research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
CROSSMARK_Color_square_no_text.svg

aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
*Correspondence e-mail: yamane@tagen.tohoku.ac.jp

Edited by I. D. Brown, McMaster University, Canada (Received 14 July 2016; accepted 1 August 2016; online 5 August 2016)

Black granular single crystals of monotitanium dibismuth, TiBi2, were synthesized by slow cooling of a mixture of Bi and Ti from 693 K. The title compound is isostructural with CuMg2 (ortho­rhom­bic Fddd symmetry). Ti atoms are located in square anti­prisms of Bi atoms. The network of one type of Bi atom spirals along the a-axis direction while honeycomb layers of the other type of Bi atom spreading in the ab plane inter­lace one another.

1. Chemical context

TiBi2 was first reported in the study of the Ti–Bi binary phase diagram by Vassilev (2006[Vassilev, G. P. (2006). Cryst. Res. Technol. 41, 349-357.]). Maruyama et al. (2013[Maruyama, S., Kado, Y. & Uda, T. (2013). J. Phase Equilib. Diffus. 34, 289-296.]) confirmed the presence of TiBi2 in their phase-diagram study and showed that the powder X-ray diffraction (XRD) pattern was consistent with that of a Ti–Bi film prepared by RF sputtering (Simić & Marinković, 1990[Simić, V. & Marinković, Z. (1990). Thin Solid Films, 191, 165-171.]). However, the crystal system, lattice parameters and structure of TiBi2 were not reported.

In the present study, we prepared single crystals of TiBi2 to clarify the structure. The pellet of the starting mixture maintained the original shape after heating at 693 K. The powder XRD pattern of the sample showed that a mixture of TiBi2, Bi, and Ti had been obtained. Single crystals of TiBi2 approximately 120 µm in size were picked up from the fractured sample. TiBi2 is unstable and decomposes in air. When the mixture was heated at 703 K, the obtained sample was a mixture of Bi and Ti8Bi9. This temperature was above the peritectic temperature of TiBi2 (698 K) reported in the phase diagram by Maruyama et al. (2013[Maruyama, S., Kado, Y. & Uda, T. (2013). J. Phase Equilib. Diffus. 34, 289-296.]).

2. Structural commentary

TiBi2 is isotypic with CuMg2 (Schubert & Anderko, 1951[Schubert, K. & Anderko, K. (1951). Z. Metallkd. 42, 321-325.]; Gingl et al., 1993[Gingl, F., Selvam, P. & Yvon, K. (1993). Acta Cryst. B49, 201-203.]), NbSn2, VSn2, CrSn2 (Wölpl & Jeitschko, 1994[Wölpl, T. & Jeitschko, W. (1994). J. Alloys Compd. 210, 185-190.]; Larsson & Lidin, 1995[Larsson, A. K. & Lidin, S. (1995). J. Alloys Compd. 221, 136-142.]), and IrIn2 (Zumdick et al., 2000[Zumdick, M. F., Landrum, G. A., Dronskowski, R., Hoffmann, R. D. & Pöttgen, R. (2000). J. Solid State Chem. 150, 19-30.]). TiSnSb is the only reported compound which contains Ti and crystallizes in the CuMg2-type structure (Malaman & Steinmetz, 1979[Malaman, B. & Steinmetz, J. (1979). J. Less-Common Met. 65, 285-288.]; Dashjav & Kleinke, 2003[Dashjav, E. & Kleinke, H. (2003). J. Solid State Chem. 176, 329-337.]). The crystal structure of TiSb2 adopts the CuAl2 type, while that of TiSn2 is not known. TiBi2 is the first binary compound that is composed of Ti and a group 15 element and has the CuMg2-type structure.

Fig. 1[link] shows the crystal structure of TiBi2 while the coord­ination environments of the Ti1, Bi1, and Bi2 atoms are illus­trated in Fig. 2[link]. The Ti1 site is located in a square anti­prism of Bi atoms. The Bi square anti­prisms are aligned alternately along the a + b and a − b directions by sharing the square planes. Bi—Ti bond lengths in the Bi square anti­prism and the Ti—Ti distance of the inter-anti­prisms are 2.9382 (16)–3.0825 (6) and 2.9546 (2) Å, respectively, which are in the ranges reported for Ti8Bi9 [Bi—Ti = 2.818 (4)–3.144 (6) Å and Ti—Ti = 2.934 (6)–3.715 (5) Å; Richter & Jeitschko, 1997[Richter, C. G. & Jeitschko, W. (1997). J. Solid State Chem. 134, 26-30.]].

[Figure 1]
Figure 1
Crystal structure of TiBi2 illustrated with Ti-centered Bi1–Bi2 square anti­prisms and Bi1—Bi1 and Bi2—Bi2 bonds.
[Figure 2]
Figure 2
The atomic arrangement around Ti and Bi atoms in the structure of TiBi2. Displacement ellipsoids are drawn at 99% probability. [Symmetry codes: (i) x, −y + [{1\over 4}], −z + [{1\over 4}]; (ii) −x, −y, −z; (iii) x + [{1\over 4}], y + [{1\over 4}], −z; (iv) x − [{3\over 4}], y + [{1\over 4}], −z; (v) −x − [{1\over 4}], −y + [{3\over 4}], z; (vi) x, y − 1, z; (vii) −x + [{3\over 4}], y − [{1\over 2}], −z + [{1\over 4}]; (viii) −x + [{3\over 4}], −y + [{3\over 4}], z; (ix) −x − [{1\over 4}], y − [{1\over 2}], −z + [{1\over 4}]; (x) −x, −y + 1, −z; (xi) −x, y − [{1\over 4}], z − [{1\over 4}]; (xii) x, −y − [{1\over 4}], −z + [{3\over 4}]; (xiii) x, y − [{1\over 2}], z − [{1\over 2}]; (xiv) x + [{1\over 4}], y − [{1\over 4}], − z + [{1\over 2}]; (xv) − x + [{3\over 4}], −y + [{1\over 4}], z − [{1\over 2}]; (xvi) −x − [{1\over 4}], −y + [{1\over 4}], z − [{1\over 2}]; (xvii) −x, −y + [{1\over 2}], −z + [{1\over 2}].]

The Bi1—Bi1 bond lengths in the Bi1 spiral-like network are 3.0730 (8) Å in the c-axis direction and 3.4589 (4) Å in the other direction. The Bi2—Bi2 bond lengths in the Bi2 honeycomb layers in the ab plane are 3.4639 (8) Å in the b-axis direction and 3.3435 (4) Å in the other direction. The Bi—Bi bond lengths in the spiral rings and honeycomb layers in TiBi2 are in the range of those in Bi metal (3.071 and 3.529 Å; Cucka & Barrett, 1962[Cucka, P. & Barrett, C. S. (1962). Acta Cryst. 15, 865-872.]). The inter­atomic distances between the Bi atoms of the spiral network and the honeycomb layers (Bi1—Bi2) are 3.6974 (3), 3.7309 (4) and 3.7546 (4) Å, which are longer than the Bi—Bi bond lengths in Bi metal.

3. Synthesis and crystallization

Starting powders of Bi (1 mmol, Mitsuwa Chemicals Co., Ltd, 99.999%) and Ti (0.5 mmol, Mitsuwa Chemicals Co., Ltd, 99.99%) were weighed, mixed in an alumina mortar with a pestle and formed into a pellet by uniaxial pressing in an Ar gas-filled glove box (O2 and H2O < 1 p.p.m.). The pellet was put in a tantalum boat (Nilaco Corp., 99.95%). The boat was sealed in a stainless-steel (SUS 316) tube. The sample was heated to 693 K in an electric furnace with a heating rate of 3.5 K min−1. This temperature was kept for 10 h, and then lowered to 473 K with a cooling rate of 5 K h−1. After cooling to room temperature by shutting off the electrical power to the furnace, the stainless-steel tube was cut and opened in the glove box. To identify the crystalline phases, powder XRD (Cu Kα, Bruker, D2 phaser) was carried out for a portion of the sample which was ground in the alumina mortar and sealed under an Ar atmosphere in a holder with a kapton film window. The chemical compositions of TiBi2 single crystals placed on a carbon tape were determined with an electron probe microanalyzer (EPMA, JEOL, JXA-8200). Bi and TiO2 (Japan Electronics Co., Ltd) were used as standard samples. The analyzed composition ratio of Ti:Bi in the crystals was 1.0 (1):2.0 (1). A single crystal of TiBi2 was sealed in a glass capillary with Ar gas in the glove box for the single-crystal XRD experiment.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula TiBi2
Mr 465.86
Crystal system, space group Orthorhombic, Fddd
Temperature (K) 298
a, b, c (Å) 5.7654 (4), 10.3155 (6), 19.4879 (12)
V3) 1159.00 (13)
Z 16
Radiation type Mo Kα
μ (mm−1) 123.50
Crystal size (mm) 0.14 × 0.09 × 0.06
 
Data collection
Diffractometer Bruker D8 goniometer
Absorption correction Numerical (SADABS; Bruker, 2014[Bruker (2014). Instrument Service, APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.016, 0.102
No. of measured, independent and observed [I > 2σ(I)] reflections 3881, 339, 309
Rint 0.048
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 1.31
No. of reflections 339
No. of parameters 17
   
Δρmax, Δρmin (e Å−3) 2.54, −3.80
Computer programs: Instrument Service, APEX2 and SAINT-Plus (Bruker, 2014[Bruker (2014). Instrument Service, APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]).

Supporting information


Computing details top

Data collection: Instrument Service (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: SAINT-Plus (Bruker, 2014); program(s) used to solve structure: APEX2 (Bruker, 2014); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: VESTA (Momma & Izumi, 2011).

Titanium dibismuth top
Crystal data top
TiBi2Dx = 10.679 Mg m3
Mr = 465.86Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, FdddCell parameters from 4528 reflections
a = 5.7654 (4) Åθ = 4.2–31.4°
b = 10.3155 (6) ŵ = 123.50 mm1
c = 19.4879 (12) ÅT = 298 K
V = 1159.00 (13) Å3Granule, black
Z = 160.14 × 0.09 × 0.06 mm
F(000) = 3008
Data collection top
Bruker D8 goniometer
diffractometer
339 independent reflections
Radiation source: micro focus sealed tube309 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.048
ω, φ scansθmax = 27.5°, θmin = 4.2°
Absorption correction: numerical
(SADABS; Bruker, 2014)
h = 77
Tmin = 0.016, Tmax = 0.102k = 1313
3881 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0275P)2 + 47.1241P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max < 0.001
S = 1.31Δρmax = 2.54 e Å3
339 reflectionsΔρmin = 3.80 e Å3
17 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00038 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.12500.12500.04615 (2)0.0064 (2)
Bi20.12500.45710 (4)0.12500.0066 (2)
Ti10.12500.12500.49898 (10)0.0050 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.0035 (3)0.0076 (3)0.0082 (3)0.00176 (15)0.0000.000
Bi20.0058 (3)0.0080 (3)0.0060 (3)0.0000.00212 (15)0.000
Ti10.0039 (9)0.0060 (9)0.0051 (8)0.0005 (8)0.0000.000
Geometric parameters (Å, º) top
Ti1—Bi2i2.9382 (16)Bi1—Bi2xix3.7546 (4)
Ti1—Bi2ii2.9382 (16)Bi1—Bi23.7546 (4)
Ti1—Bi2iii3.0051 (16)Bi1—Ti1xx3.0257 (6)
Ti1—Bi2iv3.0051 (16)Bi1—Ti1xxi3.0257 (6)
Ti1—Bi1v3.0257 (6)Bi1—Ti1vii3.0825 (6)
Ti1—Bi1vi3.0257 (6)Bi1—Ti1i3.0825 (6)
Ti1—Bi1vii3.0825 (6)Bi1—Ti1xxii4.9243 (16)
Ti1—Bi1i3.0825 (6)Bi1—Ti1xxiii4.9243 (16)
Ti1—Ti1viii2.9546 (2)Bi1—Ti1xxiv4.9348 (16)
Ti1—Ti1ix2.9546 (2)Bi1—Ti1xxv4.9348 (16)
Bi1—Bi1x3.0730 (8)Bi1—Ti1xxvi5.1110 (4)
Bi1—Bi1xi3.4589 (4)Bi2—Ti1i2.9382 (16)
Bi1—Bi1xii3.4589 (4)Bi2—Ti1xxiv2.9382 (16)
Bi2—Bi2xiii3.3435 (4)Bi2—Ti1xxvii3.0051 (16)
Bi2—Bi2xiv3.3435 (4)Bi2—Ti1xxviii3.0051 (16)
Bi2—Bi2xv3.4639 (8)Bi2—Bi1xxix3.6974 (3)
Bi1—Bi2xiv3.6974 (3)Bi2—Bi1xxx3.6974 (3)
Bi1—Bi2xvi3.6974 (3)Bi2—Bi1xxxi3.6974 (3)
Bi1—Bi2xvii3.6974 (3)Bi2—Bi1xxxii3.6974 (3)
Bi1—Bi2xiii3.6974 (3)Bi2—Bi1xii3.7310 (4)
Bi1—Bi2xviii3.7309 (4)Ti1—Bi1xxii4.9242 (16)
Bi1—Bi2xii3.7309 (4)Ti1—Bi1xxiii4.9242 (16)
Ti1i—Bi2—Bi1xxx100.12 (2)Bi2xiv—Bi1—Ti1xxiv36.352 (10)
Bi1xxix—Bi2—Bi1xii100.174 (6)Bi2—Bi1—Ti1xxiv36.426 (10)
Bi2xvi—Bi1—Bi2xviii100.175 (5)Bi1v—Ti1—Bi1xxii36.48 (2)
Bi1xii—Bi1—Ti1xxii100.237 (12)Bi1x—Bi1—Ti1xxiv36.775 (14)
Bi1xii—Bi1—Bi2xiii101.056 (6)Bi2xiv—Bi1—Ti1xxii37.501 (10)
Bi1xi—Bi1—Bi2xvii101.056 (7)Bi2iii—Ti1—Bi1xxii48.51 (2)
Bi2xvi—Bi1—Bi2xvii102.459 (10)Bi1xxix—Bi2—Bi1xxx49.109 (12)
Bi1xxix—Bi2—Bi1xxxii102.460 (10)Ti1vii—Bi1—Bi2xix49.72 (3)
Bi1xxx—Bi2—Bi1xxxi102.460 (11)Ti1xx—Bi1—Bi2xviii50.23 (3)
Bi2xiii—Bi2—Bi1xii102.596 (8)Ti1vii—Bi1—Bi2xvii50.37 (3)
Bi2xv—Bi2—Bi1xii103.120 (6)Ti1i—Bi1—Bi2xviii51.27 (3)
Ti1xxi—Bi1—Bi1xi103.83 (2)Ti1xxi—Bi1—Bi2xiv51.93 (3)
Bi1xii—Bi1—Bi2xvii103.916 (6)Ti1i—Bi2—Bi1xii52.331 (19)
Bi2xiv—Bi1—Bi2xix104.912 (8)Ti1xxvii—Bi2—Bi1xxix52.441 (7)
Ti1ix—Ti1—Bi1xxii105.95 (7)Ti1xxviii—Bi2—Bi1xii53.148 (19)
Ti1xxiv—Bi2—Bi2xiii106.077 (14)Bi2xviii—Bi1—Bi2xii53.241 (9)
Ti1i—Bi1—Bi1xi106.29 (3)Bi2xvi—Bi1—Bi2xix53.310 (6)
Bi1x—Bi1—Ti1vii106.58 (4)Ti1xxiv—Bi2—Bi1xxix53.901 (6)
Ti1i—Bi2—Bi2xv106.753 (12)Ti1vii—Bi1—Bi1xi54.737 (17)
Ti1xxvii—Bi2—Bi2xiii106.976 (10)Ti1xxvii—Bi2—Bi2xv54.81 (2)
Ti1xx—Bi1—Bi1x107.69 (4)Ti1i—Bi2—Bi2xiii55.32 (2)
Bi1vi—Ti1—Bi1xxii108.14 (5)Bi1xxx—Bi2—Bi1xii55.502 (6)
Ti1xxvii—Bi2—Ti1xxviii109.61 (4)Bi2xiv—Bi1—Bi2xvii55.865 (12)
Ti1xx—Bi1—Ti1vii111.026 (7)Ti1xx—Bi1—Bi1xi56.289 (16)
Bi1xi—Bi1—Bi1xii117.32 (2)Ti1xxi—Bi1—Ti1vii57.847 (3)
Ti1ix—Ti1—Bi1v117.43 (3)Ti1viii—Ti1—Bi2iii59.07 (5)
Ti1xxiv—Bi2—Bi1xii118.70 (2)Ti1xxiv—Bi2—Ti1xxvii59.609 (4)
Bi2xiii—Bi2—Bi2xiv119.12 (2)Ti1ix—Ti1—Bi1vii60.113 (19)
Ti1ix—Ti1—Bi2iii119.48 (9)Bi2ii—Ti1—Ti1viii61.32 (5)
Bi2xvii—Bi1—Ti1xxvi119.656 (11)Ti1xxiii—Bi1—Ti1xxiv61.418 (6)
Bi2xii—Bi1—Ti1xxii119.910 (14)Bi1xii—Bi1—Bi2xviii61.757 (12)
Bi2i—Ti1—Ti1viii120.13 (9)Ti1viii—Ti1—Bi1v62.04 (2)
Ti1i—Bi1—Ti1xxii120.34 (3)Bi2xv—Bi2—Bi1xxix62.067 (6)
Bi1i—Ti1—Bi1xxii120.34 (3)Bi2xv—Bi2—Bi1xxx62.067 (6)
Ti1viii—Ti1—Bi1vii120.39 (3)Bi1xi—Bi1—Bi2xix62.132 (6)
Bi2ii—Ti1—Bi2iii120.391 (4)Bi1xii—Bi1—Bi2xiv62.742 (7)
Bi2xiii—Bi2—Bi2xv120.438 (12)Bi1xi—Bi1—Bi2xviii62.826 (12)
Bi1x—Bi1—Bi1xi121.338 (11)Bi2xiv—Bi2—Bi1xii63.380 (4)
Ti1xx—Bi1—Ti1xxiv121.44 (3)Bi2xiv—Bi2—Bi1xxix64.221 (7)
Ti1vii—Bi1—Ti1xxiv121.95 (3)Bi2xiii—Bi2—Bi1xxxi64.221 (7)
Bi2—Bi1—Ti1xxvi122.061 (9)Bi1x—Bi1—Bi2xiv65.444 (6)
Bi1vi—Ti1—Bi1vii122.154 (4)Bi1x—Bi1—Bi2xix65.843 (6)
Bi1xxix—Bi2—Bi1xxxi124.135 (12)Bi2xix—Bi1—Ti1xxvi67.048 (12)
Bi2xiv—Bi1—Bi2xviii124.499 (6)Ti1xxv—Bi1—Ti1xxvi68.10 (3)
Bi2xviii—Bi1—Bi2xix124.958 (7)Bi2xviii—Bi1—Ti1xxvi68.52 (2)
Ti1xxii—Bi1—Ti1xxvi129.41 (3)Bi1v—Ti1—Bi1vii68.975 (7)
Bi1xii—Bi1—Ti1xxvi129.73 (2)Ti1xxiii—Bi1—Ti1xxvi69.162 (10)
Ti1xxiv—Bi1—Ti1xxvi130.440 (11)Bi2i—Ti1—Bi2ii69.36 (4)
Bi2xiv—Bi1—Bi2xvi130.889 (12)Bi2xiii—Bi1—Ti1xxvi69.407 (12)
Bi2xix—Bi1—Bi2131.685 (13)Bi2xiii—Bi1—Ti1xxiv69.516 (7)
Bi1xi—Bi1—Ti1xxii131.728 (9)Bi2iii—Ti1—Bi2iv70.39 (4)
Bi2xviii—Bi1—Ti1xxiv135.259 (12)Bi2xix—Bi1—Ti1xxii70.622 (7)
Bi2iii—Ti1—Bi1vii135.68 (5)Bi2xvii—Bi1—Ti1xxiv71.591 (8)
Bi2i—Ti1—Bi1v135.83 (5)Ti1xxii—Bi1—Ti1xxiii71.66 (3)
Bi2xii—Bi1—Ti1xxiv136.209 (11)Bi1xxii—Ti1—Bi1xxiii71.66 (3)
Ti1xxi—Bi1—Ti1xxvi138.917 (11)Ti1xxi—Bi1—Ti1xxii71.85 (5)
Bi1xxxii—Bi2—Bi1xii141.173 (9)Ti1viii—Ti1—Bi1xxii72.76 (6)
Bi2xvii—Bi1—Bi2xviii141.174 (9)Ti1xxiv—Bi1—Ti1xxv73.55 (3)
Ti1xx—Bi1—Ti1xxii143.52 (2)Bi2iv—Ti1—Bi1vii75.584 (18)
Bi1v—Ti1—Bi1vi144.62 (7)Bi2iii—Ti1—Bi1v75.62 (3)
Ti1xx—Bi1—Ti1xxi144.63 (7)Bi2i—Ti1—Bi1vii75.73 (3)
Ti1i—Bi2—Ti1xxiv146.49 (2)Bi2ii—Ti1—Bi1vii77.12 (3)
Ti1vii—Bi1—Ti1i146.84 (7)Bi2ii—Ti1—Bi1v77.437 (16)
Bi1vii—Ti1—Bi1i146.84 (7)Bi1xii—Bi1—Ti1xxiv84.563 (17)
Ti1i—Bi2—Ti1xxvii146.946 (8)Ti1vii—Bi1—Ti1xxvi85.661 (13)
Bi2i—Ti1—Bi2iii146.946 (8)Ti1i—Bi1—Ti1xxiv85.87 (4)
Ti1i—Bi2—Bi1xxix149.23 (2)Ti1vii—Bi1—Ti1xxii87.57 (2)
Ti1xxvii—Bi2—Bi1xii149.475 (16)Bi1vii—Ti1—Bi1xxii87.57 (2)
Ti1xx—Bi1—Bi2xiv150.350 (13)Bi2xiii—Bi1—Bi2xviii87.936 (5)
Ti1i—Bi1—Bi2xvii151.051 (14)Ti1xxi—Bi1—Ti1xxiv88.00 (2)
Ti1i—Bi1—Bi2xix151.659 (13)Ti1i—Bi1—Ti1xxvi88.706 (13)
Bi1xi—Bi1—Bi2xiv152.907 (6)Bi1xxxi—Bi2—Bi1xii92.064 (5)
Bi1xii—Bi1—Bi2xix153.267 (4)Bi2xii—Bi1—Ti1xxvi93.35 (2)
Bi1x—Bi1—Bi2xviii153.380 (4)Ti1xxviii—Bi2—Bi1xxix93.992 (16)
Bi2xiii—Bi2—Bi1xxix155.439 (6)Ti1i—Bi1—Bi2xiv95.236 (16)
Bi1xi—Bi1—Ti1xxiv158.113 (19)Ti1xxiv—Bi2—Bi1xxx95.410 (14)
Bi2xviii—Bi1—Ti1xxii161.981 (11)Ti1xxi—Bi1—Bi2xviii95.54 (4)
Bi2i—Ti1—Bi1xxii162.533 (7)Ti1vii—Bi1—Bi2xviii96.63 (4)
Bi2xiv—Bi1—Ti1xxvi165.35 (2)Bi2xvi—Bi1—Ti1xxii96.863 (15)
Ti1viii—Ti1—Ti1ix178.47 (15)Ti1xx—Bi1—Bi2xix97.142 (14)
Ti1xx—Bi1—Ti1xxvi30.870 (13)Bi2xvi—Bi1—Ti1xxiv98.027 (15)
Bi2xvi—Bi1—Ti1xxvi34.47 (2)Ti1vii—Bi1—Bi2xiv98.391 (15)
Ti1xxii—Bi1—Ti1xxiv34.877 (3)Bi2xix—Bi1—Ti1xxiv98.570 (15)
Bi1xi—Bi1—Ti1xxvi35.089 (15)Bi2xii—Bi1—Bi2xix99.134 (9)
Bi1x—Bi1—Ti1xxii35.832 (14)Bi1x—Bi1—Ti1xxvi99.91 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/4, y1/4, z+1/2; (iii) x+1/4, y+3/4, z+1/2; (iv) x, y1/2, z+1/2; (v) x+1/2, y, z+1/2; (vi) x1/2, y, z+1/2; (vii) x+1/2, y, z+1/2; (viii) x+1/2, y+1/2, z+1; (ix) x, y, z+1; (x) x+1/4, y, z+1/4; (xi) x, y, z; (xii) x+1/2, y+1/2, z; (xiii) x1/4, y+3/4, z; (xiv) x+3/4, y+3/4, z; (xv) x+1/4, y+5/4, z; (xvi) x1/2, y1/2, z; (xvii) x+1/2, y1/2, z; (xviii) x1/4, y1/4, z; (xix) x+1/4, y+1/4, z; (xx) x1/2, y, z1/2; (xxi) x+1/2, y, z1/2; (xxii) x+3/4, y, z+3/4; (xxiii) x1/4, y, z+3/4; (xxiv) x+1/4, y+1/2, z1/4; (xxv) x1/4, y, z1/4; (xxvi) x1/2, y, z+1/2; (xxvii) x+1/4, y+1/2, z+3/4; (xxviii) x, y+1/2, z1/2; (xxix) x+3/4, y+1/2, z+1/4; (xxx) x+1/2, y+1/2, z; (xxxi) x1/2, y+1/2, z; (xxxii) x1/4, y+1/2, z+1/4.
 

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (B) (No. 16H04494) from the Ministry of Education, Culture, Sports and Technology (MEXT), Japan.

References

First citationBruker (2014). Instrument Service, APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCucka, P. & Barrett, C. S. (1962). Acta Cryst. 15, 865–872.  CrossRef IUCr Journals Web of Science Google Scholar
First citationDashjav, E. & Kleinke, H. (2003). J. Solid State Chem. 176, 329–337.  Web of Science CrossRef CAS Google Scholar
First citationGingl, F., Selvam, P. & Yvon, K. (1993). Acta Cryst. B49, 201–203.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLarsson, A. K. & Lidin, S. (1995). J. Alloys Compd. 221, 136–142.  CrossRef CAS Web of Science Google Scholar
First citationMalaman, B. & Steinmetz, J. (1979). J. Less-Common Met. 65, 285–288.  CrossRef CAS Web of Science Google Scholar
First citationMaruyama, S., Kado, Y. & Uda, T. (2013). J. Phase Equilib. Diffus. 34, 289–296.  Web of Science CrossRef CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRichter, C. G. & Jeitschko, W. (1997). J. Solid State Chem. 134, 26–30.  Web of Science CrossRef CAS Google Scholar
First citationSchubert, K. & Anderko, K. (1951). Z. Metallkd. 42, 321–325.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimić, V. & Marinković, Z. (1990). Thin Solid Films, 191, 165–171.  Google Scholar
First citationVassilev, G. P. (2006). Cryst. Res. Technol. 41, 349–357.  Web of Science CrossRef CAS Google Scholar
First citationWölpl, T. & Jeitschko, W. (1994). J. Alloys Compd. 210, 185–190.  Google Scholar
First citationZumdick, M. F., Landrum, G. A., Dronskowski, R., Hoffmann, R. D. & Pöttgen, R. (2000). J. Solid State Chem. 150, 19–30.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds