research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­aqua­bis­­(7-di­ethyl­amino-3-formyl-2-oxo-2H-chromen-4-olato-κ2O3,O4)zinc(II) di­methyl sulfoxide disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
*Correspondence e-mail: karl.wallace@usm.edu

Edited by M. Zeller, Purdue University, USA (Received 15 June 2016; accepted 17 June 2016; online 24 June 2016)

The structure of the title coordination complex, [Zn(C14H14NO4)2(H2O)2]·2C2H6OS, shows that the ZnII cation adopts an octa­hedral geometry and lies on an inversion center. Two organic ligands occupy the equatorial positions of the coordination sphere, forming a chelate ring motif via the O atom on the formyl group and another O atom of the carbonyl group (a pseudo-β-diketone motif). Two water mol­ecules occupy the remaining coordination sites of the ZnII cation in the axial positions. The water mol­ecules are each hydrogen bonded to a single dimethyl sulfoxide mol­ecule that has been entrapped in the crystal lattice.

1. Chemical context

Fluorescent mol­ecular probes have been utilized in the monitoring of anions, cations, and neutral species in many applications in supra­molecular analytical chemistry (Lee et al., 2015[Lee, M. H., Kim, J. S. & Sessler, J. L. (2015). Chem. Soc. Rev. 44, 4185-4191.]). In particular, derivatives of 1,2-benzopyrone (commonly known as coumarin) have been used extensively as fluorescent chemosensors for a wide range of applications due to their unusual photo-physical properties in different solvent systems and using theoretical calculations (Lanke & Sekar, 2015[Lanke, S. K. & Sekar, N. (2015). J. Fluoresc. 25, 1469-1480.]; Liu et al., 2013[Liu, X., Xu, Z. & Cole, J. M. (2013). J. Phys. Chem. C, 117, 16584-16595.]). There is a plethora of coumarin dyes and their derivatives that have been used as colorimetric and fluorescent sensors (Lin et al., 2008[Lin, W., Yuan, L., Cao, X., Tan, W. & Feng, Y. (2008). Eur. J. Org. Chem. pp. 4981-4987.]; Ray et al., 2010[Ray, D., Nag, A., Jana, A., Goswami, D. & Bharadwaj, P. K. (2010). Inorg. Chim. Acta, 363, 2824-2832.]). In fact our own group has used a coumarin–enamine organic compound as a chemosensor for the detection of cyanide ions, via a Michael addition approach (Davis et al., 2014[Davis, A. B., Lambert, R. E., Fronczek, F. R., Cragg, P. J. & Wallace, K. J. (2014). New J. Chem. 38, 4678-4683.]). Additionally, we have utilized a small family of the coumarin chemosensors to discriminate metal ions as their chloride salts utilizing Linear Discriminant Analysis (Mallet et al., 2015[Mallet, A., Davis, A., Davis, D., Panella, J., Wallace, K. & Bonizzoni, M. (2015). Chem. Commun. 51, 16948-16951.]).

[Scheme 1]

The detection of one particular metal ion, ZnII, is of special inter­est to our group. The ZnII ion is ubiquitous in nature, playing important biological roles, and acting as a Lewis acid in the hydrolysis process involving carb­oxy­peptides. Zinc also plays many structural roles and is often found accompanied with cysteine and histidine residues (the classic zinc finger motif; Osredkar & Sustar, 2011[Osredkar, J. & Sustar, N. (2011). J. Clin. Toxicol. S3, 001.]). As a consequence of the filled d shell with its d10 electron configuration, the zinc ion is found in all geometrical arrangements, with the tetra­hedral and octa­hedral being the two most common motifs. Additionally ZnII is spectroscopically silent, therefore direct monitoring of this ion is challenging, especially in aqueous media. Our intention was to synthesize a planar mol­ecular chemosensor with a high degree of conjugation which can be easily perturbed to produce a spectroscopic response upon the coordination of ZnII ions. In this paper we report the synthesis and the supra­molecular architecture of [Zn(7-di­ethyl­amino-3-formyl-chromen-2,4-dione)2(H2O)2], (1).

2. Structural commentary

The mol­ecular structure of (1) is shown in Fig. 1[link]. The coumarin ligand is planar and is coordinated to the ZnII ion in a chelating fashion by the two carbonyl functional groups that form a pseudo-β-diketone motif. This is indicated by the short C=O bond of the dione (O3—C4) and the C=O bond length of the formyl moiety (O4—C9), with values of 1.2686 (10) and 1.2603 (10) Å, respectively. The Zn—O bonds complete the stable six-membered chelating motif, which is favorable for smaller metal ions (Hancock & Martell, 1989[Hancock, R. D. & Martell, A. E. (1989). Chem. Rev. 89, 1875-1914.]). The lengths of the Zn—O (carbon­yl) bond Zn1—O3 [2.0221 (6) Å] and the Zn—O (form­yl) bond Zn1—O4 [2.063 (6) Å] in the equatorial positions are in excellent agreement with similar chelating motifs (Dong et al., 2010[Dong, K., Sun, J., Ruan, B.-F. & Gong, H.-B. (2010). Acta Cryst. E66, m1290.]). The metal ion is located on an inversion center. The axial positions are occupied with two water mol­ecules, the Zn1—O5 bond length is at 2.1624 (7) Å slightly longer than that in other hydrated ZnII coordination complexes, whereby the average Zn—O (aqua ligand) distance is 2.09 Å (Nimmermark et al., 2013[Nimmermark, A., Ohrstrom, L. & Reedijk, J. (2013). Z. Kristallogr. 228, 311-317.]). The coordination sphere of the ZnII ion is a near perfect octa­hedron with all of the bond angles close to 90°, ranging from 86.82 (3) to 93.18 (3)°. A single DMSO solvent mol­ecule completes the asymmetric unit.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids at the 50% probability level, with a single DMSO mol­ecule hydrogen bonded to a water mol­ecule coordinating to the zinc cation.

3. Supra­molecular features

The crystal structure of the title compound shows an extensive array of hydrogen-bonding inter­actions (Table 1[link]) forming hydrogen-bond ring systems and infinite chains (Fig. 2[link]). The encapsulated DMSO solvent mol­ecule forms a hydrogen-bonding inter­action with a single water mol­ecule that is coordinating to the ZnII ion S1—O6⋯H52—O5 [1.983 (9) Å]. Inter­estingly, there are also two C—H⋯O hydrogen-bonding inter­actions from the methyl moiety of DMSO; one with the O atom on the formyl functional group in the equatorial position (H13A⋯O4 = 2.52 Å) and an additional hydrogen-bonding inter­action from the carbonyl­dione group occupying another equatorial position (H12B⋯O3 = 2.62 Å). Together these two inter­actions form three R22(8) systems. Furthermore, the DMSO solvent mol­ecule encapsulated within the crystal structure forms a single hydrogen-bonding inter­action with an adjacent DMSO mol­ecule H13C⋯O6(x + 1, y, z) (2.29 Å), forming an infinite chain.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H52⋯O6 0.83 (1) 1.98 (1) 2.8030 (11) 171 (2)
O5—H51⋯O4i 0.83 (1) 1.99 (1) 2.8126 (9) 169 (1)
C12—H12B⋯O3ii 0.98 2.62 3.5805 (12) 167
C13—H13A⋯O4 0.98 2.52 3.4050 (13) 151
C13—H13C⋯O6iii 0.98 2.29 3.1299 (14) 143
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1; (iii) x+1, y, z.
[Figure 2]
Figure 2
The crystal packing of the title compound highlighting the extensive hydrogen-bond network. The left side is the view down [100] and the right view highlights the five unique hydrogen-bonding inter­actions and three R22(8) systems.

It is well known that coumarin crystal packing displays π-stacking motifs as a consequence of the planarity of the organic framework (Guha et al., 2013[Guha, S., Lohar, S., Sahana, A., Banerjee, A., Safin, D. A., Babashkina, M. G., Mitoraj, M. P., Bolte, M., Garcia, Y. K. M. S. & Das, D. (2013). Dalton Trans. 42, 10198-10207.]). Inter­estingly, the crystal packing of the title compound is influenced by off-set ππ inter­actions between the electron deficient coumarin ring system of one mol­ecule (ring system O1–C8A) and the electron-rich region of the second coumarin ring system (C4A–C8A) of an adjacent compound, whereby the centroids are 3.734 Å apart (Fig. 3[link]). This is in good agreement with other π-stacking motifs (Wallace et al., 2005[Wallace, K. J., Gray, M., Zhong, Z., Lynch, V. M. & Anslyn, E. V. (2005). Dalton Trans. pp. 2436-2441.]). As a consequence, the packing arrangement shows a distinct zigzag pattern (Fig. 4[link]).

[Figure 3]
Figure 3
Side view of the crystal packing showing both the unit cell and the ππ stacking (3.734 Å). DMSO mol­ecules have been removed for clarity.
[Figure 4]
Figure 4
Side view of the crystal packing showing the ππ stacking of the coumarin of adjacent coordination complexes, emphasizing the zigzag motif.

4. Database survey

For coumarin-derived mol­ecular probes for the detection of neutral compounds, see: Wallace et al. (2006[Wallace, K. J., Fagbemi, R. I., Folmer-Andersen, F. J., Morey, J., Lynch, V. M. & Anslyn, E. V. (2006). Chem. Commun. pp. 3886-3888.]). A coumarin-based chemosensor for the detection of copper(II) ions was prepared by Xu et al. (2015[Xu, W.-J., Qi, D.-Q., You, J. Z., Hu, F.-F., Bian, J.-Y., Yang, C.-X. & Huang, J. (2015). J. Mol. Struct. 1091, 133-137.]). There are very few literature examples of Michael acceptors with cyanide that have been isolated, however Sun et al. (2012[Sun, Y., Wang, Y., Cao, D., Chena, C., Liu, Z. & Fang, Q. (2012). Sens. Actuators B Chem. 174, 500-505.]) have published an elegant crystal structure of a coumarin-cyanide adduct. There are over 25,000 zinc(II) coordination complexes in the Cambridge Structure Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), both the tetra­hedral and octa­hedral environments. Therefore, the authors carried out a refined structure search based on the structures shown in Figs. 5[link](a) and 5(b); however, these did not yield any results. Therefore a modification of the search by specifically searching structures that have a bidentate chelating β-diketone motif coordinated to the zinc(II) in the equatorial position, with two water mol­ecules in the axial position, as shown in Fig. 5[link](c) was carried out. This refined search yielded two similar structures with ZnII octahedrally coordinated, the first by Solans et al., whereby two 1,3-bis­(2-hy­droxy­phen­yl)propane-1,3-dionate ligands coordinate to the ZnII ion, with the remaining two coordination sites occupied by two ethanol mol­ecules (Solans et al., 1983[Solans, X., Font-Altaba, M., Briansó, J. L., Llobet, A., Teixidor, F. & Casabó, J. (1983). Acta Cryst. C39, 1512-1514.]). The other similar structure was reported by Dong et al. (2010[Dong, K., Sun, J., Ruan, B.-F. & Gong, H.-B. (2010). Acta Cryst. E66, m1290.]) who incorporated two 2-(4-benzo­yloxy-2-hy­droxy­benzo­yl)-1-phenyl­ethenolate ligands that were bound to the metal ion in the equatorial position and two ethanol mol­ecules situated in the axial postions.

[Figure 5]
Figure 5
Chemical structures used in the CSD similarity search.

5. Synthesis and crystallization

7-(Di­ethyl­amino)-4-hy­droxy­coumarin (467 mg, 2.00 mmol) was dissolved in 2-propanol (20 mL), tri­ethyl ­orthoformate (500 µL, 3.00 mmol) and 2-amino­pyriimidine (190 mg, 2.00 mmol) were added and the solution was heated to reflux for 4 h. Upon cooling, the solid was collected and used without further purification. This compound (200 mg, 0.59 mmol) was then dissolved in methanol (10 mL), to which Zn(OAc)2 (130 mg, 0.59 mmol) was then added to the solution. After stirring for 20 min, a yellow solid formed, which was collected by filtration and dried. A small amount of the solid (20 mg) was redissolved in a 1:1 mixture of MeOH and DMSO to form a saturated solution (1 mL) which was was allowed to stand for several weeks to form the title compound as colorless needles suitable for X-ray analysis. 1H NMR (300 K, CHCl3-d, 600 MHz p.p.m.): δ 9.68 (s, 2H, CHO), 7.91 (d, 2H, J = 2.4 Hz, ArH), 6.53 (d, J = 2.3 Hz, ArH), 6.33 (s, 2H, ArH), 3.41 (q, 8H, J = 7.1 Hz, CH2), 1.23 (t, 12H, J = 7.1 Hz, CH3); 13C NMR (300 K, CHCl3-d, 150 MHz p.p.m.) δ 192.2, 169.1, 165.8, 159.5, 157.7, 153.3, 128.3, 108.4, 108.0, 102.8, 96.9, 44.9, 40.6, 29.7, 12.5; LRMS–ESI (negative mode), NaCl was added as a charging agent [M − 2H2O + Cl] = 619 m/z, [M − H2O − C14H15NO4 + 2Cl] = 396 m/z, CID 396 yields [C14H15NO4] = 261 m/z; IR (ATR solid); 3364 (br, s) νOH, 2972, 2926 (m) νCH, 1722 (m) νCO (δ-lactone), 1689 νCO (ketone), 1590 νCO (form­yl), 564 νCO (Zn—O) cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms on C were idealized with a C—H distance of 0.95 Å for Csp2, 0.99 Å for CH2, and 0.98 Å for methyl groups. Those on O atoms were assigned from difference maps, and their positions refined, with O—H distances restrained to 0.86 (1) Å. Uiso values for H atoms were assigned as 1.2 times Ueq of the attached atoms (1.5 for methyl and water groups).

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C14H14NO4)2(H2O)2]·2C2H6OS
Mr 778.18
Crystal system, space group Monoclinic, P21/n
Temperature (K) 90
a, b, c (Å) 5.2704 (2), 20.2885 (8), 16.0314 (8)
β (°) 94.210 (2)
V3) 1709.59 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.91
Crystal size (mm) 0.42 × 0.13 × 0.06
 
Data collection
Diffractometer Bruker Kappa APEXII CCD DUO
Absorption correction Multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.839, 0.948
No. of measured, independent and observed [I > 2σ(I)] reflections 52833, 7923, 6800
Rint 0.034
(sin θ/λ)max−1) 0.821
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.05
No. of reflections 7923
No. of parameters 233
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.64, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Diaquabis(7-diethylamino-3-formyl-2-oxo-2H-chromen-4-olato-κ2O3,O4)zinc(II) dimethyl sulfoxide disolvate top
Crystal data top
[Zn(C14H14NO4)2(H2O)2]·2C2H6OSF(000) = 816
Mr = 778.18Dx = 1.512 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.2704 (2) ÅCell parameters from 9942 reflections
b = 20.2885 (8) Åθ = 2.7–35.6°
c = 16.0314 (8) ŵ = 0.91 mm1
β = 94.210 (2)°T = 90 K
V = 1709.59 (13) Å3Needle, colorless
Z = 20.42 × 0.13 × 0.06 mm
Data collection top
Bruker Kappa APEXII CCD DUO
diffractometer
7923 independent reflections
Radiation source: fine-focus sealed tube6800 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.034
φ and ω scansθmax = 35.7°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 88
Tmin = 0.839, Tmax = 0.948k = 3233
52833 measured reflectionsl = 2626
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.037P)2 + 0.4839P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
7923 reflectionsΔρmax = 0.64 e Å3
233 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.00000.50000.50000.00796 (3)
O10.76292 (12)0.75420 (3)0.39084 (4)0.01077 (11)
O21.07150 (13)0.72578 (3)0.31308 (4)0.01409 (12)
O30.84598 (12)0.58615 (3)0.53466 (4)0.00965 (10)
O41.23910 (12)0.55264 (3)0.42845 (4)0.01070 (11)
O50.71499 (13)0.49969 (3)0.39585 (4)0.01339 (12)
H510.5673 (19)0.5100 (7)0.4057 (10)0.020*
H520.697 (3)0.4765 (7)0.3534 (7)0.020*
N10.08901 (14)0.83166 (4)0.54592 (5)0.01113 (12)
C20.95013 (16)0.71005 (4)0.37136 (5)0.00949 (13)
C30.97983 (15)0.64990 (4)0.42057 (5)0.00849 (12)
C40.82637 (15)0.63719 (4)0.48897 (5)0.00782 (12)
C4A0.64144 (15)0.68716 (4)0.50673 (5)0.00800 (12)
C50.48155 (16)0.68183 (4)0.57310 (5)0.00925 (13)
H50.49470.64410.60820.011*
C60.30707 (16)0.72985 (4)0.58833 (5)0.01032 (13)
H60.20680.72570.63490.012*
C70.27487 (16)0.78592 (4)0.53494 (5)0.00915 (13)
C80.43691 (16)0.79177 (4)0.46922 (5)0.00975 (13)
H80.42410.82910.43350.012*
C8A0.61446 (16)0.74331 (4)0.45661 (5)0.00859 (12)
C91.18006 (16)0.60867 (4)0.39914 (5)0.00982 (13)
H91.28300.62510.35760.012*
C100.05833 (17)0.83018 (5)0.61973 (6)0.01397 (15)
H10A0.11340.78430.62920.017*
H10B0.21320.85730.60860.017*
C110.0875 (2)0.85532 (6)0.69888 (6)0.0237 (2)
H11A0.25270.83310.70610.036*
H11B0.01030.84610.74730.036*
H11C0.11380.90300.69430.036*
C10'0.05448 (17)0.88743 (4)0.48901 (6)0.01302 (14)
H10C0.12020.90480.49180.016*
H10D0.07110.87180.43120.016*
C11'0.24407 (19)0.94345 (5)0.50790 (7)0.01896 (18)
H11D0.21540.96280.56240.028*
H11E0.22040.97730.46440.028*
H11F0.41790.92610.50890.028*
S10.92308 (4)0.42229 (2)0.19940 (2)0.01629 (5)
O60.68156 (15)0.43188 (5)0.24310 (6)0.0304 (2)
C121.0926 (2)0.35719 (6)0.25330 (6)0.02078 (19)
H12A1.00560.31530.24080.031*
H12B1.09950.36540.31370.031*
H12C1.26590.35510.23510.031*
C131.1280 (2)0.48866 (6)0.23282 (8)0.0241 (2)
H13A1.14470.49020.29410.036*
H13B1.05590.53030.21100.036*
H13C1.29590.48190.21170.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.00668 (6)0.00682 (6)0.01065 (6)0.00185 (4)0.00248 (4)0.00008 (4)
O10.0130 (3)0.0096 (3)0.0103 (2)0.0026 (2)0.0048 (2)0.00221 (19)
O20.0158 (3)0.0148 (3)0.0124 (3)0.0006 (2)0.0065 (2)0.0027 (2)
O30.0115 (3)0.0071 (2)0.0107 (2)0.0026 (2)0.00331 (19)0.00131 (18)
O40.0085 (2)0.0094 (2)0.0147 (3)0.0012 (2)0.0038 (2)0.0001 (2)
O50.0082 (3)0.0180 (3)0.0140 (3)0.0031 (2)0.0009 (2)0.0041 (2)
N10.0107 (3)0.0101 (3)0.0127 (3)0.0043 (2)0.0020 (2)0.0003 (2)
C20.0098 (3)0.0096 (3)0.0092 (3)0.0001 (3)0.0018 (2)0.0003 (2)
C30.0086 (3)0.0084 (3)0.0088 (3)0.0007 (2)0.0028 (2)0.0002 (2)
C40.0074 (3)0.0077 (3)0.0084 (3)0.0004 (2)0.0008 (2)0.0006 (2)
C4A0.0079 (3)0.0073 (3)0.0090 (3)0.0012 (2)0.0020 (2)0.0001 (2)
C50.0094 (3)0.0088 (3)0.0097 (3)0.0015 (2)0.0024 (2)0.0014 (2)
C60.0105 (3)0.0095 (3)0.0113 (3)0.0024 (3)0.0031 (3)0.0013 (2)
C70.0088 (3)0.0081 (3)0.0105 (3)0.0017 (2)0.0006 (2)0.0009 (2)
C80.0110 (3)0.0077 (3)0.0107 (3)0.0023 (3)0.0017 (2)0.0010 (2)
C8A0.0094 (3)0.0079 (3)0.0086 (3)0.0005 (2)0.0019 (2)0.0005 (2)
C90.0086 (3)0.0102 (3)0.0110 (3)0.0003 (3)0.0031 (2)0.0008 (2)
C100.0112 (3)0.0149 (4)0.0163 (4)0.0037 (3)0.0041 (3)0.0010 (3)
C110.0239 (5)0.0321 (6)0.0155 (4)0.0050 (4)0.0034 (3)0.0067 (4)
C10'0.0106 (3)0.0103 (3)0.0180 (4)0.0031 (3)0.0001 (3)0.0014 (3)
C11'0.0153 (4)0.0106 (4)0.0312 (5)0.0008 (3)0.0028 (4)0.0005 (3)
S10.00995 (9)0.02305 (11)0.01552 (9)0.00354 (8)0.00148 (7)0.00841 (8)
O60.0089 (3)0.0480 (5)0.0346 (4)0.0016 (3)0.0025 (3)0.0249 (4)
C120.0204 (4)0.0264 (5)0.0155 (4)0.0024 (4)0.0017 (3)0.0002 (3)
C130.0160 (4)0.0238 (5)0.0319 (5)0.0009 (4)0.0015 (4)0.0105 (4)
Geometric parameters (Å, º) top
Zn1—O3i2.0221 (6)C7—C81.4090 (11)
Zn1—O32.0221 (6)C8—C8A1.3823 (11)
Zn1—O42.0631 (6)C8—H80.9500
Zn1—O4i2.0632 (6)C9—H90.9500
Zn1—O52.1624 (7)C10—C111.5224 (14)
Zn1—O5i2.1624 (7)C10—H10A0.9900
O1—C8A1.3762 (10)C10—H10B0.9900
O1—C21.3852 (10)C11—H11A0.9800
O2—C21.2132 (10)C11—H11B0.9800
O3—C41.2683 (10)C11—H11C0.9800
O4—C91.2603 (10)C10'—C11'1.5289 (14)
O5—H510.832 (9)C10'—H10C0.9900
O5—H520.827 (9)C10'—H10D0.9900
N1—C71.3700 (11)C11'—H11D0.9800
N1—C10'1.4565 (11)C11'—H11E0.9800
N1—C101.4624 (12)C11'—H11F0.9800
C2—C31.4552 (11)S1—O61.5100 (8)
C3—C91.4088 (11)S1—C121.7822 (11)
C3—C41.4330 (11)S1—C131.7836 (11)
C4—C4A1.4490 (11)C12—H12A0.9800
C4A—C8A1.3953 (11)C12—H12B0.9800
C4A—C51.4091 (11)C12—H12C0.9800
C5—C61.3739 (11)C13—H13A0.9800
C5—H50.9500C13—H13B0.9800
C6—C71.4263 (12)C13—H13C0.9800
C6—H60.9500
O3i—Zn1—O3180.00 (3)C7—C8—H8119.9
O3i—Zn1—O491.19 (2)O1—C8A—C8115.27 (7)
O3—Zn1—O488.81 (2)O1—C8A—C4A122.18 (7)
O3i—Zn1—O4i88.81 (2)C8—C8A—C4A122.55 (7)
O3—Zn1—O4i91.19 (2)O4—C9—C3127.84 (8)
O4—Zn1—O4i180.0O4—C9—H9116.1
O3i—Zn1—O593.18 (3)C3—C9—H9116.1
O3—Zn1—O586.82 (3)N1—C10—C11113.70 (8)
O4—Zn1—O589.44 (3)N1—C10—H10A108.8
O4i—Zn1—O590.56 (3)C11—C10—H10A108.8
O3i—Zn1—O5i86.83 (3)N1—C10—H10B108.8
O3—Zn1—O5i93.17 (3)C11—C10—H10B108.8
O4—Zn1—O5i90.56 (3)H10A—C10—H10B107.7
O4i—Zn1—O5i89.44 (3)C10—C11—H11A109.5
O5—Zn1—O5i180.00 (4)C10—C11—H11B109.5
C8A—O1—C2121.56 (6)H11A—C11—H11B109.5
C4—O3—Zn1124.36 (5)C10—C11—H11C109.5
C9—O4—Zn1122.01 (5)H11A—C11—H11C109.5
Zn1—O5—H51117.4 (11)H11B—C11—H11C109.5
Zn1—O5—H52131.9 (11)N1—C10'—C11'113.80 (8)
H51—O5—H52104.3 (15)N1—C10'—H10C108.8
C7—N1—C10'120.21 (7)C11'—C10'—H10C108.8
C7—N1—C10121.15 (7)N1—C10'—H10D108.8
C10'—N1—C10118.26 (7)C11'—C10'—H10D108.8
O2—C2—O1115.34 (7)H10C—C10'—H10D107.7
O2—C2—C3126.61 (8)C10'—C11'—H11D109.5
O1—C2—C3118.04 (7)C10'—C11'—H11E109.5
C9—C3—C4123.69 (7)H11D—C11'—H11E109.5
C9—C3—C2114.74 (7)C10'—C11'—H11F109.5
C4—C3—C2121.43 (7)H11D—C11'—H11F109.5
O3—C4—C3124.22 (7)H11E—C11'—H11F109.5
O3—C4—C4A119.03 (7)O6—S1—C12106.27 (6)
C3—C4—C4A116.75 (7)O6—S1—C13106.01 (5)
C8A—C4A—C5117.14 (7)C12—S1—C1398.22 (6)
C8A—C4A—C4119.98 (7)S1—C12—H12A109.5
C5—C4A—C4122.88 (7)S1—C12—H12B109.5
C6—C5—C4A121.67 (7)H12A—C12—H12B109.5
C6—C5—H5119.2S1—C12—H12C109.5
C4A—C5—H5119.2H12A—C12—H12C109.5
C5—C6—C7120.71 (7)H12B—C12—H12C109.5
C5—C6—H6119.6S1—C13—H13A109.5
C7—C6—H6119.6S1—C13—H13B109.5
N1—C7—C8121.16 (7)H13A—C13—H13B109.5
N1—C7—C6121.18 (7)S1—C13—H13C109.5
C8—C7—C6117.64 (7)H13A—C13—H13C109.5
C8A—C8—C7120.23 (7)H13B—C13—H13C109.5
C8A—C8—H8119.9
C8A—O1—C2—O2178.59 (8)C10'—N1—C7—C6178.06 (8)
C8A—O1—C2—C32.40 (11)C10—N1—C7—C69.15 (12)
O2—C2—C3—C93.39 (13)C5—C6—C7—N1175.22 (8)
O1—C2—C3—C9177.73 (7)C5—C6—C7—C83.26 (12)
O2—C2—C3—C4179.19 (8)N1—C7—C8—C8A176.64 (8)
O1—C2—C3—C41.93 (11)C6—C7—C8—C8A1.84 (12)
Zn1—O3—C4—C322.08 (11)C2—O1—C8A—C8179.44 (7)
Zn1—O3—C4—C4A159.09 (6)C2—O1—C8A—C4A0.73 (12)
C9—C3—C4—O33.62 (13)C7—C8—C8A—O1179.82 (7)
C2—C3—C4—O3179.04 (8)C7—C8—C8A—C4A0.35 (13)
C9—C3—C4—C4A175.24 (7)C5—C4A—C8A—O1179.02 (7)
C2—C3—C4—C4A0.18 (11)C4—C4A—C8A—O11.52 (12)
O3—C4—C4A—C8A179.20 (7)C5—C4A—C8A—C81.16 (12)
C3—C4—C4A—C8A1.88 (11)C4—C4A—C8A—C8178.30 (8)
O3—C4—C4A—C50.24 (12)Zn1—O4—C9—C313.02 (12)
C3—C4—C4A—C5178.68 (7)C4—C3—C9—O48.25 (14)
C8A—C4A—C5—C60.29 (12)C2—C3—C9—O4176.05 (8)
C4—C4A—C5—C6179.74 (8)C7—N1—C10—C1175.54 (11)
C4A—C5—C6—C72.53 (13)C10'—N1—C10—C1197.39 (10)
C10'—N1—C7—C80.37 (12)C7—N1—C10'—C11'80.01 (10)
C10—N1—C7—C8172.43 (8)C10—N1—C10'—C11'92.99 (10)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H52···O60.83 (1)1.98 (1)2.8030 (11)171 (2)
O5—H51···O4ii0.83 (1)1.99 (1)2.8126 (9)169 (1)
C12—H12B···O3i0.982.623.5805 (12)167
C13—H13A···O40.982.523.4050 (13)151
C13—H13C···O6iii0.982.293.1299 (14)143
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z.
 

Acknowledgements

The KJW group is grateful for the financial support from NSF Grant OCE-0963064. The upgrade of the diffractometer was made possible by grant No. LEQSF(2011–12)-ENH-TR-01, administered by the Louisiana Board of Regents.

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavis, A. B., Lambert, R. E., Fronczek, F. R., Cragg, P. J. & Wallace, K. J. (2014). New J. Chem. 38, 4678–4683.  CSD CrossRef CAS Google Scholar
First citationDong, K., Sun, J., Ruan, B.-F. & Gong, H.-B. (2010). Acta Cryst. E66, m1290.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuha, S., Lohar, S., Sahana, A., Banerjee, A., Safin, D. A., Babashkina, M. G., Mitoraj, M. P., Bolte, M., Garcia, Y. K. M. S. & Das, D. (2013). Dalton Trans. 42, 10198–10207.  CSD CrossRef CAS PubMed Google Scholar
First citationHancock, R. D. & Martell, A. E. (1989). Chem. Rev. 89, 1875–1914.  CrossRef CAS Web of Science Google Scholar
First citationLanke, S. K. & Sekar, N. (2015). J. Fluoresc. 25, 1469–1480.  CrossRef CAS PubMed Google Scholar
First citationLee, M. H., Kim, J. S. & Sessler, J. L. (2015). Chem. Soc. Rev. 44, 4185–4191.  CrossRef CAS PubMed Google Scholar
First citationLin, W., Yuan, L., Cao, X., Tan, W. & Feng, Y. (2008). Eur. J. Org. Chem. pp. 4981–4987.  CrossRef Google Scholar
First citationLiu, X., Xu, Z. & Cole, J. M. (2013). J. Phys. Chem. C, 117, 16584–16595.  CrossRef CAS Google Scholar
First citationMallet, A., Davis, A., Davis, D., Panella, J., Wallace, K. & Bonizzoni, M. (2015). Chem. Commun. 51, 16948–16951.  CrossRef CAS Google Scholar
First citationNimmermark, A., Ohrstrom, L. & Reedijk, J. (2013). Z. Kristallogr. 228, 311–317.  CrossRef CAS Google Scholar
First citationOsredkar, J. & Sustar, N. (2011). J. Clin. Toxicol. S3, 001.  CrossRef Google Scholar
First citationRay, D., Nag, A., Jana, A., Goswami, D. & Bharadwaj, P. K. (2010). Inorg. Chim. Acta, 363, 2824–2832.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolans, X., Font-Altaba, M., Briansó, J. L., Llobet, A., Teixidor, F. & Casabó, J. (1983). Acta Cryst. C39, 1512–1514.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Wang, Y., Cao, D., Chena, C., Liu, Z. & Fang, Q. (2012). Sens. Actuators B Chem. 174, 500–505.  CrossRef CAS Google Scholar
First citationWallace, K. J., Fagbemi, R. I., Folmer-Andersen, F. J., Morey, J., Lynch, V. M. & Anslyn, E. V. (2006). Chem. Commun. pp. 3886–3888.  CSD CrossRef Google Scholar
First citationWallace, K. J., Gray, M., Zhong, Z., Lynch, V. M. & Anslyn, E. V. (2005). Dalton Trans. pp. 2436–2441.  CSD CrossRef Google Scholar
First citationXu, W.-J., Qi, D.-Q., You, J. Z., Hu, F.-F., Bian, J.-Y., Yang, C.-X. & Huang, J. (2015). J. Mol. Struct. 1091, 133–137.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds