research communications
Two forms of (naphthalen-1-yl)boronic acid
aChemistry Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, NY 14222, USA
*Correspondence e-mail: nazareay@buffalostate.edu
Two polymorphs of the title compound, C10H9BO2, were prepared by recystallization from different solvents at room temperature. Both forms demonstrate nearly identical molecular structures with all naphthalene group atoms located in one plane and all boronic acid atoms in another: the dihedral angles between these planes are 39.88 (5) and 40.15 (5)° for the two asymmetric molecules of the orthorhombic form and 40.60 (3)° for the single asymmetric molecule in the monoclinic form. In each extended structure, molecules form dimers, connected via two O—H⋯O hydrogen bonds. The dimers are connected by further O—H⋯O hydrogen bonds, forming layered networks in the (001) plane and the (100) plane in the orthorhombic and monoclinic forms, respectively. The resulting layers are practically identical in both forms. However, these layers are shifted along the [010] axis in the two forms, resulting in a slightly more effective packing for monoclinic structure (packing index = 0.692) compared to the orthorhombic form (0.688).
Keywords: crystal structure; arylboronic acid; hydrogen-bond network; polymorph.
1. Chemical context
Naphthalene α- and β-) were first synthesized by Michaelis (1894) along with other arylboronic acid by reaction of diarylmercury with boron trichloride with subsequent hydrolysis. A more practical procedure (König & Scharrnbeck, 1930) included the reaction of naphthylmagnesium bromide with tri-(isobutyl)borate. In both cases, the existence of two different forms of title compound was suggested, one forming plate-like crystals and another one forming needles.
(These compounds were originally investigated because of their potential in biochemistry (König & Scharrnbeck, 1930; Gao et al., 2003; Hall, 2011) and later as reactants in the Suzuki reaction (Hall, 2011). 1-Naphthalene boronic acid is now commercially available and was the source for this study.
2. Synthesis and crystallization
A sample of 1-naphthalene boronic acid was purchased from Aldrich. Its FTIR spectrum coincided with that reported by the manufacturer. Under the microscope, a number of relatively large (up to 0.5 mm) crystals were visible, some of them suitable for single crystal X-ray data collection (Fig. 1). Experimental data revealed an orthorhombic structure for the plate-shaped crystals. Recrystallization from hot water yielded very thin plates. This polycrystalline sample showed a powder diffractogram that was slightly different from the raw material and the calculated pattern of the orthorhombic form. Attempts at slow crystallization from ethanol and toluene solution resulted in larger and better shaped crystals, some of which were orthorhombic plates and other were visibly non-orthorhombic needles (Fig. 1). Several such crystals were tested: here we report the best data for both the orthorhombic and monoclinic forms.
3. Structural commentary
The molecules of naphthalene boronic acid in both crystal structures (Figs. 2 and 3) have the usual bond distances and angles. There is one molecule in the of the monoclinic structure. In the non-centrosymmetric orthorhombic structure, the two molecules in the have very similar structures: they almost coincide (after inversion for one of them) with each other as well, as with the unique molecule from the monoclinic structure (Fig. 4).
In the monoclinic structure, the mean plane of the naphthalene fragment is tilted from plane of boron and two oxygen atoms with an angle of 40.60 (3)°. The boron atom deviates by 0.0449 (16) Å from the mean plane of the naphthalene ring system.
In the orthorhombic structure, there are two independent molecules. When superimposed, the angle between the mean planes of the naphthalene ring systems is only 0.88 (6)°. Two boron atoms and four oxygen atoms are located at another plane together with adjacent hydrogen atoms. These planes are tilted to a similar extent to the monoclinic structure, with dihedral angles to the mean plane of each naphthalene group of 39.88 (5) and 40.15 (5)° [mean tilt = 39.83 (5)°]. These numbers differ from those for the monoclinic form by less than 1°.
4. Supramolecular features
In both forms, pairs of molecules are connected through a pair of O—H⋯O hydrogen bonds (Tables 1 and 2) into dimers. There is also an intramolecular C—H⋯O contact. The dimers are further connected via O—H⋯O hydrogen bonds, forming a layered network in plane (001) and in plane (100) in the orthorhombic and monoclinic forms, respectively (Figs. 5 and 6). The resulting layers are practically identical in both forms (compare Figs. 7 and 8, Figs. 9 and 10).
|
There are no directional intermolecular interactions between adjacent layers and, therefore, no strong interactions between them. However, these layers are shifted with respect to the [010] axis (compare Figs. 9 and 10), resulting in a slightly more effective packing of the monoclinic structure (packing index = 0.692) (Kitaigorodskii, 1961; Spek, 2009) compared to the orthorhombic structure (packing index = 0.688). This layer-shift is the only visible difference between the two forms.
5. Database survey
There are no naphthalene boronic acid structures deposited in the Cambridge Structural Database (CSD Version 5.37; Groom et al., 2016). The simplest arylboronic acid, phenylboronic acid, crystallizes in a non-centrosymmetric orthorhombic (refcodes PHBORA and PHBORA01). Instead of a layered network, its molecules form an infinitive chain in the crystal (Cyránski et al., 2008; Rettig & Trotter, 1977).
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms of hydroxyl groups were refined in an isotropic approximation. Aromatic hydrogen atoms were refined with riding coordinates and Uiso(H) = 1.2 Uiso(C).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989016012494/hb7602sup1.cif
contains datablocks 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989016012494/hb76021sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989016012494/hb76022sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016012494/hb76021sup4.cml
For both compounds, data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b). Molecular graphics: OLEX2 (Dolomanov et al., 2009) and CrystalExplorer (Spackman & Jayatilaka, 2009) for (1); OLEX2 (Dolomanov et al., 2009) for (2). Software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009) for (1); OLEX2 (Dolomanov et al., 2009) for (2).C10H9BO2 | Dx = 1.301 Mg m−3 |
Mr = 171.98 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, Pna21 | Cell parameters from 9127 reflections |
a = 9.6655 (4) Å | θ = 3.0–78.2° |
b = 6.2286 (3) Å | µ = 0.71 mm−1 |
c = 29.1778 (13) Å | T = 173 K |
V = 1756.58 (14) Å3 | Plate, colourless |
Z = 8 | 0.59 × 0.44 × 0.14 mm |
F(000) = 720 |
Bruker PHOTON-100 CMOS diffractometer | 3447 reflections with I > 2σ(I) |
Radiation source: sealedtube | Rint = 0.040 |
φ and ω scans | θmax = 78.7°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | h = −12→12 |
Tmin = 0.671, Tmax = 0.972 | k = −7→7 |
52115 measured reflections | l = −36→36 |
3764 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.035 | w = 1/[σ2(Fo2) + (0.0563P)2 + 0.2507P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.094 | (Δ/σ)max < 0.001 |
S = 1.02 | Δρmax = 0.22 e Å−3 |
3764 reflections | Δρmin = −0.15 e Å−3 |
253 parameters | Absolute structure: Flack x determined using 1548 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.07 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.24283 (16) | 0.3150 (3) | 0.47433 (6) | 0.0415 (4) | |
H3 | 0.158 (4) | 0.244 (6) | 0.4672 (11) | 0.062* | |
O4 | 0.48065 (16) | 0.3548 (3) | 0.46451 (6) | 0.0398 (4) | |
H4 | 0.467 (4) | 0.466 (6) | 0.4831 (12) | 0.060* | |
C11 | 0.3612 (2) | 0.0750 (4) | 0.41412 (9) | 0.0367 (5) | |
C12 | 0.2783 (3) | −0.1033 (4) | 0.42012 (11) | 0.0472 (6) | |
H12 | 0.222 (2) | −0.1146 (6) | 0.4475 (10) | 0.057* | |
C13 | 0.2731 (3) | −0.2707 (5) | 0.38704 (13) | 0.0581 (8) | |
H13 | 0.220 (2) | −0.383 (5) | 0.3918 (2) | 0.070* | |
C14 | 0.3497 (3) | −0.2587 (5) | 0.34829 (12) | 0.0549 (8) | |
H14 | 0.3444 (4) | −0.387 (4) | 0.3237 (8) | 0.066* | |
C15 | 0.4357 (3) | −0.0818 (4) | 0.33976 (10) | 0.0451 (6) | |
C16 | 0.5152 (3) | −0.0637 (6) | 0.29893 (10) | 0.0566 (8) | |
H16 | 0.5105 (4) | −0.182 (4) | 0.2757 (9) | 0.068* | |
C17 | 0.5970 (3) | 0.1086 (6) | 0.29054 (10) | 0.0555 (8) | |
H17 | 0.653 (2) | 0.1169 (6) | 0.2611 (11) | 0.067* | |
C18 | 0.6038 (3) | 0.2752 (5) | 0.32268 (9) | 0.0485 (7) | |
H18 | 0.666 (2) | 0.407 (5) | 0.3163 (2) | 0.058* | |
C19 | 0.5287 (2) | 0.2649 (4) | 0.36254 (8) | 0.0389 (5) | |
H19 | 0.5350 | 0.3799 | 0.3838 | 0.047* | |
C20 | 0.4422 (2) | 0.0882 (4) | 0.37291 (8) | 0.0358 (5) | |
B2 | 0.3611 (3) | 0.2548 (5) | 0.45182 (10) | 0.0352 (6) | |
O1 | 0.44946 (17) | 0.6845 (3) | 0.52575 (6) | 0.0410 (4) | |
H1 | 0.520 (4) | 0.747 (6) | 0.5329 (13) | 0.061* | |
O2 | 0.21178 (16) | 0.6447 (3) | 0.53618 (6) | 0.0393 (4) | |
H2 | 0.224 (4) | 0.548 (5) | 0.5138 (12) | 0.059* | |
C1 | 0.3326 (2) | 0.9282 (4) | 0.58539 (8) | 0.0337 (5) | |
C2 | 0.4169 (2) | 1.1032 (4) | 0.57782 (10) | 0.0417 (6) | |
H2A | 0.4712 | 1.1076 | 0.5507 | 0.050* | |
C3 | 0.4253 (3) | 1.2758 (4) | 0.60894 (11) | 0.0484 (7) | |
H3A | 0.4842 | 1.3941 | 0.6025 | 0.058* | |
C4 | 0.3491 (3) | 1.2734 (4) | 0.64824 (11) | 0.0460 (6) | |
H4A | 0.3552 | 1.3901 | 0.6691 | 0.055* | |
C5 | 0.2613 (2) | 1.0981 (4) | 0.65810 (9) | 0.0386 (5) | |
C6 | 0.1826 (3) | 1.0920 (5) | 0.69941 (9) | 0.0462 (6) | |
H6 | 0.1876 | 1.2092 | 0.7202 | 0.055* | |
C7 | 0.1010 (3) | 0.9220 (5) | 0.70950 (9) | 0.0482 (6) | |
H7 | 0.0499 | 0.9201 | 0.7373 | 0.058* | |
C8 | 0.0916 (3) | 0.7484 (5) | 0.67893 (9) | 0.0437 (6) | |
H8 | 0.0343 | 0.6294 | 0.6862 | 0.052* | |
C9 | 0.1647 (2) | 0.7492 (4) | 0.63858 (8) | 0.0361 (5) | |
H9 | 0.1567 | 0.6308 | 0.6182 | 0.043* | |
C10 | 0.2520 (2) | 0.9235 (4) | 0.62674 (8) | 0.0328 (5) | |
B1 | 0.3317 (3) | 0.7451 (5) | 0.54832 (9) | 0.0347 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0220 (7) | 0.0608 (11) | 0.0418 (9) | −0.0033 (8) | 0.0009 (6) | −0.0085 (8) |
O4 | 0.0227 (7) | 0.0537 (10) | 0.0430 (10) | −0.0004 (8) | −0.0010 (6) | −0.0104 (8) |
C11 | 0.0239 (10) | 0.0383 (12) | 0.0479 (13) | 0.0028 (9) | −0.0073 (9) | −0.0001 (11) |
C12 | 0.0329 (11) | 0.0453 (14) | 0.0633 (17) | −0.0010 (11) | −0.0080 (12) | 0.0086 (12) |
C13 | 0.0457 (15) | 0.0360 (13) | 0.093 (3) | −0.0063 (12) | −0.0258 (16) | 0.0035 (14) |
C14 | 0.0487 (16) | 0.0426 (14) | 0.073 (2) | 0.0077 (12) | −0.0200 (14) | −0.0160 (14) |
C15 | 0.0370 (12) | 0.0442 (14) | 0.0541 (16) | 0.0115 (10) | −0.0158 (11) | −0.0128 (12) |
C16 | 0.0511 (16) | 0.0719 (19) | 0.0469 (16) | 0.0244 (15) | −0.0136 (12) | −0.0248 (15) |
C17 | 0.0450 (15) | 0.079 (2) | 0.0421 (15) | 0.0145 (15) | −0.0012 (11) | −0.0093 (14) |
C18 | 0.0381 (14) | 0.0660 (18) | 0.0414 (14) | 0.0042 (13) | −0.0002 (10) | −0.0029 (12) |
C19 | 0.0309 (12) | 0.0461 (13) | 0.0396 (12) | 0.0038 (10) | −0.0037 (10) | −0.0061 (10) |
C20 | 0.0270 (9) | 0.0387 (12) | 0.0417 (13) | 0.0079 (9) | −0.0074 (9) | −0.0064 (10) |
B2 | 0.0231 (12) | 0.0454 (14) | 0.0371 (13) | 0.0006 (11) | −0.0011 (10) | 0.0038 (11) |
O1 | 0.0234 (7) | 0.0568 (11) | 0.0427 (10) | −0.0046 (8) | 0.0025 (6) | −0.0069 (8) |
O2 | 0.0212 (7) | 0.0542 (10) | 0.0424 (9) | 0.0002 (7) | 0.0011 (6) | −0.0093 (8) |
C1 | 0.0242 (9) | 0.0371 (11) | 0.0399 (12) | 0.0030 (9) | −0.0045 (8) | 0.0034 (10) |
C2 | 0.0284 (11) | 0.0433 (13) | 0.0533 (15) | −0.0009 (10) | −0.0037 (10) | 0.0086 (11) |
C3 | 0.0369 (14) | 0.0342 (12) | 0.0741 (19) | −0.0046 (11) | −0.0109 (13) | 0.0058 (12) |
C4 | 0.0382 (14) | 0.0351 (12) | 0.0647 (18) | 0.0031 (11) | −0.0148 (11) | −0.0056 (12) |
C5 | 0.0313 (11) | 0.0391 (12) | 0.0453 (14) | 0.0080 (10) | −0.0107 (9) | −0.0030 (10) |
C6 | 0.0454 (14) | 0.0501 (14) | 0.0430 (14) | 0.0113 (12) | −0.0084 (11) | −0.0114 (11) |
C7 | 0.0440 (14) | 0.0630 (16) | 0.0377 (13) | 0.0078 (13) | 0.0009 (10) | −0.0025 (12) |
C8 | 0.0379 (13) | 0.0500 (14) | 0.0433 (13) | 0.0023 (12) | 0.0010 (10) | 0.0045 (10) |
C9 | 0.0303 (11) | 0.0386 (11) | 0.0395 (12) | 0.0016 (9) | −0.0025 (9) | −0.0011 (9) |
C10 | 0.0248 (9) | 0.0345 (11) | 0.0392 (12) | 0.0050 (9) | −0.0070 (8) | 0.0009 (9) |
B1 | 0.0228 (12) | 0.0439 (13) | 0.0374 (13) | 0.0014 (10) | −0.0004 (9) | 0.0007 (11) |
O3—H3 | 0.95 (4) | O1—H1 | 0.81 (4) |
O3—B2 | 1.371 (3) | O1—B1 | 1.368 (3) |
O4—H4 | 0.89 (4) | O2—H2 | 0.90 (3) |
O4—B2 | 1.363 (3) | O2—B1 | 1.364 (3) |
C11—C12 | 1.381 (4) | C1—C2 | 1.379 (4) |
C11—C20 | 1.438 (3) | C1—C10 | 1.436 (3) |
C11—B2 | 1.570 (4) | C1—B1 | 1.572 (4) |
C12—H12 | 0.97 (3) | C2—H2A | 0.9500 |
C12—C13 | 1.422 (5) | C2—C3 | 1.410 (4) |
C13—H13 | 0.88 (4) | C3—H3A | 0.9500 |
C13—C14 | 1.353 (5) | C3—C4 | 1.363 (4) |
C14—H14 | 1.07 (4) | C4—H4A | 0.9500 |
C14—C15 | 1.403 (4) | C4—C5 | 1.413 (4) |
C15—C16 | 1.422 (4) | C5—C6 | 1.426 (4) |
C15—C20 | 1.435 (3) | C5—C10 | 1.424 (3) |
C16—H16 | 1.00 (4) | C6—H6 | 0.9500 |
C16—C17 | 1.355 (5) | C6—C7 | 1.353 (4) |
C17—H17 | 1.02 (4) | C7—H7 | 0.9500 |
C17—C18 | 1.400 (4) | C7—C8 | 1.405 (4) |
C18—H18 | 1.03 (4) | C8—H8 | 0.9500 |
C18—C19 | 1.373 (3) | C8—C9 | 1.373 (4) |
C19—H19 | 0.9500 | C9—H9 | 0.9500 |
C19—C20 | 1.415 (3) | C9—C10 | 1.417 (3) |
B2—O3—H3 | 119 (2) | B1—O1—H1 | 116 (3) |
B2—O4—H4 | 113 (2) | B1—O2—H2 | 113 (2) |
C12—C11—C20 | 117.9 (2) | C2—C1—C10 | 118.1 (2) |
C12—C11—B2 | 119.0 (2) | C2—C1—B1 | 117.8 (2) |
C20—C11—B2 | 123.1 (2) | C10—C1—B1 | 124.1 (2) |
C11—C12—H12 | 119.2 | C1—C2—H2A | 118.9 |
C11—C12—C13 | 121.6 (3) | C1—C2—C3 | 122.3 (3) |
C13—C12—H12 | 119.2 | C3—C2—H2A | 118.9 |
C12—C13—H13 | 119.7 | C2—C3—H3A | 119.9 |
C14—C13—C12 | 120.5 (3) | C4—C3—C2 | 120.1 (2) |
C14—C13—H13 | 119.7 | C4—C3—H3A | 119.9 |
C13—C14—H14 | 119.5 | C3—C4—H4A | 119.9 |
C13—C14—C15 | 121.0 (3) | C3—C4—C5 | 120.3 (3) |
C15—C14—H14 | 119.5 | C5—C4—H4A | 119.9 |
C14—C15—C16 | 122.1 (3) | C4—C5—C6 | 120.9 (2) |
C14—C15—C20 | 119.1 (3) | C4—C5—C10 | 119.8 (2) |
C16—C15—C20 | 118.8 (3) | C10—C5—C6 | 119.3 (2) |
C15—C16—H16 | 119.0 | C5—C6—H6 | 119.5 |
C17—C16—C15 | 122.0 (3) | C7—C6—C5 | 121.1 (2) |
C17—C16—H16 | 119.0 | C7—C6—H6 | 119.5 |
C16—C17—H17 | 120.2 | C6—C7—H7 | 119.9 |
C16—C17—C18 | 119.6 (3) | C6—C7—C8 | 120.1 (3) |
C18—C17—H17 | 120.2 | C8—C7—H7 | 119.9 |
C17—C18—H18 | 119.7 | C7—C8—H8 | 119.7 |
C19—C18—C17 | 120.5 (3) | C9—C8—C7 | 120.6 (3) |
C19—C18—H18 | 119.7 | C9—C8—H8 | 119.7 |
C18—C19—H19 | 119.0 | C8—C9—H9 | 119.4 |
C18—C19—C20 | 122.0 (2) | C8—C9—C10 | 121.2 (2) |
C20—C19—H19 | 119.0 | C10—C9—H9 | 119.4 |
C15—C20—C11 | 119.8 (2) | C5—C10—C1 | 119.3 (2) |
C19—C20—C11 | 123.0 (2) | C9—C10—C1 | 122.9 (2) |
C19—C20—C15 | 117.1 (2) | C9—C10—C5 | 117.8 (2) |
O3—B2—C11 | 122.1 (2) | O1—B1—C1 | 121.8 (2) |
O4—B2—O3 | 116.9 (2) | O2—B1—O1 | 117.1 (2) |
O4—B2—C11 | 121.1 (2) | O2—B1—C1 | 121.0 (2) |
C11—C12—C13—C14 | −0.4 (4) | C1—C2—C3—C4 | 0.3 (4) |
C12—C11—C20—C15 | −0.3 (3) | C2—C1—C10—C5 | 0.2 (3) |
C12—C11—C20—C19 | 178.6 (2) | C2—C1—C10—C9 | −178.3 (2) |
C12—C11—B2—O3 | −38.2 (3) | C2—C1—B1—O1 | 37.5 (3) |
C12—C11—B2—O4 | 140.1 (2) | C2—C1—B1—O2 | −140.3 (2) |
C12—C13—C14—C15 | 0.0 (4) | C2—C3—C4—C5 | 0.0 (4) |
C13—C14—C15—C16 | −178.8 (3) | C3—C4—C5—C6 | 179.0 (2) |
C13—C14—C15—C20 | 0.2 (4) | C3—C4—C5—C10 | −0.2 (3) |
C14—C15—C16—C17 | 179.2 (3) | C4—C5—C6—C7 | −178.4 (2) |
C14—C15—C20—C11 | 0.0 (3) | C4—C5—C10—C1 | 0.1 (3) |
C14—C15—C20—C19 | −179.1 (2) | C4—C5—C10—C9 | 178.7 (2) |
C15—C16—C17—C18 | −0.3 (4) | C5—C6—C7—C8 | −0.5 (4) |
C16—C15—C20—C11 | 179.0 (2) | C6—C5—C10—C1 | −179.2 (2) |
C16—C15—C20—C19 | 0.0 (3) | C6—C5—C10—C9 | −0.6 (3) |
C16—C17—C18—C19 | 0.2 (4) | C6—C7—C8—C9 | −0.1 (4) |
C17—C18—C19—C20 | 0.0 (4) | C7—C8—C9—C10 | 0.4 (4) |
C18—C19—C20—C11 | −179.1 (2) | C8—C9—C10—C1 | 178.5 (2) |
C18—C19—C20—C15 | −0.1 (3) | C8—C9—C10—C5 | 0.0 (3) |
C20—C11—C12—C13 | 0.5 (3) | C10—C1—C2—C3 | −0.4 (3) |
C20—C11—B2—O3 | 140.8 (2) | C10—C1—B1—O1 | −142.0 (2) |
C20—C11—B2—O4 | −41.0 (3) | C10—C1—B1—O2 | 40.3 (3) |
C20—C15—C16—C17 | 0.2 (4) | C10—C5—C6—C7 | 0.9 (3) |
B2—C11—C12—C13 | 179.6 (2) | B1—C1—C2—C3 | −179.9 (2) |
B2—C11—C20—C15 | −179.3 (2) | B1—C1—C10—C5 | 179.7 (2) |
B2—C11—C20—C19 | −0.3 (3) | B1—C1—C10—C9 | 1.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.81 (4) | 1.98 (4) | 2.766 (2) | 165 (4) |
O2—H2···O3 | 0.90 (3) | 1.86 (3) | 2.750 (3) | 171 (3) |
O3—H3···O4ii | 0.96 (4) | 1.82 (4) | 2.761 (2) | 167 (3) |
O4—H4···O1 | 0.89 (4) | 1.85 (4) | 2.739 (3) | 175 (3) |
C9—H9···O2 | 0.95 | 2.45 | 3.092 (3) | 124 |
C19—H19···O4 | 0.95 | 2.42 | 3.063 (3) | 125 |
Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) x−1/2, −y+1/2, z. |
C10H9BO2 | F(000) = 360 |
Mr = 171.98 | Dx = 1.306 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 14.8469 (11) Å | Cell parameters from 9898 reflections |
b = 6.1023 (4) Å | θ = 3.0–77.0° |
c = 9.6797 (7) Å | µ = 0.71 mm−1 |
β = 93.978 (3)° | T = 173 K |
V = 874.87 (11) Å3 | Prism, colourless |
Z = 4 | 0.66 × 0.18 × 0.16 mm |
Bruker PHOTON-100 CMOS diffractometer | 1576 reflections with I > 2σ(I) |
Radiation source: sealedtube | Rint = 0.038 |
φ and ω scans | θmax = 77.4°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | h = −18→18 |
Tmin = 0.759, Tmax = 0.951 | k = −7→7 |
25253 measured reflections | l = −12→11 |
1857 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0435P)2 + 0.2015P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1857 reflections | Δρmax = 0.23 e Å−3 |
133 parameters | Δρmin = −0.15 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.42757 (6) | 0.14734 (15) | 0.62491 (7) | 0.0348 (2) | |
H1 | 0.4697 (12) | 0.043 (3) | 0.6194 (17) | 0.058 (5)* | |
O2 | 0.44930 (6) | 0.18505 (15) | 0.39004 (8) | 0.0361 (2) | |
H2 | 0.4335 (12) | 0.247 (3) | 0.309 (2) | 0.067 (5)* | |
C1 | 0.32826 (8) | 0.42799 (19) | 0.49000 (11) | 0.0301 (3) | |
C2 | 0.34171 (9) | 0.6083 (2) | 0.40723 (12) | 0.0374 (3) | |
H2A | 0.3975 (9) | 0.6190 (3) | 0.3608 (7) | 0.045* | |
C3 | 0.27729 (10) | 0.7770 (2) | 0.38806 (13) | 0.0441 (3) | |
H3 | 0.2893 (2) | 0.903 (2) | 0.3287 (10) | 0.053* | |
C4 | 0.19841 (10) | 0.7660 (2) | 0.45170 (13) | 0.0431 (3) | |
H4 | 0.1527 (8) | 0.887 (2) | 0.4375 (3) | 0.052* | |
C5 | 0.18023 (8) | 0.5861 (2) | 0.53761 (12) | 0.0356 (3) | |
C6 | 0.09731 (9) | 0.5709 (2) | 0.60194 (14) | 0.0445 (3) | |
H6 | 0.0525 (8) | 0.688 (2) | 0.5877 (3) | 0.053* | |
C7 | 0.07934 (9) | 0.3962 (3) | 0.68300 (14) | 0.0477 (3) | |
H7 | 0.0219 (10) | 0.3879 (3) | 0.7264 (8) | 0.057* | |
C8 | 0.14332 (9) | 0.2281 (2) | 0.70431 (13) | 0.0411 (3) | |
H8 | 0.1299 (2) | 0.100 (2) | 0.7651 (10) | 0.049* | |
C9 | 0.22382 (8) | 0.2367 (2) | 0.64330 (11) | 0.0327 (3) | |
H9 | 0.2672 (6) | 0.1175 (18) | 0.6589 (3) | 0.039* | |
C10 | 0.24527 (8) | 0.41549 (18) | 0.55791 (11) | 0.0296 (3) | |
B1 | 0.40328 (9) | 0.2462 (2) | 0.50178 (12) | 0.0300 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0376 (5) | 0.0461 (5) | 0.0209 (4) | 0.0093 (4) | 0.0038 (3) | 0.0008 (3) |
O2 | 0.0375 (5) | 0.0500 (5) | 0.0212 (4) | 0.0078 (4) | 0.0055 (3) | 0.0041 (4) |
C1 | 0.0372 (6) | 0.0315 (6) | 0.0212 (5) | −0.0021 (5) | −0.0008 (4) | −0.0028 (4) |
C2 | 0.0476 (7) | 0.0370 (6) | 0.0274 (6) | −0.0065 (5) | 0.0009 (5) | 0.0002 (5) |
C3 | 0.0669 (9) | 0.0306 (6) | 0.0333 (6) | −0.0033 (6) | −0.0060 (6) | 0.0046 (5) |
C4 | 0.0575 (8) | 0.0333 (6) | 0.0367 (7) | 0.0098 (6) | −0.0093 (6) | −0.0037 (5) |
C5 | 0.0429 (7) | 0.0357 (6) | 0.0271 (6) | 0.0062 (5) | −0.0058 (5) | −0.0069 (5) |
C6 | 0.0384 (7) | 0.0532 (8) | 0.0413 (7) | 0.0139 (6) | −0.0034 (5) | −0.0098 (6) |
C7 | 0.0334 (7) | 0.0664 (9) | 0.0434 (7) | 0.0036 (6) | 0.0047 (5) | −0.0042 (7) |
C8 | 0.0368 (6) | 0.0500 (7) | 0.0366 (7) | −0.0038 (6) | 0.0036 (5) | 0.0016 (6) |
C9 | 0.0335 (6) | 0.0348 (6) | 0.0293 (6) | 0.0010 (5) | −0.0007 (4) | −0.0010 (5) |
C10 | 0.0349 (6) | 0.0311 (6) | 0.0221 (5) | 0.0009 (5) | −0.0022 (4) | −0.0051 (4) |
B1 | 0.0308 (6) | 0.0366 (7) | 0.0226 (6) | −0.0031 (5) | 0.0024 (4) | −0.0013 (5) |
O1—H1 | 0.899 (19) | C4—C5 | 1.4146 (18) |
O1—B1 | 1.3620 (15) | C5—C6 | 1.4206 (19) |
O2—H2 | 0.886 (19) | C5—C10 | 1.4243 (16) |
O2—B1 | 1.3706 (14) | C6—H6 | 0.979 (16) |
C1—C2 | 1.3839 (16) | C6—C7 | 1.361 (2) |
C1—C10 | 1.4382 (16) | C7—H7 | 0.977 (16) |
C1—B1 | 1.5705 (18) | C7—C8 | 1.4036 (19) |
C2—H2A | 0.971 (15) | C8—H8 | 1.008 (16) |
C2—C3 | 1.4085 (19) | C8—C9 | 1.3703 (17) |
C3—H3 | 0.983 (16) | C9—H9 | 0.977 (14) |
C3—C4 | 1.362 (2) | C9—C10 | 1.4180 (16) |
C4—H4 | 1.004 (16) | ||
B1—O1—H1 | 114.0 (10) | C7—C6—C5 | 120.98 (12) |
B1—O2—H2 | 117.8 (11) | C7—C6—H6 | 119.5 |
C2—C1—C10 | 118.00 (11) | C6—C7—H7 | 120.0 |
C2—C1—B1 | 118.27 (11) | C6—C7—C8 | 119.95 (12) |
C10—C1—B1 | 123.72 (10) | C8—C7—H7 | 120.0 |
C1—C2—H2A | 118.9 | C7—C8—H8 | 119.7 |
C1—C2—C3 | 122.23 (12) | C9—C8—C7 | 120.68 (13) |
C3—C2—H2A | 118.9 | C9—C8—H8 | 119.7 |
C2—C3—H3 | 119.9 | C8—C9—H9 | 119.4 |
C4—C3—C2 | 120.12 (12) | C8—C9—C10 | 121.23 (11) |
C4—C3—H3 | 119.9 | C10—C9—H9 | 119.4 |
C3—C4—H4 | 119.7 | C5—C10—C1 | 119.49 (11) |
C3—C4—C5 | 120.60 (12) | C9—C10—C1 | 122.78 (10) |
C5—C4—H4 | 119.7 | C9—C10—C5 | 117.72 (11) |
C4—C5—C6 | 121.00 (12) | O1—B1—O2 | 116.98 (11) |
C4—C5—C10 | 119.56 (12) | O1—B1—C1 | 121.32 (10) |
C6—C5—C10 | 119.43 (12) | O2—B1—C1 | 121.66 (10) |
C5—C6—H6 | 119.5 | ||
C1—C2—C3—C4 | −0.16 (19) | C6—C5—C10—C9 | −0.34 (16) |
C2—C1—C10—C5 | 0.31 (15) | C6—C7—C8—C9 | −0.5 (2) |
C2—C1—C10—C9 | 179.01 (10) | C7—C8—C9—C10 | 0.45 (18) |
C2—C1—B1—O1 | 139.56 (12) | C8—C9—C10—C1 | −178.73 (11) |
C2—C1—B1—O2 | −38.24 (16) | C8—C9—C10—C5 | −0.01 (16) |
C2—C3—C4—C5 | 0.06 (19) | C10—C1—C2—C3 | −0.04 (17) |
C3—C4—C5—C6 | −178.59 (12) | C10—C1—B1—O1 | −41.91 (16) |
C3—C4—C5—C10 | 0.22 (18) | C10—C1—B1—O2 | 140.30 (11) |
C4—C5—C6—C7 | 179.08 (12) | C10—C5—C6—C7 | 0.27 (18) |
C4—C5—C10—C1 | −0.41 (16) | B1—C1—C2—C3 | 178.58 (11) |
C4—C5—C10—C9 | −179.17 (10) | B1—C1—C10—C5 | −178.22 (10) |
C5—C6—C7—C8 | 0.2 (2) | B1—C1—C10—C9 | 0.47 (16) |
C6—C5—C10—C1 | 178.42 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.897 (18) | 1.846 (18) | 2.7411 (13) | 176.3 (17) |
O2—H2···O1ii | 0.888 (19) | 1.891 (19) | 2.7607 (11) | 166.0 (17) |
C9—H9···O1 | 0.98 (1) | 2.43 (1) | 3.0911 (15) | 124 (1) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1/2, z−1/2. |
Acknowledgements
Financial support from the State University of New York for acquisition and maintenance of the X-ray diffractometer is gratefully acknowledged.
References
Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cyrański, M. K., Jezierska, A., Klimentowska, P., Panek, J. J. & Sporzyński, A. (2008). J. Phys. Org. Chem. 21, 472–482. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gao, X., Zhang, Y. & Wang, B. (2003). Org. Lett. 5, 4615–4618. Web of Science CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hall, D. G. (2011). Editor. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. New York: Wiley–VCH. Google Scholar
Kitaigorodskii, A. I. (1961). In Organic Chemical Crystallography. New York: Consultants Bureau. Google Scholar
König, W. & Scharrnbeck, W. (1930). J. Prakt. Chem. 128, 153–170. Google Scholar
Michaelis, A. (1894). Ber. Dtsch. Chem. Ges. 27, 244–262. CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rettig, S. J. & Trotter, J. (1977). Can. J. Chem. 55, 3071–3075. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.