research communications
2
of TiBiaInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
*Correspondence e-mail: yamane@tagen.tohoku.ac.jp
Black granular single crystals of monotitanium dibismuth, TiBi2, were synthesized by slow cooling of a mixture of Bi and Ti from 693 K. The title compound is isostructural with CuMg2 (orthorhombic Fddd symmetry). Ti atoms are located in square antiprisms of Bi atoms. The network of one type of Bi atom spirals along the a-axis direction while honeycomb layers of the other type of Bi atom spreading in the ab plane interlace one another.
Keywords: crystal structure; CuMg2 structure type; titanium; bismuth.
CCDC reference: 1497032
1. Chemical context
TiBi2 was first reported in the study of the Ti–Bi binary phase diagram by Vassilev (2006). Maruyama et al. (2013) confirmed the presence of TiBi2 in their phase-diagram study and showed that the powder X-ray diffraction (XRD) pattern was consistent with that of a Ti–Bi film prepared by RF sputtering (Simić & Marinković, 1990). However, the lattice parameters and structure of TiBi2 were not reported.
In the present study, we prepared single crystals of TiBi2 to clarify the structure. The pellet of the starting mixture maintained the original shape after heating at 693 K. The powder XRD pattern of the sample showed that a mixture of TiBi2, Bi, and Ti had been obtained. Single crystals of TiBi2 approximately 120 µm in size were picked up from the fractured sample. TiBi2 is unstable and decomposes in air. When the mixture was heated at 703 K, the obtained sample was a mixture of Bi and Ti8Bi9. This temperature was above the peritectic temperature of TiBi2 (698 K) reported in the phase diagram by Maruyama et al. (2013).
2. Structural commentary
TiBi2 is isotypic with CuMg2 (Schubert & Anderko, 1951; Gingl et al., 1993), NbSn2, VSn2, CrSn2 (Wölpl & Jeitschko, 1994; Larsson & Lidin, 1995), and IrIn2 (Zumdick et al., 2000). TiSnSb is the only reported compound which contains Ti and crystallizes in the CuMg2-type structure (Malaman & Steinmetz, 1979; Dashjav & Kleinke, 2003). The of TiSb2 adopts the CuAl2 type, while that of TiSn2 is not known. TiBi2 is the first binary compound that is composed of Ti and a group 15 element and has the CuMg2-type structure.
Fig. 1 shows the of TiBi2 while the coordination environments of the Ti1, Bi1, and Bi2 atoms are illustrated in Fig. 2. The Ti1 site is located in a square antiprism of Bi atoms. The Bi square antiprisms are aligned alternately along the a + b and a − b directions by sharing the square planes. Bi—Ti bond lengths in the Bi square antiprism and the Ti—Ti distance of the inter-antiprisms are 2.9382 (16)–3.0825 (6) and 2.9546 (2) Å, respectively, which are in the ranges reported for Ti8Bi9 [Bi—Ti = 2.818 (4)–3.144 (6) Å and Ti—Ti = 2.934 (6)–3.715 (5) Å; Richter & Jeitschko, 1997].
The Bi1—Bi1 bond lengths in the Bi1 spiral-like network are 3.0730 (8) Å in the c-axis direction and 3.4589 (4) Å in the other direction. The Bi2—Bi2 bond lengths in the Bi2 honeycomb layers in the ab plane are 3.4639 (8) Å in the b-axis direction and 3.3435 (4) Å in the other direction. The Bi—Bi bond lengths in the spiral rings and honeycomb layers in TiBi2 are in the range of those in Bi metal (3.071 and 3.529 Å; Cucka & Barrett, 1962). The interatomic distances between the Bi atoms of the spiral network and the honeycomb layers (Bi1—Bi2) are 3.6974 (3), 3.7309 (4) and 3.7546 (4) Å, which are longer than the Bi—Bi bond lengths in Bi metal.
3. Synthesis and crystallization
Starting powders of Bi (1 mmol, Mitsuwa Chemicals Co., Ltd, 99.999%) and Ti (0.5 mmol, Mitsuwa Chemicals Co., Ltd, 99.99%) were weighed, mixed in an alumina mortar with a pestle and formed into a pellet by uniaxial pressing in an Ar gas-filled 2 and H2O < 1 p.p.m.). The pellet was put in a tantalum boat (Nilaco Corp., 99.95%). The boat was sealed in a stainless-steel (SUS 316) tube. The sample was heated to 693 K in an electric furnace with a heating rate of 3.5 K min−1. This temperature was kept for 10 h, and then lowered to 473 K with a cooling rate of 5 K h−1. After cooling to room temperature by shutting off the electrical power to the furnace, the stainless-steel tube was cut and opened in the To identify the crystalline phases, powder XRD (Cu Kα, Bruker, D2 phaser) was carried out for a portion of the sample which was ground in the alumina mortar and sealed under an Ar atmosphere in a holder with a kapton film window. The chemical compositions of TiBi2 single crystals placed on a carbon tape were determined with an electron probe microanalyzer (EPMA, JEOL, JXA-8200). Bi and TiO2 (Japan Electronics Co., Ltd) were used as standard samples. The analyzed composition ratio of Ti:Bi in the crystals was 1.0 (1):2.0 (1). A single crystal of TiBi2 was sealed in a glass capillary with Ar gas in the for the single-crystal XRD experiment.
(O4. Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Supporting information
CCDC reference: 1497032
https://doi.org/10.1107/S2056989016012391/br2262sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016012391/br2262Isup2.hkl
Data collection: Instrument Service (Bruker, 2014); cell
APEX2 (Bruker, 2014); data reduction: SAINT-Plus (Bruker, 2014); program(s) used to solve structure: APEX2 (Bruker, 2014); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: VESTA (Momma & Izumi, 2011).TiBi2 | Dx = 10.679 Mg m−3 |
Mr = 465.86 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Fddd | Cell parameters from 4528 reflections |
a = 5.7654 (4) Å | θ = 4.2–31.4° |
b = 10.3155 (6) Å | µ = 123.50 mm−1 |
c = 19.4879 (12) Å | T = 298 K |
V = 1159.00 (13) Å3 | Granule, black |
Z = 16 | 0.14 × 0.09 × 0.06 mm |
F(000) = 3008 |
Bruker D8 goniometer diffractometer | 339 independent reflections |
Radiation source: micro focus sealed tube | 309 reflections with I > 2σ(I) |
Detector resolution: 10.4167 pixels mm-1 | Rint = 0.048 |
ω, φ scans | θmax = 27.5°, θmin = 4.2° |
Absorption correction: numerical (SADABS; Bruker, 2014) | h = −7→7 |
Tmin = 0.016, Tmax = 0.102 | k = −13→13 |
3881 measured reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0275P)2 + 47.1241P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.062 | (Δ/σ)max < 0.001 |
S = 1.31 | Δρmax = 2.54 e Å−3 |
339 reflections | Δρmin = −3.80 e Å−3 |
17 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00038 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Bi1 | 0.1250 | 0.1250 | 0.04615 (2) | 0.0064 (2) | |
Bi2 | 0.1250 | 0.45710 (4) | 0.1250 | 0.0066 (2) | |
Ti1 | 0.1250 | 0.1250 | 0.49898 (10) | 0.0050 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Bi1 | 0.0035 (3) | 0.0076 (3) | 0.0082 (3) | 0.00176 (15) | 0.000 | 0.000 |
Bi2 | 0.0058 (3) | 0.0080 (3) | 0.0060 (3) | 0.000 | −0.00212 (15) | 0.000 |
Ti1 | 0.0039 (9) | 0.0060 (9) | 0.0051 (8) | 0.0005 (8) | 0.000 | 0.000 |
Ti1—Bi2i | 2.9382 (16) | Bi1—Bi2xix | 3.7546 (4) |
Ti1—Bi2ii | 2.9382 (16) | Bi1—Bi2 | 3.7546 (4) |
Ti1—Bi2iii | 3.0051 (16) | Bi1—Ti1xx | 3.0257 (6) |
Ti1—Bi2iv | 3.0051 (16) | Bi1—Ti1xxi | 3.0257 (6) |
Ti1—Bi1v | 3.0257 (6) | Bi1—Ti1vii | 3.0825 (6) |
Ti1—Bi1vi | 3.0257 (6) | Bi1—Ti1i | 3.0825 (6) |
Ti1—Bi1vii | 3.0825 (6) | Bi1—Ti1xxii | 4.9243 (16) |
Ti1—Bi1i | 3.0825 (6) | Bi1—Ti1xxiii | 4.9243 (16) |
Ti1—Ti1viii | 2.9546 (2) | Bi1—Ti1xxiv | 4.9348 (16) |
Ti1—Ti1ix | 2.9546 (2) | Bi1—Ti1xxv | 4.9348 (16) |
Bi1—Bi1x | 3.0730 (8) | Bi1—Ti1xxvi | 5.1110 (4) |
Bi1—Bi1xi | 3.4589 (4) | Bi2—Ti1i | 2.9382 (16) |
Bi1—Bi1xii | 3.4589 (4) | Bi2—Ti1xxiv | 2.9382 (16) |
Bi2—Bi2xiii | 3.3435 (4) | Bi2—Ti1xxvii | 3.0051 (16) |
Bi2—Bi2xiv | 3.3435 (4) | Bi2—Ti1xxviii | 3.0051 (16) |
Bi2—Bi2xv | 3.4639 (8) | Bi2—Bi1xxix | 3.6974 (3) |
Bi1—Bi2xiv | 3.6974 (3) | Bi2—Bi1xxx | 3.6974 (3) |
Bi1—Bi2xvi | 3.6974 (3) | Bi2—Bi1xxxi | 3.6974 (3) |
Bi1—Bi2xvii | 3.6974 (3) | Bi2—Bi1xxxii | 3.6974 (3) |
Bi1—Bi2xiii | 3.6974 (3) | Bi2—Bi1xii | 3.7310 (4) |
Bi1—Bi2xviii | 3.7309 (4) | Ti1—Bi1xxii | 4.9242 (16) |
Bi1—Bi2xii | 3.7309 (4) | Ti1—Bi1xxiii | 4.9242 (16) |
Ti1i—Bi2—Bi1xxx | 100.12 (2) | Bi2xiv—Bi1—Ti1xxiv | 36.352 (10) |
Bi1xxix—Bi2—Bi1xii | 100.174 (6) | Bi2—Bi1—Ti1xxiv | 36.426 (10) |
Bi2xvi—Bi1—Bi2xviii | 100.175 (5) | Bi1v—Ti1—Bi1xxii | 36.48 (2) |
Bi1xii—Bi1—Ti1xxii | 100.237 (12) | Bi1x—Bi1—Ti1xxiv | 36.775 (14) |
Bi1xii—Bi1—Bi2xiii | 101.056 (6) | Bi2xiv—Bi1—Ti1xxii | 37.501 (10) |
Bi1xi—Bi1—Bi2xvii | 101.056 (7) | Bi2iii—Ti1—Bi1xxii | 48.51 (2) |
Bi2xvi—Bi1—Bi2xvii | 102.459 (10) | Bi1xxix—Bi2—Bi1xxx | 49.109 (12) |
Bi1xxix—Bi2—Bi1xxxii | 102.460 (10) | Ti1vii—Bi1—Bi2xix | 49.72 (3) |
Bi1xxx—Bi2—Bi1xxxi | 102.460 (11) | Ti1xx—Bi1—Bi2xviii | 50.23 (3) |
Bi2xiii—Bi2—Bi1xii | 102.596 (8) | Ti1vii—Bi1—Bi2xvii | 50.37 (3) |
Bi2xv—Bi2—Bi1xii | 103.120 (6) | Ti1i—Bi1—Bi2xviii | 51.27 (3) |
Ti1xxi—Bi1—Bi1xi | 103.83 (2) | Ti1xxi—Bi1—Bi2xiv | 51.93 (3) |
Bi1xii—Bi1—Bi2xvii | 103.916 (6) | Ti1i—Bi2—Bi1xii | 52.331 (19) |
Bi2xiv—Bi1—Bi2xix | 104.912 (8) | Ti1xxvii—Bi2—Bi1xxix | 52.441 (7) |
Ti1ix—Ti1—Bi1xxii | 105.95 (7) | Ti1xxviii—Bi2—Bi1xii | 53.148 (19) |
Ti1xxiv—Bi2—Bi2xiii | 106.077 (14) | Bi2xviii—Bi1—Bi2xii | 53.241 (9) |
Ti1i—Bi1—Bi1xi | 106.29 (3) | Bi2xvi—Bi1—Bi2xix | 53.310 (6) |
Bi1x—Bi1—Ti1vii | 106.58 (4) | Ti1xxiv—Bi2—Bi1xxix | 53.901 (6) |
Ti1i—Bi2—Bi2xv | 106.753 (12) | Ti1vii—Bi1—Bi1xi | 54.737 (17) |
Ti1xxvii—Bi2—Bi2xiii | 106.976 (10) | Ti1xxvii—Bi2—Bi2xv | 54.81 (2) |
Ti1xx—Bi1—Bi1x | 107.69 (4) | Ti1i—Bi2—Bi2xiii | 55.32 (2) |
Bi1vi—Ti1—Bi1xxii | 108.14 (5) | Bi1xxx—Bi2—Bi1xii | 55.502 (6) |
Ti1xxvii—Bi2—Ti1xxviii | 109.61 (4) | Bi2xiv—Bi1—Bi2xvii | 55.865 (12) |
Ti1xx—Bi1—Ti1vii | 111.026 (7) | Ti1xx—Bi1—Bi1xi | 56.289 (16) |
Bi1xi—Bi1—Bi1xii | 117.32 (2) | Ti1xxi—Bi1—Ti1vii | 57.847 (3) |
Ti1ix—Ti1—Bi1v | 117.43 (3) | Ti1viii—Ti1—Bi2iii | 59.07 (5) |
Ti1xxiv—Bi2—Bi1xii | 118.70 (2) | Ti1xxiv—Bi2—Ti1xxvii | 59.609 (4) |
Bi2xiii—Bi2—Bi2xiv | 119.12 (2) | Ti1ix—Ti1—Bi1vii | 60.113 (19) |
Ti1ix—Ti1—Bi2iii | 119.48 (9) | Bi2ii—Ti1—Ti1viii | 61.32 (5) |
Bi2xvii—Bi1—Ti1xxvi | 119.656 (11) | Ti1xxiii—Bi1—Ti1xxiv | 61.418 (6) |
Bi2xii—Bi1—Ti1xxii | 119.910 (14) | Bi1xii—Bi1—Bi2xviii | 61.757 (12) |
Bi2i—Ti1—Ti1viii | 120.13 (9) | Ti1viii—Ti1—Bi1v | 62.04 (2) |
Ti1i—Bi1—Ti1xxii | 120.34 (3) | Bi2xv—Bi2—Bi1xxix | 62.067 (6) |
Bi1i—Ti1—Bi1xxii | 120.34 (3) | Bi2xv—Bi2—Bi1xxx | 62.067 (6) |
Ti1viii—Ti1—Bi1vii | 120.39 (3) | Bi1xi—Bi1—Bi2xix | 62.132 (6) |
Bi2ii—Ti1—Bi2iii | 120.391 (4) | Bi1xii—Bi1—Bi2xiv | 62.742 (7) |
Bi2xiii—Bi2—Bi2xv | 120.438 (12) | Bi1xi—Bi1—Bi2xviii | 62.826 (12) |
Bi1x—Bi1—Bi1xi | 121.338 (11) | Bi2xiv—Bi2—Bi1xii | 63.380 (4) |
Ti1xx—Bi1—Ti1xxiv | 121.44 (3) | Bi2xiv—Bi2—Bi1xxix | 64.221 (7) |
Ti1vii—Bi1—Ti1xxiv | 121.95 (3) | Bi2xiii—Bi2—Bi1xxxi | 64.221 (7) |
Bi2—Bi1—Ti1xxvi | 122.061 (9) | Bi1x—Bi1—Bi2xiv | 65.444 (6) |
Bi1vi—Ti1—Bi1vii | 122.154 (4) | Bi1x—Bi1—Bi2xix | 65.843 (6) |
Bi1xxix—Bi2—Bi1xxxi | 124.135 (12) | Bi2xix—Bi1—Ti1xxvi | 67.048 (12) |
Bi2xiv—Bi1—Bi2xviii | 124.499 (6) | Ti1xxv—Bi1—Ti1xxvi | 68.10 (3) |
Bi2xviii—Bi1—Bi2xix | 124.958 (7) | Bi2xviii—Bi1—Ti1xxvi | 68.52 (2) |
Ti1xxii—Bi1—Ti1xxvi | 129.41 (3) | Bi1v—Ti1—Bi1vii | 68.975 (7) |
Bi1xii—Bi1—Ti1xxvi | 129.73 (2) | Ti1xxiii—Bi1—Ti1xxvi | 69.162 (10) |
Ti1xxiv—Bi1—Ti1xxvi | 130.440 (11) | Bi2i—Ti1—Bi2ii | 69.36 (4) |
Bi2xiv—Bi1—Bi2xvi | 130.889 (12) | Bi2xiii—Bi1—Ti1xxvi | 69.407 (12) |
Bi2xix—Bi1—Bi2 | 131.685 (13) | Bi2xiii—Bi1—Ti1xxiv | 69.516 (7) |
Bi1xi—Bi1—Ti1xxii | 131.728 (9) | Bi2iii—Ti1—Bi2iv | 70.39 (4) |
Bi2xviii—Bi1—Ti1xxiv | 135.259 (12) | Bi2xix—Bi1—Ti1xxii | 70.622 (7) |
Bi2iii—Ti1—Bi1vii | 135.68 (5) | Bi2xvii—Bi1—Ti1xxiv | 71.591 (8) |
Bi2i—Ti1—Bi1v | 135.83 (5) | Ti1xxii—Bi1—Ti1xxiii | 71.66 (3) |
Bi2xii—Bi1—Ti1xxiv | 136.209 (11) | Bi1xxii—Ti1—Bi1xxiii | 71.66 (3) |
Ti1xxi—Bi1—Ti1xxvi | 138.917 (11) | Ti1xxi—Bi1—Ti1xxii | 71.85 (5) |
Bi1xxxii—Bi2—Bi1xii | 141.173 (9) | Ti1viii—Ti1—Bi1xxii | 72.76 (6) |
Bi2xvii—Bi1—Bi2xviii | 141.174 (9) | Ti1xxiv—Bi1—Ti1xxv | 73.55 (3) |
Ti1xx—Bi1—Ti1xxii | 143.52 (2) | Bi2iv—Ti1—Bi1vii | 75.584 (18) |
Bi1v—Ti1—Bi1vi | 144.62 (7) | Bi2iii—Ti1—Bi1v | 75.62 (3) |
Ti1xx—Bi1—Ti1xxi | 144.63 (7) | Bi2i—Ti1—Bi1vii | 75.73 (3) |
Ti1i—Bi2—Ti1xxiv | 146.49 (2) | Bi2ii—Ti1—Bi1vii | 77.12 (3) |
Ti1vii—Bi1—Ti1i | 146.84 (7) | Bi2ii—Ti1—Bi1v | 77.437 (16) |
Bi1vii—Ti1—Bi1i | 146.84 (7) | Bi1xii—Bi1—Ti1xxiv | 84.563 (17) |
Ti1i—Bi2—Ti1xxvii | 146.946 (8) | Ti1vii—Bi1—Ti1xxvi | 85.661 (13) |
Bi2i—Ti1—Bi2iii | 146.946 (8) | Ti1i—Bi1—Ti1xxiv | 85.87 (4) |
Ti1i—Bi2—Bi1xxix | 149.23 (2) | Ti1vii—Bi1—Ti1xxii | 87.57 (2) |
Ti1xxvii—Bi2—Bi1xii | 149.475 (16) | Bi1vii—Ti1—Bi1xxii | 87.57 (2) |
Ti1xx—Bi1—Bi2xiv | 150.350 (13) | Bi2xiii—Bi1—Bi2xviii | 87.936 (5) |
Ti1i—Bi1—Bi2xvii | 151.051 (14) | Ti1xxi—Bi1—Ti1xxiv | 88.00 (2) |
Ti1i—Bi1—Bi2xix | 151.659 (13) | Ti1i—Bi1—Ti1xxvi | 88.706 (13) |
Bi1xi—Bi1—Bi2xiv | 152.907 (6) | Bi1xxxi—Bi2—Bi1xii | 92.064 (5) |
Bi1xii—Bi1—Bi2xix | 153.267 (4) | Bi2xii—Bi1—Ti1xxvi | 93.35 (2) |
Bi1x—Bi1—Bi2xviii | 153.380 (4) | Ti1xxviii—Bi2—Bi1xxix | 93.992 (16) |
Bi2xiii—Bi2—Bi1xxix | 155.439 (6) | Ti1i—Bi1—Bi2xiv | 95.236 (16) |
Bi1xi—Bi1—Ti1xxiv | 158.113 (19) | Ti1xxiv—Bi2—Bi1xxx | 95.410 (14) |
Bi2xviii—Bi1—Ti1xxii | 161.981 (11) | Ti1xxi—Bi1—Bi2xviii | 95.54 (4) |
Bi2i—Ti1—Bi1xxii | 162.533 (7) | Ti1vii—Bi1—Bi2xviii | 96.63 (4) |
Bi2xiv—Bi1—Ti1xxvi | 165.35 (2) | Bi2xvi—Bi1—Ti1xxii | 96.863 (15) |
Ti1viii—Ti1—Ti1ix | 178.47 (15) | Ti1xx—Bi1—Bi2xix | 97.142 (14) |
Ti1xx—Bi1—Ti1xxvi | 30.870 (13) | Bi2xvi—Bi1—Ti1xxiv | 98.027 (15) |
Bi2xvi—Bi1—Ti1xxvi | 34.47 (2) | Ti1vii—Bi1—Bi2xiv | 98.391 (15) |
Ti1xxii—Bi1—Ti1xxiv | 34.877 (3) | Bi2xix—Bi1—Ti1xxiv | 98.570 (15) |
Bi1xi—Bi1—Ti1xxvi | 35.089 (15) | Bi2xii—Bi1—Bi2xix | 99.134 (9) |
Bi1x—Bi1—Ti1xxii | 35.832 (14) | Bi1x—Bi1—Ti1xxvi | 99.91 (2) |
Symmetry codes: (i) −x, −y+1/2, −z+1/2; (ii) x+1/4, y−1/4, −z+1/2; (iii) −x+1/4, −y+3/4, z+1/2; (iv) x, y−1/2, z+1/2; (v) x+1/2, y, z+1/2; (vi) x−1/2, y, z+1/2; (vii) −x+1/2, −y, −z+1/2; (viii) −x+1/2, −y+1/2, −z+1; (ix) −x, −y, −z+1; (x) −x+1/4, y, −z+1/4; (xi) −x, −y, −z; (xii) −x+1/2, −y+1/2, −z; (xiii) −x−1/4, −y+3/4, z; (xiv) −x+3/4, −y+3/4, z; (xv) −x+1/4, −y+5/4, z; (xvi) x−1/2, y−1/2, z; (xvii) x+1/2, y−1/2, z; (xviii) x−1/4, y−1/4, −z; (xix) −x+1/4, −y+1/4, z; (xx) x−1/2, y, z−1/2; (xxi) x+1/2, y, z−1/2; (xxii) −x+3/4, y, −z+3/4; (xxiii) −x−1/4, y, −z+3/4; (xxiv) x+1/4, −y+1/2, z−1/4; (xxv) x−1/4, −y, z−1/4; (xxvi) −x−1/2, −y, −z+1/2; (xxvii) −x+1/4, y+1/2, −z+3/4; (xxviii) x, y+1/2, z−1/2; (xxix) −x+3/4, y+1/2, −z+1/4; (xxx) x+1/2, y+1/2, z; (xxxi) x−1/2, y+1/2, z; (xxxii) −x−1/4, y+1/2, −z+1/4. |
Acknowledgements
This work was supported in part by a Grant-in-Aid for Scientific Research (B) (No. 16H04494) from the Ministry of Education, Culture, Sports and Technology (MEXT), Japan.
References
Bruker (2014). Instrument Service, APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cucka, P. & Barrett, C. S. (1962). Acta Cryst. 15, 865–872. CrossRef IUCr Journals Web of Science Google Scholar
Dashjav, E. & Kleinke, H. (2003). J. Solid State Chem. 176, 329–337. Web of Science CrossRef CAS Google Scholar
Gingl, F., Selvam, P. & Yvon, K. (1993). Acta Cryst. B49, 201–203. CrossRef CAS Web of Science IUCr Journals Google Scholar
Larsson, A. K. & Lidin, S. (1995). J. Alloys Compd. 221, 136–142. CrossRef CAS Web of Science Google Scholar
Malaman, B. & Steinmetz, J. (1979). J. Less-Common Met. 65, 285–288. CrossRef CAS Web of Science Google Scholar
Maruyama, S., Kado, Y. & Uda, T. (2013). J. Phase Equilib. Diffus. 34, 289–296. Web of Science CrossRef CAS Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Richter, C. G. & Jeitschko, W. (1997). J. Solid State Chem. 134, 26–30. Web of Science CrossRef CAS Google Scholar
Schubert, K. & Anderko, K. (1951). Z. Metallkd. 42, 321–325. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Simić, V. & Marinković, Z. (1990). Thin Solid Films, 191, 165–171. Google Scholar
Vassilev, G. P. (2006). Cryst. Res. Technol. 41, 349–357. Web of Science CrossRef CAS Google Scholar
Wölpl, T. & Jeitschko, W. (1994). J. Alloys Compd. 210, 185–190. Google Scholar
Zumdick, M. F., Landrum, G. A., Dronskowski, R., Hoffmann, R. D. & Pöttgen, R. (2000). J. Solid State Chem. 150, 19–30. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.