research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of methyl 4-(4-hy­dr­oxy­phen­yl)-6-methyl-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, 440010, Maharashtra, India, bDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa, and cDepartment of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462023, India
*Correspondence e-mail:

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 July 2016; accepted 19 August 2016; online 26 August 2016)

The title hydrate, C13H14N2O4·H2O, crystallizes with two formula units in the asymmetric unit (Z′ = 2). The dihedral angles between the planes of the tetra­hydro­pyrimidine ring and the 4-hy­droxy­phenyl ring and ester group are 86.78 (4) and 6.81 (6)°, respectively, for one mol­ecule and 89.35 (4) and 3.02 (4)° for the other. In the crystal, the organic mol­ecules form a dimer, linked by a pair of N—H⋯O hydrogen bonds. The hydroxy groups of the organic mol­ecules donate O—H⋯O hydrogen bonds to water mol­ecules. Further, the hy­droxy group accepts N—H⋯O hydrogen bonds from amides whereas the water mol­ecules donate O—H⋯O hydrogen bonds to the both the amide and ester carbonyl groups. Other weak inter­actions, including C—H⋯O, C—H⋯π and ππ, further consolidate the packing, generating a three-dimensional network.

1. Chemical context

Di­hydro­pyrimidine (DHPM) derivatives are used in the treatment of disease as anti­viral, anti­tumor, anti­bacterial and anti­malarial agents, as first reported by the Italian chemist Pietro Biginelli in 1893 [Kappe (2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]), Nayak et al. (2010[Nayak, S. K., Venugopala, K., Chopra, D., Vasu & Guru Row, T. N. (2010). CrystEngComm, 12, 1205-1216.]) and references therein]. We have been working on the synthesis of various DHPM derivatives for better biological activities (Narayanaswamy et al., 2013[Narayanaswamy, V. K., Nayak, S. K., Pillay, M., Prasanna, R., Coovadia, Y. M. & Odhav, B. (2013). Chem. Biol. Drug Des. 81, 219-227.]; Nayak et al., 2011[Nayak, S. K., Venugopala, K., Chopra, D. & Row, T. G. (2011). CrystEngComm, 13, 591-605.]) and a wide range of applications (Nayak et al., 2009[Nayak, S. K., Venugopala, K. N., Chopra, D., Govender, T., Kruger, H. G., Maguire, G. E. M. & Guru Row, T. N. (2009). Acta Cryst. E65, o2502.], 2010[Nayak, S. K., Venugopala, K., Chopra, D., Vasu & Guru Row, T. N. (2010). CrystEngComm, 12, 1205-1216.]). Here, we report the synthesis and single-crystal structure of the title compound, (I)[link].

[Scheme 1]

2. Structural commentary

Compound (I)[link] crystallizes as a monohydrate with two formula units in the asymmetric unit (Z′ = 2), which may be supported by the formation of hydrogen bonds between the hy­droxy­phenyl group and the water mol­ecule and dimer formation through N—H⋯O hydrogen bonds (Fig. 1[link]). The dihedral angles between the planes of the six-membered tetra­hydro­pyrimidine ring with its 4-hy­droxy­phenyl and ester substituents are 86.78 (4) and 6.81 (6)°, respectively, for the N1-containing mol­ecule and 89.35 (4)° and 3.02 (4)°, respectively, for the other.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with 50% probability ellipsoids. The double-dashed lines indicate hydrogen bonds.

3. Supra­molecular features

In the crystal of (I)[link], the DHPM mol­ecules form dimers through N—H⋯O hydrogen bonds with an R22(8) graph-set motif (Fig. 2[link]). The hy­droxy groups of the di­hydro­pyrimidine mol­ecules donate O—H⋯O hydrogen bonds to water mol­ecules, which may explain the preference for the monohydrated crystalline form. Further, the hy­droxy group accepts N—H⋯O hydrogen bonds from amide groups whereas the water mol­ecule donates O—H⋯O hydrogen bonds to the both the amide and ester carbonyl groups (Table 1[link]). The key role of the water mol­ecule in the hydrogen-bonding network is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C8–C13 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O6 0.878 (19) 2.10 (2) 2.9762 (16) 173.1 (17)
N3—H3N⋯O1 0.88 (2) 1.98 (2) 2.8626 (16) 174 (2)
N2—H2N⋯O9i 0.89 (2) 2.02 (2) 2.8971 (19) 170.0 (18)
N4—H4N⋯O4ii 0.87 (2) 2.13 (2) 2.9738 (19) 163.4 (18)
O4—H1O⋯O5 0.87 (2) 1.78 (2) 2.6473 (16) 175 (2)
O9—H2O⋯O10 0.90 (2) 1.73 (2) 2.6189 (17) 174.7 (19)
O5—H4O⋯O2iii 0.84 (2) 2.15 (2) 2.8549 (19) 141 (2)
O5—H3O⋯O1iv 0.91 (3) 1.91 (3) 2.786 (2) 162 (2)
C20—H20C⋯O5iv 1.00 (2) 2.56 (2) 3.332 (2) 133.7 (17)
C26—H26⋯O3v 0.971 (17) 2.571 (18) 3.4607 (18) 152.4 (14)
C6—H6BCg2vi 0.989 (19) 2.70 (2) 3.392 (2) 127.1 (16)
C19—H19CCg1vii 0.98 (2) 2.84 (2) 3.395 (2) 116.5 (16)
Symmetry codes: (i) x-1, y-1, z-1; (ii) x+1, y+1, z+1; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+1; (v) -x+1, -y+1, -z+2; (vi) x, y, z-1; (vii) x, y+1, z+1.
[Figure 2]
Figure 2
Crystal structure of title compound showing the dimers formed by N—H⋯O hydrogen bonds as well as the links to the water mol­ecules, which donate O—H⋯O hydrogen bonds to the ester groups.
[Figure 3]
Figure 3
Three-dimensional crystal structure of the title compound showing the role of the water mol­ecules in the hydrogen-bonding network.

Weak inter­actions including C—H⋯O, C—H⋯π and ππ [Cg1⋯Cg2(2 − x, 1 − y, 1 − z) = 3.652 (1) Å; Cg1 and Cg2 are the centroids of the C8–C13 and C21–C26 rings, respectively] help to consolidate the packing and a three-dimensional network arises.

4. Database survey

A search of the Cambridge structural Database (CSD) (Conquest Version 1.17; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for methyl 4-(4-hy­droxy­phen­yl)-6-methyl 2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate gave no hits; however, the crystal structures of sixteen hy­droxy­phenyl-substituted DHPM derivatives were found. These structures include four 2-hy­droxy­phenyl-substituted DHPM mol­ecules, one 3-hy­droxy-substituted and eleven 4-hy­droxy­phenyl-substituted DHPM mol­ecules. It is inter­esting to note that five of the 4-hy­droxy­phenyl-substituted DHPM mol­ecules prefer to crystallize in a hydrated form (ZOHFIN: Vishnevskii et al. 2014[Vishnevskii, S. G., Drapailo, A. B., Ruban, A. V., Pirozhenko, V. V., Shishkina, S. V., Shishkin, O. V. & Kal'chenko, V. I. (2014). Russ. J. Org. Chem. 50, 571-580. ]; VOJDOO: Das et al., 2008[Das, U., Chheda, S. B., Pednekar, S. R., Karambelkar, N. P. & Guru Row, T. N. (2008). Acta Cryst. E64, o2488-o2489.]; VOJDOO01: Nayak et al., 2009[Nayak, S. K., Venugopala, K. N., Chopra, D., Govender, T., Kruger, H. G., Maguire, G. E. M. & Guru Row, T. N. (2009). Acta Cryst. E65, o2502.]; POWXIJ: Thenmozhi et al., 2009[Thenmozhi, M., Kavitha, T., Satyanarayana, V. S. V., Vijayakumar, V. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o1921-o1922.]; XISMES: Liu et al., 2008[Liu, B., Zhang, M., Cui, N., Zhu, J. & Cui, J. (2008). Acta Cryst. E64, o261.]). However, of these only ethyl 4-(4-hy­droxy­phen­yl)-6-methyl-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5 carboxyl­ate (VOJDOO: Das et al., 2008[Das, U., Chheda, S. B., Pednekar, S. R., Karambelkar, N. P. & Guru Row, T. N. (2008). Acta Cryst. E64, o2488-o2489.]) crystallizes with a higher formula unit (Z′ > 1), i.e. its structure has three formula units in the asymmetric unit (Z′ = 3) in the monohydrated form. Hence, the title compound is the second member of this family of monohydrates to crystallize with higher formula units in the asymmetric unit (Z′ = 2). The CSD analysis clearly suggests that 4-hy­droxy-substituted DHPM mol­ecule are prone to crystallize in their hydrated form compared to 3-hy­droxy or 2-hy­droxy-substituted DHPM mol­ecules; this may be due to the observed O—H⋯O hydrogen bonding with water mol­ecule acceptors with the hydroxyl group in the preferred para position.

5. Synthesis and crystallization

The title compound was obtained by the reaction of three components, viz. methyl aceto­acetate, 4-hy­droxy­benzaldehyde and urea in ethanol solution according to a reported procedure (Tumtin et al., 2010[Tumtin, S., Phucho, I. T., Nongpiur, A., Nongrum, R., Vishwakarma, J. N., Myrboh, B. & Nongkhlaw, R. L. (2010). ChemInform, 41, doi: 10.1002/chin.201024169.]). The reaction progress was monitored by thin layer chromatography and after the completion of the reaction, the solvent was removed and the solid obtained was recrystallized from ethanol to obtain the pure product. Colorless single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in ethanol (yield 75%, m.p. 412.3 K). FT–IR νmax cm−1: 3379 (O—H), 3248 (N—H), 2963 (sp2 C—H), 2845 (sp3 C—H), 1763 (C=O ester), 1682 (C=O amide), 1594 (C=C alkene), 1514 (C=C aromatic) and 1260 (C—O, ester).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were located in difference Fourier maps and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C13H14N2O4·H2O
Mr 280.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 10.7527 (6), 11.6731 (6), 12.4456 (7)
α, β, γ (°) 98.236 (2), 112.374 (1), 108.944 (2)
V3) 1301.16 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.23 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEXII DUO
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.926, 0.934
No. of measured, independent and observed [I > 2σ(I)] reflections 21716, 5116, 4387
Rint 0.044
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.04
No. of reflections 5116
No. of parameters 489
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.23, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and ORTEP-3 for Windows (Macrae et al, 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al. (2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

Methyl 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate monohydrate top
Crystal data top
C13H14N2O4·H2OZ = 4
Mr = 280.28F(000) = 592
Triclinic, P1Dx = 1.431 Mg m3
a = 10.7527 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6731 (6) ÅCell parameters from 740 reflections
c = 12.4456 (7) Åθ = 2.2–30.1°
α = 98.236 (2)°µ = 0.11 mm1
β = 112.374 (1)°T = 150 K
γ = 108.944 (2)°Plate, colorless
V = 1301.16 (13) Å30.23 × 0.20 × 0.15 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
5116 independent reflections
Radiation source: fine-focus sealed tube4387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.926, Tmax = 0.934k = 1414
21716 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.099All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.046P)2 + 0.5474P]
where P = (Fo2 + 2Fc2)/3
5116 reflections(Δ/σ)max = 0.001
489 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.39164 (15)0.54081 (12)0.87596 (12)0.0139 (3)
C20.60979 (15)0.53784 (13)0.86203 (12)0.0148 (3)
C30.53110 (14)0.42096 (12)0.77764 (12)0.0136 (3)
C40.36594 (14)0.34937 (12)0.73347 (12)0.0133 (3)
C50.60417 (15)0.35855 (12)0.72784 (13)0.0153 (3)
C60.56565 (17)0.17576 (14)0.58648 (15)0.0209 (3)
C70.77354 (16)0.61333 (15)0.91932 (15)0.0213 (3)
C80.26914 (14)0.32159 (12)0.59847 (12)0.0135 (3)
C90.16677 (15)0.19821 (12)0.52680 (13)0.0147 (3)
C100.07261 (15)0.17160 (12)0.40490 (13)0.0153 (3)
C110.07936 (15)0.26965 (13)0.35266 (12)0.0142 (3)
C120.18128 (15)0.39416 (13)0.42297 (13)0.0155 (3)
C130.27411 (15)0.41876 (13)0.54497 (13)0.0155 (3)
C140.62129 (15)0.92206 (13)1.09772 (12)0.0144 (3)
C150.40117 (15)0.90446 (13)1.12011 (12)0.0149 (3)
C160.46382 (15)1.02900 (13)1.18448 (12)0.0149 (3)
C170.62246 (15)1.11457 (12)1.21918 (12)0.0142 (3)
C180.37813 (15)1.08432 (13)1.22405 (13)0.0179 (3)
C190.37283 (19)1.26713 (15)1.32473 (17)0.0253 (3)
C200.24606 (16)0.81093 (14)1.07923 (14)0.0209 (3)
C210.72322 (14)1.15937 (12)1.35558 (12)0.0134 (3)
C220.81179 (15)1.28805 (12)1.41893 (13)0.0154 (3)
C230.90581 (15)1.32811 (12)1.54268 (13)0.0160 (3)
C240.91207 (14)1.23915 (13)1.60557 (12)0.0146 (3)
C250.82479 (15)1.10980 (13)1.54369 (13)0.0146 (3)
C260.73188 (14)1.07151 (12)1.41985 (13)0.0140 (3)
N10.53814 (13)0.59703 (11)0.90574 (11)0.0163 (3)
N20.31652 (13)0.42046 (11)0.80401 (11)0.0153 (3)
N30.48323 (13)0.85228 (11)1.08401 (11)0.0162 (3)
N40.68018 (13)1.04716 (11)1.15386 (11)0.0154 (3)
O10.33372 (11)0.59969 (9)0.91804 (9)0.0185 (2)
O20.73271 (11)0.40171 (9)0.74845 (10)0.0225 (2)
O30.50735 (11)0.24088 (9)0.64955 (9)0.0191 (2)
O40.01614 (11)0.23932 (9)0.23188 (9)0.0178 (2)
O50.03765 (13)0.44197 (10)0.16905 (11)0.0253 (3)
O60.68445 (10)0.86842 (9)1.05711 (9)0.0181 (2)
O70.25613 (12)1.02650 (11)1.21377 (13)0.0372 (3)
O80.45133 (11)1.21067 (9)1.27839 (10)0.0215 (2)
O91.00441 (11)1.28271 (9)1.72845 (9)0.0182 (2)
O101.02933 (13)1.10134 (11)1.82525 (11)0.0279 (3)
H20.3460 (16)0.2653 (14)0.7513 (13)0.012 (4)*
H40.6248 (16)1.1903 (14)1.1908 (14)0.013 (4)*
H6C0.801 (2)0.695 (2)0.9685 (19)0.042 (6)*
H6A0.6325 (19)0.1504 (15)0.6451 (15)0.020 (4)*
H6B0.618 (2)0.2300 (17)0.5497 (17)0.032 (5)*
H7A0.473 (2)0.1020 (18)0.5170 (18)0.037 (5)*
H7B0.810 (2)0.6203 (19)0.8581 (19)0.043 (6)*
H7C0.823 (2)0.572 (2)0.971 (2)0.050 (6)*
H90.1627 (17)0.1297 (15)0.5647 (14)0.014 (4)*
H100.0015 (18)0.0858 (15)0.3535 (15)0.017 (4)*
H120.1873 (18)0.4638 (16)0.3874 (15)0.023 (4)*
H130.3430 (18)0.5067 (16)0.5956 (15)0.022 (4)*
H19A0.272 (2)1.2425 (19)1.2587 (19)0.041 (5)*
H19B0.430 (2)1.355 (2)1.354 (2)0.050 (6)*
H19C0.369 (2)1.2410 (18)1.3956 (18)0.035 (5)*
H20A0.224 (2)0.8036 (18)1.1506 (19)0.040 (5)*
H20B0.176 (2)0.8369 (18)1.0264 (18)0.035 (5)*
H20C0.232 (2)0.725 (2)1.0365 (19)0.043 (6)*
H220.8056 (18)1.3477 (16)1.3726 (15)0.022 (4)*
H230.9677 (18)1.4181 (16)1.5872 (15)0.019 (4)*
H250.8305 (18)1.0473 (15)1.5905 (15)0.020 (4)*
H260.6728 (17)0.9814 (15)1.3765 (14)0.014 (4)*
H1N0.587 (2)0.6755 (18)0.9547 (16)0.025 (4)*
H3N0.442 (2)0.7732 (19)1.0363 (18)0.034 (5)*
H2N0.220 (2)0.3872 (16)0.7813 (16)0.024 (4)*
H4N0.769 (2)1.0913 (17)1.1660 (16)0.025 (5)*
H1O0.017 (2)0.308 (2)0.2135 (19)0.045 (6)*
H2O1.007 (2)1.218 (2)1.759 (2)0.047 (6)*
H3O0.126 (3)0.447 (2)0.147 (2)0.049 (6)*
H4O0.033 (2)0.513 (2)0.1929 (19)0.040 (6)*
H5O0.954 (3)1.045 (2)1.824 (2)0.050 (6)*
H6O1.115 (3)1.097 (2)1.870 (2)0.048 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0135 (7)0.0148 (6)0.0126 (6)0.0056 (5)0.0053 (5)0.0037 (5)
C20.0130 (7)0.0171 (7)0.0149 (7)0.0068 (5)0.0060 (5)0.0064 (5)
C30.0112 (6)0.0138 (6)0.0153 (7)0.0050 (5)0.0053 (5)0.0056 (5)
C40.0118 (6)0.0104 (6)0.0175 (7)0.0041 (5)0.0075 (5)0.0021 (5)
C50.0140 (7)0.0136 (6)0.0176 (7)0.0055 (5)0.0065 (6)0.0058 (5)
C60.0216 (8)0.0187 (7)0.0271 (8)0.0102 (6)0.0155 (7)0.0031 (6)
C70.0136 (7)0.0198 (7)0.0219 (8)0.0025 (6)0.0057 (6)0.0002 (6)
C80.0104 (6)0.0133 (6)0.0171 (7)0.0055 (5)0.0071 (5)0.0021 (5)
C90.0139 (7)0.0123 (6)0.0196 (7)0.0061 (5)0.0091 (6)0.0039 (5)
C100.0120 (7)0.0112 (6)0.0192 (7)0.0035 (5)0.0067 (6)0.0008 (5)
C110.0111 (6)0.0171 (7)0.0147 (7)0.0067 (5)0.0066 (5)0.0019 (5)
C120.0140 (7)0.0137 (6)0.0190 (7)0.0056 (5)0.0079 (6)0.0051 (5)
C130.0112 (6)0.0111 (6)0.0201 (7)0.0026 (5)0.0061 (6)0.0010 (5)
C140.0125 (6)0.0160 (6)0.0116 (6)0.0059 (5)0.0026 (5)0.0034 (5)
C150.0121 (7)0.0191 (7)0.0117 (6)0.0066 (5)0.0038 (5)0.0041 (5)
C160.0119 (7)0.0173 (7)0.0157 (7)0.0063 (5)0.0060 (5)0.0052 (5)
C170.0137 (7)0.0128 (6)0.0169 (7)0.0061 (5)0.0074 (6)0.0038 (5)
C180.0142 (7)0.0180 (7)0.0205 (7)0.0067 (6)0.0072 (6)0.0050 (6)
C190.0263 (9)0.0200 (8)0.0398 (10)0.0132 (7)0.0224 (8)0.0086 (7)
C200.0140 (7)0.0191 (7)0.0216 (8)0.0023 (6)0.0065 (6)0.0007 (6)
C210.0100 (6)0.0131 (6)0.0173 (7)0.0048 (5)0.0074 (5)0.0015 (5)
C220.0150 (7)0.0126 (6)0.0207 (7)0.0057 (5)0.0104 (6)0.0041 (5)
C230.0134 (7)0.0098 (6)0.0214 (7)0.0021 (5)0.0089 (6)0.0012 (5)
C240.0101 (6)0.0163 (6)0.0153 (7)0.0050 (5)0.0062 (5)0.0008 (5)
C250.0120 (6)0.0142 (6)0.0187 (7)0.0058 (5)0.0079 (6)0.0041 (5)
C260.0110 (6)0.0095 (6)0.0190 (7)0.0028 (5)0.0068 (5)0.0008 (5)
N10.0130 (6)0.0115 (6)0.0173 (6)0.0017 (5)0.0051 (5)0.0016 (5)
N20.0101 (6)0.0147 (6)0.0172 (6)0.0030 (5)0.0060 (5)0.0001 (5)
N30.0128 (6)0.0126 (6)0.0178 (6)0.0032 (5)0.0053 (5)0.0005 (5)
N40.0119 (6)0.0142 (6)0.0175 (6)0.0034 (5)0.0071 (5)0.0013 (5)
O10.0154 (5)0.0168 (5)0.0201 (5)0.0061 (4)0.0074 (4)0.0002 (4)
O20.0129 (5)0.0211 (5)0.0301 (6)0.0053 (4)0.0101 (4)0.0021 (4)
O30.0158 (5)0.0139 (5)0.0264 (6)0.0052 (4)0.0114 (4)0.0000 (4)
O40.0158 (5)0.0165 (5)0.0148 (5)0.0042 (4)0.0039 (4)0.0023 (4)
O50.0141 (6)0.0149 (5)0.0356 (6)0.0039 (5)0.0036 (5)0.0026 (5)
O60.0150 (5)0.0169 (5)0.0202 (5)0.0072 (4)0.0073 (4)0.0008 (4)
O70.0200 (6)0.0253 (6)0.0613 (9)0.0033 (5)0.0247 (6)0.0035 (6)
O80.0200 (5)0.0154 (5)0.0342 (6)0.0086 (4)0.0173 (5)0.0051 (4)
O90.0152 (5)0.0160 (5)0.0152 (5)0.0027 (4)0.0041 (4)0.0005 (4)
O100.0135 (6)0.0255 (6)0.0367 (7)0.0048 (5)0.0054 (5)0.0119 (5)
Geometric parameters (Å, º) top
C1—O11.2481 (17)C15—C201.4984 (19)
C1—N21.3342 (17)C16—C181.4659 (19)
C1—N11.3653 (18)C16—C171.5177 (19)
C2—C31.3579 (19)C17—N41.4776 (17)
C2—N11.3872 (18)C17—C211.5188 (19)
C2—C71.4973 (19)C17—H40.994 (15)
C3—C51.4647 (19)C18—O71.2105 (18)
C3—C41.5218 (18)C18—O81.3444 (17)
C4—N21.4745 (17)C19—O81.4499 (17)
C4—C81.5182 (19)C19—H19A0.99 (2)
C4—H21.009 (15)C19—H19B0.94 (2)
C5—O21.2127 (17)C19—H19C0.98 (2)
C5—O31.3548 (17)C20—H20A1.01 (2)
C6—O31.4491 (17)C20—H20B0.96 (2)
C6—H6A0.968 (17)C20—H20C1.00 (2)
C6—H6B0.989 (19)C21—C261.3931 (19)
C6—H7A1.03 (2)C21—C221.3946 (19)
C7—H6C0.95 (2)C22—C231.384 (2)
C7—H7B0.98 (2)C22—H220.968 (17)
C7—H7C0.96 (2)C23—C241.391 (2)
C8—C91.3917 (19)C23—H230.975 (17)
C8—C131.3918 (19)C24—O91.3699 (17)
C9—C101.384 (2)C24—C251.3965 (19)
C9—H90.982 (16)C25—C261.383 (2)
C10—C111.3904 (19)C25—H250.999 (17)
C10—H100.972 (16)C26—H260.971 (16)
C11—O41.3696 (16)N1—H1N0.878 (19)
C11—C121.3966 (19)N2—H2N0.890 (19)
C12—C131.385 (2)N3—H3N0.88 (2)
C12—H120.976 (17)N4—H4N0.867 (19)
C13—H130.983 (17)O4—H1O0.86 (2)
C14—O61.2472 (17)O5—H3O0.91 (2)
C14—N41.3386 (18)O5—H4O0.83 (2)
C14—N31.3706 (18)O9—H2O0.90 (2)
C15—C161.3523 (19)O10—H5O0.86 (3)
C15—N31.3869 (18)O10—H6O0.90 (2)
O1—C1—N2122.43 (12)N4—C17—C16109.46 (11)
O1—C1—N1120.57 (12)N4—C17—C21109.83 (11)
N2—C1—N1116.97 (12)C16—C17—C21113.17 (11)
C3—C2—N1119.80 (12)N4—C17—H4106.2 (9)
C3—C2—C7126.65 (13)C16—C17—H4109.2 (9)
N1—C2—C7113.53 (12)C21—C17—H4108.7 (9)
C2—C3—C5120.57 (12)O7—C18—O8121.30 (13)
C2—C3—C4121.63 (12)O7—C18—C16126.02 (13)
C5—C3—C4117.78 (11)O8—C18—C16112.66 (12)
N2—C4—C8108.71 (10)O8—C19—H19A109.5 (12)
N2—C4—C3109.65 (11)O8—C19—H19B106.2 (14)
C8—C4—C3115.47 (11)H19A—C19—H19B112.9 (18)
N2—C4—H2105.7 (9)O8—C19—H19C110.4 (11)
C8—C4—H2107.5 (9)H19A—C19—H19C111.3 (16)
C3—C4—H2109.4 (9)H19B—C19—H19C106.4 (17)
O2—C5—O3121.53 (13)C15—C20—H20A111.6 (12)
O2—C5—C3127.41 (13)C15—C20—H20B111.1 (12)
O3—C5—C3111.05 (11)H20A—C20—H20B106.6 (16)
O3—C6—H6A107.7 (10)C15—C20—H20C109.4 (12)
O3—C6—H6B112.2 (11)H20A—C20—H20C107.8 (16)
H6A—C6—H6B110.0 (14)H20B—C20—H20C110.3 (16)
O3—C6—H7A103.6 (11)C26—C21—C22118.39 (13)
H6A—C6—H7A115.1 (14)C26—C21—C17120.28 (12)
H6B—C6—H7A108.1 (15)C22—C21—C17121.31 (12)
C2—C7—H6C110.7 (12)C23—C22—C21121.08 (13)
C2—C7—H7B112.1 (12)C23—C22—H22121.6 (10)
H6C—C7—H7B109.6 (17)C21—C22—H22117.3 (10)
C2—C7—H7C109.8 (13)C22—C23—C24119.74 (12)
H6C—C7—H7C107.8 (18)C22—C23—H23121.3 (9)
H7B—C7—H7C106.7 (17)C24—C23—H23119.0 (10)
C9—C8—C13118.41 (13)O9—C24—C23118.02 (12)
C9—C8—C4120.22 (12)O9—C24—C25121.92 (12)
C13—C8—C4121.27 (12)C23—C24—C25120.06 (13)
C10—C9—C8121.23 (13)C26—C25—C24119.37 (12)
C10—C9—H9120.3 (9)C26—C25—H25121.7 (10)
C8—C9—H9118.5 (9)C24—C25—H25118.9 (10)
C9—C10—C11119.66 (12)C25—C26—C21121.36 (12)
C9—C10—H10122.1 (9)C25—C26—H26119.4 (9)
C11—C10—H10118.2 (9)C21—C26—H26119.3 (9)
O4—C11—C10117.81 (12)C1—N1—C2123.79 (12)
O4—C11—C12122.17 (12)C1—N1—H1N115.9 (12)
C10—C11—C12120.02 (13)C2—N1—H1N120.3 (12)
C13—C12—C11119.37 (13)C1—N2—C4126.69 (12)
C13—C12—H12119.8 (10)C1—N2—H2N115.7 (11)
C11—C12—H12120.8 (10)C4—N2—H2N115.6 (11)
C12—C13—C8121.30 (12)C14—N3—C15123.93 (12)
C12—C13—H13119.6 (10)C14—N3—H3N114.0 (13)
C8—C13—H13119.1 (10)C15—N3—H3N120.9 (13)
O6—C14—N4123.48 (13)C14—N4—C17126.51 (12)
O6—C14—N3119.81 (12)C14—N4—H4N117.2 (12)
N4—C14—N3116.70 (12)C17—N4—H4N115.1 (12)
C16—C15—N3119.54 (12)C5—O3—C6115.32 (11)
C16—C15—C20127.09 (13)C11—O4—H1O109.9 (14)
N3—C15—C20113.36 (12)H3O—O5—H4O112.6 (19)
C15—C16—C18119.77 (12)C18—O8—C19113.98 (11)
C15—C16—C17122.02 (12)C24—O9—H2O111.0 (15)
C18—C16—C17118.21 (12)H5O—O10—H6O113 (2)
N1—C2—C3—C5178.24 (12)C15—C16—C18—O8175.05 (12)
C7—C2—C3—C53.6 (2)C17—C16—C18—O85.71 (18)
N1—C2—C3—C42.98 (19)N4—C17—C21—C2668.68 (15)
C7—C2—C3—C4175.15 (13)C16—C17—C21—C2653.97 (16)
C2—C3—C4—N25.41 (17)N4—C17—C21—C22109.60 (14)
C5—C3—C4—N2173.40 (11)C16—C17—C21—C22127.75 (13)
C2—C3—C4—C8117.77 (14)C26—C21—C22—C230.2 (2)
C5—C3—C4—C863.42 (15)C17—C21—C22—C23178.55 (12)
C2—C3—C5—O23.9 (2)C21—C22—C23—C240.3 (2)
C4—C3—C5—O2177.25 (13)C22—C23—C24—O9178.78 (12)
C2—C3—C5—O3177.24 (12)C22—C23—C24—C250.6 (2)
C4—C3—C5—O31.58 (17)O9—C24—C25—C26179.01 (12)
N2—C4—C8—C9108.73 (13)C23—C24—C25—C260.4 (2)
C3—C4—C8—C9127.59 (13)C24—C25—C26—C210.2 (2)
N2—C4—C8—C1367.52 (16)C22—C21—C26—C250.5 (2)
C3—C4—C8—C1356.15 (17)C17—C21—C26—C25178.83 (12)
C13—C8—C9—C100.6 (2)O1—C1—N1—C2179.62 (12)
C4—C8—C9—C10176.94 (12)N2—C1—N1—C22.45 (19)
C8—C9—C10—C110.3 (2)C3—C2—N1—C15.2 (2)
C9—C10—C11—O4179.75 (12)C7—C2—N1—C1173.19 (13)
C9—C10—C11—C120.3 (2)O1—C1—N2—C4169.09 (12)
O4—C11—C12—C13179.50 (12)N1—C1—N2—C413.0 (2)
C10—C11—C12—C130.6 (2)C8—C4—N2—C1113.04 (14)
C11—C12—C13—C80.8 (2)C3—C4—N2—C114.04 (18)
C9—C8—C13—C120.8 (2)O6—C14—N3—C15176.36 (12)
C4—C8—C13—C12177.17 (12)N4—C14—N3—C152.68 (19)
N3—C15—C16—C18179.33 (12)C16—C15—N3—C147.4 (2)
C20—C15—C16—C181.5 (2)C20—C15—N3—C14171.83 (12)
N3—C15—C16—C170.1 (2)O6—C14—N4—C17170.82 (12)
C20—C15—C16—C17179.25 (13)N3—C14—N4—C1710.18 (19)
C15—C16—C17—N410.20 (18)C16—C17—N4—C1415.85 (18)
C18—C16—C17—N4170.57 (11)C21—C17—N4—C14108.97 (14)
C15—C16—C17—C21112.65 (14)O2—C5—O3—C64.45 (19)
C18—C16—C17—C2166.57 (15)C3—C5—O3—C6174.46 (11)
C15—C16—C18—O76.7 (2)O7—C18—O8—C191.7 (2)
C17—C16—C18—O7172.58 (15)C16—C18—O8—C19176.70 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O60.878 (19)2.10 (2)2.9762 (16)173.1 (17)
N3—H3N···O10.88 (2)1.98 (2)2.8626 (16)174 (2)
N2—H2N···O9i0.89 (2)2.02 (2)2.8971 (19)170.0 (18)
N4—H4N···O4ii0.87 (2)2.13 (2)2.9738 (19)163.4 (18)
O4—H1O···O50.87 (2)1.78 (2)2.6473 (16)175 (2)
O9—H2O···O100.90 (2)1.73 (2)2.6189 (17)174.7 (19)
O5—H4O···O2iii0.84 (2)2.15 (2)2.8549 (19)141 (2)
O5—H3O···O1iv0.91 (3)1.91 (3)2.786 (2)162 (2)
C20—H20C···O5iv1.00 (2)2.56 (2)3.332 (2)133.7 (17)
C26—H26···O3v0.971 (17)2.571 (18)3.4607 (18)152.4 (14)
C6—H6B···Cg2vi0.989 (19)2.70 (2)3.392 (2)127.1 (16)
C19—H19C···Cg1vii0.98 (2)2.84 (2)3.395 (2)116.5 (16)
Symmetry codes: (i) x1, y1, z1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x+1, y+1, z+2; (vi) x, y, z1; (vii) x, y+1, z+1.
 

Acknowledgements

This research was supported by the Visvesvaraya National Institute of Technology (VNIT), Nagpur, INDIA. We thank Dr D. Chopra, IISER, Bhopal, for the single-crystal X-ray data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, U., Chheda, S. B., Pednekar, S. R., Karambelkar, N. P. & Guru Row, T. N. (2008). Acta Cryst. E64, o2488–o2489.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, B., Zhang, M., Cui, N., Zhu, J. & Cui, J. (2008). Acta Cryst. E64, o261.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNarayanaswamy, V. K., Nayak, S. K., Pillay, M., Prasanna, R., Coovadia, Y. M. & Odhav, B. (2013). Chem. Biol. Drug Des. 81, 219–227.  CSD CrossRef CAS PubMed Google Scholar
First citationNayak, S. K., Venugopala, K. N., Chopra, D., Govender, T., Kruger, H. G., Maguire, G. E. M. & Guru Row, T. N. (2009). Acta Cryst. E65, o2502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, S. K., Venugopala, K., Chopra, D. & Row, T. G. (2011). CrystEngComm, 13, 591–605.  CSD CrossRef CAS Google Scholar
First citationNayak, S. K., Venugopala, K., Chopra, D., Vasu & Guru Row, T. N. (2010). CrystEngComm, 12, 1205–1216.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThenmozhi, M., Kavitha, T., Satyanarayana, V. S. V., Vijayakumar, V. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o1921–o1922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTumtin, S., Phucho, I. T., Nongpiur, A., Nongrum, R., Vishwakarma, J. N., Myrboh, B. & Nongkhlaw, R. L. (2010). ChemInform, 41, doi: 10.1002/chin.201024169.  CrossRef Google Scholar
First citationVishnevskii, S. G., Drapailo, A. B., Ruban, A. V., Pirozhenko, V. V., Shishkina, S. V., Shishkin, O. V. & Kal'chenko, V. I. (2014). Russ. J. Org. Chem. 50, 571–580.   CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds