 (4)
C110.2260 (4)0.54583 (11)0.54460 (9)0.0281 (4)
H110.2629 (9)0.5280 (4)0.5902 (9)0.034*
C120.0454 (5)0.62269 (12)0.53064 (10)0.0354 (4)
H120.050 (2)0.6595 (8)0.5677 (8)0.043*
C130.0041 (5)0.64890 (14)0.46594 (10)0.0411 (5)
H130.129 (3)0.7042 (14)0.4561 (3)0.049*
C140.1213 (5)0.59745 (14)0.41521 (10)0.0425 (5)
H140.0836 (10)0.6162 (4)0.3684 (11)0.051*
C150.2985 (5)0.52018 (13)0.42860 (9)0.0340 (4)
H150.3863 (19)0.4831 (8)0.3917 (8)0.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0483 (8)0.0309 (7)0.0324 (7)0.0018 (6)0.0107 (6)0.0037 (5)
O20.0210 (6)0.0352 (7)0.0505 (8)0.0011 (5)0.0039 (6)0.0093 (6)
O30.0981 (14)0.0469 (9)0.0369 (8)0.0287 (10)0.0071 (8)0.0088 (6)
O40.0853 (14)0.0539 (9)0.0308 (8)0.0030 (9)0.0051 (7)0.0159 (6)
N10.0533 (11)0.0351 (9)0.0302 (9)0.0034 (8)0.0007 (7)0.0098 (6)
C10.0293 (9)0.0336 (10)0.0376 (10)0.0009 (8)0.0035 (8)0.0067 (7)
C20.0380 (11)0.0436 (11)0.0333 (11)0.0052 (9)0.0082 (8)0.0118 (8)
C30.0408 (11)0.0420 (11)0.0260 (9)0.0123 (9)0.0045 (7)0.0017 (7)
C40.0354 (9)0.0280 (9)0.0285 (9)0.0077 (8)0.0014 (7)0.0029 (6)
C50.0324 (9)0.0265 (8)0.0231 (8)0.0045 (8)0.0014 (7)0.0011 (6)
C60.0248 (9)0.0258 (8)0.0297 (9)0.0047 (7)0.0003 (7)0.0017 (6)
C70.0235 (8)0.0248 (8)0.0307 (9)0.0007 (7)0.0038 (7)0.0003 (6)
C80.0243 (8)0.0245 (8)0.0327 (9)0.0005 (7)0.0011 (7)0.0014 (7)
C90.0261 (9)0.0240 (9)0.0298 (9)0.0046 (7)0.0044 (7)0.0009 (6)
C100.0252 (8)0.0236 (8)0.0282 (9)0.0054 (7)0.0014 (7)0.0015 (6)
C110.0290 (9)0.0242 (8)0.0312 (9)0.0018 (7)0.0015 (7)0.0004 (6)
C120.0317 (10)0.0278 (9)0.0468 (11)0.0004 (8)0.0017 (8)0.0033 (8)
C130.0361 (10)0.0307 (10)0.0565 (13)0.0032 (9)0.0058 (9)0.0116 (8)
C140.0397 (11)0.0480 (12)0.0399 (11)0.0015 (9)0.0056 (9)0.0167 (9)
C150.0333 (10)0.0381 (10)0.0304 (9)0.0040 (8)0.0009 (8)0.0042 (7)
Geometric parameters (Å, º) top
O1—C91.215 (2)C7—H71.000 (19)
O2—C71.432 (2)C7—C81.477 (2)
O2—C81.437 (2)C8—H80.964 (19)
O3—N11.219 (2)C8—C91.506 (2)
O4—N11.227 (2)C9—C101.491 (2)
N1—C41.468 (2)C10—C111.393 (2)
C1—H10.97 (2)C10—C151.394 (2)
C1—C21.388 (3)C11—H110.974 (19)
C1—C61.395 (2)C11—C121.389 (2)
C2—H21.00 (2)C12—H121.01 (2)
C2—C31.383 (3)C12—C131.386 (3)
C3—H30.94 (2)C13—H130.99 (2)
C3—C41.385 (3)C13—C141.382 (3)
C4—C51.385 (2)C14—H141.00 (2)
C5—H50.943 (19)C14—C151.385 (3)
C5—C61.390 (2)C15—H151.00 (2)
C6—C71.490 (2)
C7—O2—C861.95 (10)O2—C8—C758.85 (11)
O3—N1—O4122.84 (18)O2—C8—H8114.7 (13)
O3—N1—C4118.77 (15)O2—C8—C9113.67 (14)
O4—N1—C4118.38 (16)C7—C8—H8117.8 (11)
C2—C1—H1119.7C7—C8—C9118.19 (15)
C2—C1—C6120.58 (18)C9—C8—H8118.9 (12)
C6—C1—H1119.7O1—C9—C8118.87 (16)
C1—C2—H2119.7O1—C9—C10121.25 (15)
C3—C2—C1120.59 (18)C10—C9—C8119.85 (14)
C3—C2—H2119.7C11—C10—C9123.41 (15)
C2—C3—H3121.1C11—C10—C15119.37 (16)
C2—C3—C4117.87 (18)C15—C10—C9117.21 (15)
C4—C3—H3121.1C10—C11—H11119.9
C3—C4—N1118.44 (16)C12—C11—C10120.11 (16)
C3—C4—C5123.03 (18)C12—C11—H11119.9
C5—C4—N1118.52 (16)C11—C12—H12119.9
C4—C5—H5120.8C13—C12—C11120.10 (18)
C4—C5—C6118.39 (16)C13—C12—H12119.9
C6—C5—H5120.8C12—C13—H13120.1
C1—C6—C7121.08 (16)C14—C13—C12119.89 (19)
C5—C6—C1119.53 (16)C14—C13—H13120.1
C5—C6—C7119.39 (15)C13—C14—H14119.8
O2—C7—C6115.65 (15)C13—C14—C15120.43 (18)
O2—C7—H7114.4 (12)C15—C14—H14119.8
O2—C7—C859.20 (10)C10—C15—H15120.0
C6—C7—H7116.7 (11)C14—C15—C10120.09 (18)
C8—C7—C6120.63 (15)C14—C15—H15120.0
C8—C7—H7117.2 (11)
O1—C9—C10—C11173.70 (17)C5—C6—C7—O2151.82 (15)
O1—C9—C10—C157.5 (2)C5—C6—C7—C8140.25 (17)
O2—C7—C8—C9102.02 (17)C6—C1—C2—C30.3 (3)
O2—C8—C9—O129.4 (2)C6—C7—C8—O2103.45 (18)
O2—C8—C9—C10148.64 (14)C6—C7—C8—C9154.53 (16)
O3—N1—C4—C3173.69 (19)C7—O2—C8—C9109.74 (16)
O3—N1—C4—C57.2 (3)C7—C8—C9—O136.7 (2)
O4—N1—C4—C37.3 (3)C7—C8—C9—C10145.30 (17)
O4—N1—C4—C5171.84 (18)C8—O2—C7—C6111.82 (17)
N1—C4—C5—C6178.22 (17)C8—C9—C10—C118.3 (2)
C1—C2—C3—C40.7 (3)C8—C9—C10—C15170.47 (16)
C1—C6—C7—O227.6 (2)C9—C10—C11—C12178.49 (17)
C1—C6—C7—C840.4 (3)C9—C10—C15—C14177.84 (17)
C2—C1—C6—C50.7 (3)C10—C11—C12—C130.9 (3)
C2—C1—C6—C7179.91 (18)C11—C10—C15—C141.0 (3)
C2—C3—C4—N1179.20 (17)C11—C12—C13—C141.3 (3)
C2—C3—C4—C50.1 (3)C12—C13—C14—C150.6 (3)
C3—C4—C5—C60.8 (3)C13—C14—C15—C100.6 (3)
C4—C5—C6—C11.2 (3)C15—C10—C11—C120.3 (3)
C4—C5—C6—C7179.36 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.94 (1)2.35 (1)3.209 (2)151 (1)
C8—H8···O4ii0.96 (2)2.49 (2)3.401 (2)158 (2)
C15—H15···O3iii1.00 (1)2.51 (2)3.411 (2)150 (1)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1.
Angles between planes (°) top
Plane A: mean plane of the m-nitrophenyl benzene ring; plane B: oxirane ring; plane C: mean plane of the benzoyl benzene ring.
Planesmonoclinic polymorphorthorhombic polymorph
A/B99.78 (3)97.97 (10)
A/C102.36 (3)66.21 (6)
B/C55.53 (5)75.54 (10)
 

Acknowledgements

Financial support from the State University of New York for acquisition and maintenance of the X-ray diffractometer is gratefully acknowledged.

References

First citationBakó, P., Czinege, E., Bakó, T., Czugler, M. & Tőke, L. (1999). Tetrahedron Asymmetry, 10, 4539–4551.  Google Scholar
First citationBodforss, S. (1916). Ber. Dtsch. Chem. Ges. 49, 2795–2813.  CrossRef CAS Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurger, A. & Ramberger, R. (1979a). Mikrochim. Acta, 72, 259–271.  CrossRef Google Scholar
First citationBurger, A. & Ramberger, R. (1979b). Mikrochim. Acta, 72, 273–315.  CrossRef Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKitaigorodskii, A. I. (1961). In Organic Chemical Crystallography. New York: Consultants Bureau.  Google Scholar
First citationMarais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochemistry, 66, 2145–2176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNgo, D., Kalala, M., Hogan, V. & Manchanayakage, R. (2014). Tetrahedron Lett. 55, 4496–4500.  CrossRef CAS Google Scholar
First citationObregón-Mendoza, M. A., Escobedo-Martínez, C., Lozada, M. C., Gnecco, D., Soriano-García, M. & Enríquez, R. G. (2014). J. Chem. Crystallogr. 44, 512–519.  Google Scholar
First citationPerlstein, J. (1994). J. Am. Chem. Soc. 116, 11420–11432.  CrossRef CAS Web of Science Google Scholar
First citationRoth, A. G. & Schwarz, M. (1961). Arch. Pharm. Pharm. Med. Chem. 294, 478–483.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationWidman, O. (1916). Ber. Dtsch. Chem. Ges. 49, 477–485.  CrossRef Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationZaidi, J. H., Mehmood, T., Zareef, M., Qadeer, G. & Wong, W.-Y. (2007). Acta Cryst. E63, o1721–o1722.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds