research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of ethyl {2-[4-(4-iso­propyl­phen­yl)thia­zol-2-yl]phen­yl}carbamate and ethyl {2-[4-(3-nitro­phen­yl)thia­zol-2-yl]phen­yl}carbamate

CROSSMARK_Color_square_no_text.svg

aLaboratory of Functional Heterocyclic Compounds, Togliatti State University, 14 Belorusskaya St., Togliatti 445020, Russian Federation, bNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, cInorganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and dX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B–334, Moscow 119991, Russian Federation
*Correspondence e-mail: vnkhrustalev@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 August 2016; accepted 13 August 2016; online 19 August 2016)

The title compounds, C21H22N2O2S (I) and C18H15N3O4S (II), are structural analogs of the alkaloid Thio­sporine B. Both mol­ecules adopt a near-planar V-shaped conformation, which is consolidated by intra­molecular N—H⋯N and C—H⋯O hydrogen bonds. The crystal structure of (I) consists of mlecular stacks along the a axis, in which the mol­ecules are linked to each other by π(S)⋯π(C) inter­actions. In the crystal of (II), mol­ecules are linked into chains by C—H⋯O hydrogen bonds and the chains are cross-linked into (100) sheets by ππ stacking inter­actions.

1. Chemical context

Marine actinomycetes are prolific producers of biologically active natural products. This unique habitat has led to the abundant chemical diversity of metabolites that provides a foundation for the discovery of promising drug lead compounds. Among all known marine microbial secondary metabolites, over half were produced by actinomycetes (Fenical & Jensen, 2006[Fenical, W. & Jensen, P. R. (2006). Nat. Chem. Biol. 2, 666-673.]; Lam et al., 2006[Lam, K. S. (2006). Curr. Opin. Microbiol. 9, 245-251.]; Fu et al., 2011[Fu, P., Wang, S., Hong, K., Li, X., Liu, P., Wang, Y. & Zhu, W. (2011). J. Nat. Prod. 74, 1751-1756.]). From this resource, more than 400 new active secondary metabolites have been isolated (Bérdy, 2005[Bérdy, J. (2005). J. Antibiot. 58, 1-26.]; Bull & Stach, 2007[Bull, A. T. & Stach, J. E. (2007). Trends Microbiol. 15, 491-499.]; Molinski et al., 2009[Molinski, T. F., Dalisay, D. S., Lievens, S. L. & Saludes, J. P. (2009). Nat. Rev. Drug Discov. 8, 69-85.]). Some of them represented by abyssomycin C (Bister et al., 2004[Bister, B., Bischoff, D., Ströbele, M., Riedlinger, J., Reicke, A., Wolter, F., Bull, A. T., Zähner, H., Fiedler, H. P. & Süssmuth, R. D. (2004). Angew. Chem. Int. Ed. 43, 2574-2576.]), diazepinomicin (Charan et al., 2004[Charan, R. D., Schlingmann, G., Janso, J., Bernan, V., Feng, X. & Carter, G. T. (2004). J. Nat. Prod. 67, 1431-1433.]), salinosporamide A (Feling et al., 2003[Feling, R. H., Buchanan, G. O., Mincer, T. J., Kauffman, C. A., Jensen, P. R. & Fenical, W. (2003). Angew. Chem. Int. Ed. 42, 355-357.]) and the marinomycins (Kwon et al., 2006[Kwon, H. C., Kauffman, C. A., Jensen, P. R. & Fenical, W. (2006). J. Am. Chem. Soc. 128, 1622-1632.]) are potent anti­biotics and possess novel structures. A comparatively large class of natural compounds possessing biological activity contains imidazole, thia­zole, or oxazole moieties. Studies of biological activity (Zabriskie et al., 1990[Zabriskie, T. M., Foster, M. P., Stout, T. Y., Clardy, J. & Ireland, C. M. (1990). J. Am. Chem. Soc. 112, 8080-8084.]; Carroll et al., 1996[Carroll, A. R., Coll, J. C., Bourne, D. L., MacLeod, J. K., Ireland, C. M. & Bowden, B. F. (1996). Aust. J. Chem. 49, 659-667.]; Taori et al., 2008[Taori, K., Paul, V. J. & Luesch, H. (2008). J. Am. Chem. Soc. 130, 1806-1807.]) as well as a total synthesis of thia­zoles containing alkaloids isolated from marine microorganisms are very important directions. In many cases, the substances mentioned above have promising anti­tumor (Luesch et al., 2001[Luesch, H., Yoshida, W. Y., Moore, R. E., Paul, V. J. & Corbett, T. H. (2001). J. Am. Chem. Soc. 123, 5418-5423.]) and anti­bacterial (Shimanaka et al., 1994[Shimanaka, K., Kinoshita, N., Iinuma, H., Hamada, M. & Takeuchi, T. (1994). J. Antibiot. 47, 668-674.]; Yun et al., 1994[Yun, B. S., Hidaka, T., Furihata, K. & Seto, H. (1994). J. Antibiot. 47, 510-514.]) activities.

In this paper we report a synthetic approach to the preparation of new thia­zole derivatives (I)[link] and (II)[link] containing aryl fragments – the structural analogs of alkaloid Thio­sporine B (Fu & MacMillan, 2015[Fu, P. & MacMillan, J. B. (2015). J. Nat. Prod. 78, 548-551.]) – and their investigation by single crystal X-ray diffraction.

[Scheme 1]

2. Structural commentary

Compounds (I)[link], C21H22N2O2S, and (II)[link], C18H15N3O4S, have very similar mol­ecular geometries (Figs. 1[link] and 2[link]), allowing for the different substituents on the benzene rings. Both mol­ecules adopt a near-planar V-shaped conformation, which is consolidated by intra­molecular N7—H7⋯N3 and C8—H8⋯O1 hydrogen bonds (Tables 1[link] and 2[link], Figs. 1[link] and 2[link]) as well as an inter­molecular ππ inter­actions (see Section 3 below). There exists a small twist of 10.27 (15)° between the central thia­zole and 4-benzene rings in (I)[link] only. Surprisingly, the ethyl (phen­yl)carbamate substituents (with the exception of some hydrogen atoms of the ethyl fragment) are perfectly coplanar with the thia­zole ring in both mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯N3 0.97 (2) 1.84 (2) 2.682 (3) 144 (2)
C8—H8⋯O1 0.95 2.32 2.954 (3) 124

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.32 3.260 (3) 168
N7—H7⋯N3 0.80 (3) 1.98 (3) 2.672 (3) 144 (3)
C8—H8⋯O1 0.95 2.32 2.946 (3) 123
Symmetry code: (i) [-x+{\script{3\over 2}}, y-1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link]. Displacement ellipsoids are shown at the 50% probability level. Dashed lines indicate the intra­molecular hydrogen bonds. H atoms are presented as small spheres of arbitrary radius.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link]. Displacement ellipsoids are shown at the 50% probability level. Dashed lines indicate the intra­molecular hydrogen bonds. H atoms are presented as small spheres of arbitrary radius.

The bond-length distributions within the thia­zole rings of (I)[link] and (II)[link] are almost identical, clearly indicating that some degree of delocalization is present. These values are in good agreement with those observed in related structures (Garden et al., 2007[Garden, S. J., Corrêa, M. B., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o234-o238.]; Sen et al., 2013[Şen, F., Dinçer, M., Çukurovalı, A., Yılmaz, İ. (2013). J. Mol. Struct. 1046, 1-8.]; Bunev et al., 2014[Bunev, A. S., Rudakova, Y. I., Statsyuk, V. E., Ostapenko, G. I. & Khrustalev, V. N. (2014). Acta Cryst. E70, o139.]; Mague et al., 2014[Mague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o907-o908.]; Moreno-Fuquen et al., 2015[Moreno-Fuquen, R., Castillo, J. C., Becerra, D., Camargo, H. & Henao, J. A. (2015). Acta Cryst. E71, o882-o883.]; AaminaNaaz et al., 2015[AaminaNaaz, Y., Sathiyaraj, S., Kalaimani, S., Nasar, A. S. & SubbiahPandi, A. (2015). Acta Cryst. E71, o969-o970.]). The C—S—C angle in (I)[link] [89.70 (12)°] and (II)[link] [89.94 (12)°] is also very close to that in the previously reported analogous structures [89.0 (2)–90.3 (5)°; Nayak et al., 2009[Nayak, S. K., Venugopala, K. N., Chopra, D., Govender, T., Kruger, H. G., Maguire, G. E. M. & Guru Row, T. N. (2009). Acta Cryst. E65, o2611-o2612.]; Hua et al., 2014[Hua, G., Du, J., Slawin, A. M. Z. & Woollins, J. D. (2014). J. Org. Chem. 79, 3876-3886.]).

3. Supra­molecular features

Although the similarity of the mol­ecular geometries and types of intra­molecular inter­actions might lead to similar packing motifs, this is not found in the case of (I)[link] and (II)[link]. The inter­molecular inter­actions, namely, ππ inter­actions and C—H⋯O hydrogen bonding, combined in a different way, give rise to various packing networks.

In (I)[link], the crystal packing consists of stacks along the a axis (Fig. 3[link]), in which the mol­ecules are linked to each other by π(S1)⋯π(C7) [1 + x, y, z] inter­actions at distances of 3.463 (3) Å (Fig. 4[link]). No other directional inter­molecular inter­actions are observed in (I)[link].

[Figure 3]
Figure 3
The crystal structure of (I)[link]. Dashed lines indicate the intra­molecular N—H⋯N and C—H⋯O hydrogen bonds.
[Figure 4]
Figure 4
A fragment of the stack in (I)[link]. Dashed lines indicate the inter­molecular S⋯C inter­actions within the stack.

The situation in the case of (II)[link] is quite different. The mol­ecules of (II)[link] form chains via C5—H5⋯O1(−x + [{3\over 2}], y − 1, z − [{1\over 2}]) hydrogen bonds (Table 1[link], Fig. 5[link]). It should be pointed out that the mol­ecules within the chains are coplanar, forming a ribbon-like motif. Further, the ribbons are packed in layers parallel to (100) via ππ stacking inter­actions (Fig. 6[link]). The distance between the ribbons in the layers is 3.216 (3) Å. Importantly, the ribbons of adjacent layers are not parallel to each other, but disposed at an inter­plane angle of 39.91 (2)° (Fig. 6[link]). Thus, the crystal of (II)[link] comprises alternating layers, in which mol­ecules are arranged in a different manner.

[Figure 5]
Figure 5
The hydrogen-bonded chains of (II)[link]. Dashed lines indicate the intra­molecular N—H⋯N and C—H⋯O and inter­molecular C—H⋯O hydrogen bonds.
[Figure 6]
Figure 6
Crystal structure of (II)[link] demonstrating the mutual arrangement of the hydrogen-bonded chains. Dashed lines indicate the intra­molecular N—H⋯N and C—H⋯O and inter­molecular C—H⋯O hydrogen bonds.

4. Synthesis and crystallization

A solution of ethyl (2-carbamo­thio­ylphen­yl)carbamate (2.24 g, 10 mmol) and the appropriately substituted phenacyl bromide (10 mmol) in 95% EtOH (50 ml) was heated for 12 h under reflux. After cooling to room temperature, the solution was basified with saturated NaHCO3 solution to yield the expected product (I)[link] or (II)[link] (Fig. 7[link]). The reaction mixture was filtered and the isolated solid was washed with water and dried in vacuo. The compounds were isolated as pale-yellow crystalline solids in 51% and 74% yield for the i-propyl (I)[link] and nitro (II)[link] derivatives, respectively. Single crystals of the products were obtained by slow crystallization from N,N-di­methyl­formamide solution.

[Figure 7]
Figure 7
Synthesis of the title thia­zoles (I)[link] and (II)[link].

Spectroscopic and physical data for (I)[link]: M.p. 379-381 K. FT–IR (νmax, cm−1): 3090, 1982, 1725, 1603, 1544, 1487, 1312, 1240, 1071. 1H NMR (600 MHz, DMSO-d6, 304 K): δ = 1.25 (d, 6H, J = 6.9), 1.33 (t, 3H, J = 7.1), 2.96 (h, 1H, J = 7.2), 4.21 (q, 2H, J = 7.1), 7.19 (t, 1H, J = 7.6), 7.37 (d, 2H, J = 8.2), 7.50 (t, 1H, J = 7.8), 7.92 (d, 1H, J = 7.8), 7.96 (d, 2H, J = 8.1), 8.20 (s, 1H), 8.29 (d, 1H, J = 8.3), 12.02 (s, 1H). Analysis calculated for C21H22N2O2S: C, 68.83; H, 6.05; N, 7.64. Found: C, 68.88; H, 5.99; N, 7.67.

Spectroscopic and physical data for (II)[link]: M.p. 478–479 K. FT–IR (νmax, cm−1): 3090, 1720, 1600, 1545, 1483, 1352, 1244, 1071. 1H NMR (600 MHz, DMSO-d6, 304 K): δ = 1.31 (t, 3H, J = 7.1), 4.23 (q, 2H, J = 7.1), 7.23 (t, 1H, J = 8.0), 7.49–7.64 (m, 1H), 7.83 (t, 1H, J = 8.0), 7.99 (d, 1H, J = 7.9), 8.28 (d, 1H, J = 7.5), 8.48 (d, 1H, J = 7.9), 8.85 (s, 1H), 11.65 (s, 1H). Analysis calculated for C18H15N3O4S: C, 58.53; H, 4.09; N, 11.38. Found: C, 58.59; H, 4.13; N, 11.47.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. X-ray diffraction studies were carried out on the `Belok' beamline (λ = 0.96990 Å) of the National Research Center `Kurchatov Institute' (Moscow, Russian Federation) using a MAR CCD detector. For each compound, a total of 360 images were collected using an oscillation range of 1.0° (φ scan mode) and corrected for absorption using the SCALA program (Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]). The data were indexed, integrated and scaled using the utility iMOSFLM in the program CCP4 (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C21H22N2O2S C18H15N3O4S
Mr 366.47 369.39
Crystal system, space group Orthorhombic, P212121 Orthorhombic, Pca21
Temperature (K) 100 100
a, b, c (Å) 5.4534 (11), 17.203 (3), 20.060 (4) 23.840 (5), 9.7401 (19), 7.1403 (14)
V3) 1881.9 (6) 1658.0 (6)
Z 4 4
Radiation type Synchrotron, λ = 0.96990 Å Synchrotron, λ = 0.96990 Å
μ (mm−1) 0.43 0.52
Crystal size (mm) 0.20 × 0.15 × 0.10 0.20 × 0.05 × 0.03
 
Data collection
Diffractometer MAR CCD MAR CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]) Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.910, 0.950 0.890, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 13728, 3971, 3052 13537, 3464, 3127
Rint 0.095 0.073
(sin θ/λ)max−1) 0.641 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.123, 0.96 0.037, 0.090, 1.05
No. of reflections 3971 3464
No. of parameters 242 240
No. of restraints 0 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.39 0.25, −0.33
Absolute structure Flack x determined using 997 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1290 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.01 (4) 0.39 (2)
Computer programs: Automar (MarXperts, 2015[MarXperts. (2015). Automar. MarXperts GmbH, D-22844 Norderstedt, Germany.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

The hydrogen atoms of the amino groups were localized in difference-Fourier maps and refined in isotropic approximation with the constraint Uiso(H) = 1.2Ueq(N). The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined using a riding model with Uiso(H) = 1.5Ueq(C) for the methyl group and 1.2Ueq(C) for the other groups.

Supporting information


Computing details top

For both compounds, data collection: Automar (MarXperts, 2015); cell refinement: iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(I) Ethyl {2-[4-(4-isopropylphenyl)thiazol-2-yl]phenyl}carbamate top
Crystal data top
C21H22N2O2SDx = 1.293 Mg m3
Mr = 366.47Synchrotron radiation, λ = 0.96990 Å
Orthorhombic, P212121Cell parameters from 500 reflections
a = 5.4534 (11) Åθ = 3.5–35.0°
b = 17.203 (3) ŵ = 0.43 mm1
c = 20.060 (4) ÅT = 100 K
V = 1881.9 (6) Å3Prism, colourless
Z = 40.20 × 0.15 × 0.10 mm
F(000) = 776
Data collection top
MAR CCD
diffractometer
3052 reflections with I > 2σ(I)
phi scanRint = 0.095
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 38.5°, θmin = 3.5°
Tmin = 0.910, Tmax = 0.950h = 66
13728 measured reflectionsk = 2021
3971 independent reflectionsl = 2525
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.004P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 0.96Δρmax = 0.34 e Å3
3971 reflectionsΔρmin = 0.39 e Å3
242 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0210 (11)
Primary atom site location: difference Fourier mapAbsolute structure: Flack x determined using 997 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24911 (12)0.47012 (3)0.42460 (3)0.03010 (16)
O11.2359 (3)0.58830 (10)0.61640 (9)0.0352 (5)
O21.0633 (3)0.47367 (9)0.64975 (8)0.0288 (4)
C20.4926 (5)0.49392 (14)0.47800 (12)0.0259 (6)
N30.5248 (4)0.44158 (11)0.52534 (10)0.0257 (5)
C40.3588 (4)0.38088 (13)0.52171 (12)0.0239 (6)
C50.1972 (5)0.38674 (14)0.47016 (13)0.0287 (7)
H50.07250.34980.46060.034*
C60.6380 (5)0.56568 (14)0.46990 (13)0.0268 (6)
C70.8381 (5)0.58484 (14)0.51199 (12)0.0257 (6)
N70.8934 (4)0.53396 (11)0.56480 (10)0.0280 (5)
H70.787 (4)0.4888 (14)0.5664 (12)0.034*
C80.9726 (5)0.65255 (14)0.50006 (13)0.0319 (7)
H81.10610.66550.52840.038*
C90.9130 (5)0.70106 (15)0.44715 (13)0.0350 (7)
H91.00760.74650.43920.042*
C100.7167 (5)0.68374 (15)0.40576 (14)0.0367 (7)
H100.67440.71740.37000.044*
C110.5833 (5)0.61661 (14)0.41741 (13)0.0329 (7)
H110.44980.60460.38880.039*
C121.0813 (5)0.53798 (14)0.61028 (12)0.0261 (6)
C131.2512 (5)0.46609 (14)0.70045 (13)0.0332 (7)
H13A1.25900.51380.72800.040*
H13B1.41340.45770.67950.040*
C141.1827 (5)0.39723 (15)0.74298 (13)0.0364 (8)
H14A1.17010.35080.71490.055*
H14B1.02470.40710.76460.055*
H14C1.30900.38910.77700.055*
C150.3725 (4)0.31803 (13)0.57234 (12)0.0230 (6)
C160.5701 (5)0.31297 (14)0.61706 (12)0.0262 (6)
H160.70170.34890.61380.031*
C170.5750 (5)0.25610 (13)0.66585 (13)0.0265 (6)
H170.71050.25440.69560.032*
C180.3887 (5)0.20128 (14)0.67307 (12)0.0257 (6)
C190.1953 (5)0.20502 (14)0.62699 (13)0.0279 (7)
H190.06730.16760.62930.033*
C200.1868 (4)0.26245 (13)0.57785 (13)0.0249 (6)
H200.05260.26380.54770.030*
C210.3936 (5)0.14340 (14)0.73046 (14)0.0323 (7)
H210.56920.13010.73910.039*
C220.2582 (6)0.06725 (13)0.71601 (15)0.0391 (7)
H22A0.08300.07790.71010.059*
H22B0.28100.03130.75340.059*
H22C0.32410.04380.67520.059*
C230.2919 (6)0.18119 (16)0.79435 (14)0.0446 (9)
H23A0.37630.23060.80240.067*
H23B0.31880.14630.83230.067*
H23C0.11570.19070.78910.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0324 (3)0.0306 (3)0.0273 (3)0.0019 (3)0.0031 (3)0.0005 (3)
O10.0338 (10)0.0280 (8)0.0438 (10)0.0087 (9)0.0062 (9)0.0005 (8)
O20.0354 (10)0.0240 (8)0.0269 (9)0.0026 (8)0.0049 (8)0.0034 (8)
C20.0264 (13)0.0239 (12)0.0275 (13)0.0034 (12)0.0057 (11)0.0012 (10)
N30.0304 (12)0.0215 (9)0.0252 (11)0.0013 (9)0.0028 (9)0.0015 (8)
C40.0239 (13)0.0204 (11)0.0274 (13)0.0015 (11)0.0020 (11)0.0061 (10)
C50.0271 (15)0.0297 (12)0.0293 (13)0.0018 (12)0.0014 (11)0.0068 (11)
C60.0330 (15)0.0250 (12)0.0224 (13)0.0036 (11)0.0037 (11)0.0001 (10)
C70.0312 (14)0.0207 (11)0.0253 (13)0.0032 (11)0.0040 (11)0.0013 (10)
N70.0304 (12)0.0245 (10)0.0292 (11)0.0036 (10)0.0060 (10)0.0024 (9)
C80.0353 (16)0.0238 (12)0.0367 (15)0.0024 (12)0.0019 (13)0.0004 (11)
C90.0432 (16)0.0241 (12)0.0378 (15)0.0040 (13)0.0107 (14)0.0012 (12)
C100.0457 (17)0.0308 (13)0.0336 (14)0.0004 (14)0.0030 (14)0.0080 (11)
C110.0376 (15)0.0328 (13)0.0282 (14)0.0020 (13)0.0008 (13)0.0019 (12)
C120.0275 (14)0.0236 (12)0.0274 (13)0.0015 (12)0.0010 (11)0.0013 (10)
C130.0336 (15)0.0329 (13)0.0330 (13)0.0064 (15)0.0064 (13)0.0056 (11)
C140.0428 (18)0.0380 (14)0.0284 (14)0.0119 (13)0.0025 (12)0.0002 (12)
C150.0221 (13)0.0235 (11)0.0234 (12)0.0025 (10)0.0014 (11)0.0056 (10)
C160.0252 (14)0.0251 (12)0.0283 (13)0.0009 (12)0.0007 (11)0.0033 (10)
C170.0238 (13)0.0261 (12)0.0296 (13)0.0017 (12)0.0002 (12)0.0023 (11)
C180.0222 (13)0.0224 (11)0.0325 (14)0.0026 (12)0.0028 (12)0.0033 (11)
C190.0252 (15)0.0227 (11)0.0357 (14)0.0007 (12)0.0013 (11)0.0035 (11)
C200.0233 (13)0.0248 (11)0.0267 (12)0.0007 (10)0.0006 (11)0.0056 (10)
C210.0278 (14)0.0268 (12)0.0424 (16)0.0013 (12)0.0010 (13)0.0044 (12)
C220.0382 (16)0.0303 (13)0.0489 (16)0.0025 (14)0.0002 (16)0.0083 (12)
C230.059 (2)0.0388 (14)0.0361 (16)0.0010 (16)0.0014 (15)0.0080 (12)
Geometric parameters (Å, º) top
S1—C51.724 (3)C13—H13A0.9900
S1—C21.755 (3)C13—H13B0.9900
O1—C121.215 (3)C14—H14A0.9800
O2—C121.364 (3)C14—H14B0.9800
O2—C131.449 (3)C14—H14C0.9800
C2—N31.320 (3)C15—C201.397 (3)
C2—C61.476 (3)C15—C161.405 (3)
N3—C41.384 (3)C16—C171.384 (3)
C4—C51.362 (3)C16—H160.9500
C4—C151.485 (3)C17—C181.394 (3)
C5—H50.9500C17—H170.9500
C6—C111.402 (3)C18—C191.404 (4)
C6—C71.419 (4)C18—C211.522 (4)
C7—C81.397 (3)C19—C201.396 (3)
C7—N71.407 (3)C19—H190.9500
N7—C121.374 (3)C20—H200.9500
N7—H70.97 (2)C21—C221.531 (4)
C8—C91.389 (4)C21—C231.540 (4)
C8—H80.9500C21—H211.0000
C9—C101.387 (4)C22—H22A0.9800
C9—H90.9500C22—H22B0.9800
C10—C111.385 (4)C22—H22C0.9800
C10—H100.9500C23—H23A0.9800
C11—H110.9500C23—H23B0.9800
C13—C141.507 (4)C23—H23C0.9800
C5—S1—C289.70 (12)C13—C14—H14A109.5
C12—O2—C13115.43 (18)C13—C14—H14B109.5
N3—C2—C6125.3 (2)H14A—C14—H14B109.5
N3—C2—S1112.38 (18)C13—C14—H14C109.5
C6—C2—S1122.31 (19)H14A—C14—H14C109.5
C2—N3—C4112.9 (2)H14B—C14—H14C109.5
C5—C4—N3114.0 (2)C20—C15—C16117.6 (2)
C5—C4—C15127.3 (2)C20—C15—C4121.0 (2)
N3—C4—C15118.7 (2)C16—C15—C4121.4 (2)
C4—C5—S1110.96 (19)C17—C16—C15120.7 (2)
C4—C5—H5124.5C17—C16—H16119.7
S1—C5—H5124.5C15—C16—H16119.7
C11—C6—C7117.7 (2)C16—C17—C18122.5 (2)
C11—C6—C2119.4 (2)C16—C17—H17118.7
C7—C6—C2122.8 (2)C18—C17—H17118.7
C8—C7—N7122.4 (2)C17—C18—C19116.6 (2)
C8—C7—C6119.7 (2)C17—C18—C21120.6 (2)
N7—C7—C6117.9 (2)C19—C18—C21122.8 (2)
C12—N7—C7128.9 (2)C20—C19—C18121.5 (2)
C12—N7—H7117.8 (15)C20—C19—H19119.3
C7—N7—H7113.2 (15)C18—C19—H19119.3
C9—C8—C7120.6 (3)C19—C20—C15121.1 (2)
C9—C8—H8119.7C19—C20—H20119.5
C7—C8—H8119.7C15—C20—H20119.5
C10—C9—C8120.6 (2)C18—C21—C22114.1 (2)
C10—C9—H9119.7C18—C21—C23110.3 (2)
C8—C9—H9119.7C22—C21—C23110.2 (2)
C11—C10—C9118.9 (3)C18—C21—H21107.3
C11—C10—H10120.5C22—C21—H21107.3
C9—C10—H10120.5C23—C21—H21107.3
C10—C11—C6122.4 (3)C21—C22—H22A109.5
C10—C11—H11118.8C21—C22—H22B109.5
C6—C11—H11118.8H22A—C22—H22B109.5
O1—C12—O2124.7 (2)C21—C22—H22C109.5
O1—C12—N7128.4 (2)H22A—C22—H22C109.5
O2—C12—N7106.9 (2)H22B—C22—H22C109.5
O2—C13—C14107.0 (2)C21—C23—H23A109.5
O2—C13—H13A110.3C21—C23—H23B109.5
C14—C13—H13A110.3H23A—C23—H23B109.5
O2—C13—H13B110.3C21—C23—H23C109.5
C14—C13—H13B110.3H23A—C23—H23C109.5
H13A—C13—H13B108.6H23B—C23—H23C109.5
C5—S1—C2—N30.05 (19)C2—C6—C11—C10178.1 (2)
C5—S1—C2—C6179.0 (2)C13—O2—C12—O12.2 (3)
C6—C2—N3—C4178.7 (2)C13—O2—C12—N7178.51 (19)
S1—C2—N3—C40.3 (3)C7—N7—C12—O13.2 (4)
C2—N3—C4—C50.4 (3)C7—N7—C12—O2177.5 (2)
C2—N3—C4—C15179.5 (2)C12—O2—C13—C14173.7 (2)
N3—C4—C5—S10.4 (3)C5—C4—C15—C2010.5 (4)
C15—C4—C5—S1179.5 (2)N3—C4—C15—C20169.4 (2)
C2—S1—C5—C40.19 (19)C5—C4—C15—C16170.5 (2)
N3—C2—C6—C11179.7 (2)N3—C4—C15—C169.5 (3)
S1—C2—C6—C110.8 (3)C20—C15—C16—C171.8 (3)
N3—C2—C6—C72.3 (4)C4—C15—C16—C17177.1 (2)
S1—C2—C6—C7178.8 (2)C15—C16—C17—C180.4 (4)
C11—C6—C7—C80.1 (4)C16—C17—C18—C191.5 (4)
C2—C6—C7—C8177.9 (2)C16—C17—C18—C21175.7 (2)
C11—C6—C7—N7179.9 (2)C17—C18—C19—C202.0 (4)
C2—C6—C7—N72.1 (4)C21—C18—C19—C20175.1 (2)
C8—C7—N7—C122.8 (4)C18—C19—C20—C150.7 (4)
C6—C7—N7—C12177.2 (2)C16—C15—C20—C191.3 (3)
N7—C7—C8—C9179.6 (2)C4—C15—C20—C19177.7 (2)
C6—C7—C8—C90.4 (4)C17—C18—C21—C22153.4 (2)
C7—C8—C9—C100.9 (4)C19—C18—C21—C2229.5 (3)
C8—C9—C10—C111.0 (4)C17—C18—C21—C2382.0 (3)
C9—C10—C11—C60.5 (4)C19—C18—C21—C2395.1 (3)
C7—C6—C11—C100.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···N30.97 (2)1.84 (2)2.682 (3)144 (2)
C8—H8···O10.952.322.954 (3)124
(II) Ethyl {2-[4-(3-nitrophenyl)thiazol-2-yl]phenyl}carbamate top
Crystal data top
C18H15N3O4SDx = 1.480 Mg m3
Mr = 369.39Synchrotron radiation, λ = 0.96990 Å
Orthorhombic, Pca21Cell parameters from 600 reflections
a = 23.840 (5) Åθ = 3.7–37.0°
b = 9.7401 (19) ŵ = 0.52 mm1
c = 7.1403 (14) ÅT = 100 K
V = 1658.0 (6) Å3Needle, colourless
Z = 40.20 × 0.05 × 0.03 mm
F(000) = 768
Data collection top
MAR CCD
diffractometer
3127 reflections with I > 2σ(I)
phi scanRint = 0.073
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 38.5°, θmin = 3.7°
Tmin = 0.890, Tmax = 0.980h = 2929
13537 measured reflectionsk = 1212
3464 independent reflectionsl = 98
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0408P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.25 e Å3
3464 reflectionsΔρmin = 0.33 e Å3
240 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.010 (2)
Primary atom site location: difference Fourier mapAbsolute structure: Flack x determined using 1290 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.39 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.82320 (2)0.08743 (5)0.40138 (11)0.01687 (18)
O10.78056 (7)0.74689 (17)0.7251 (3)0.0221 (5)
O20.69969 (7)0.63003 (18)0.6617 (3)0.0183 (4)
O30.47989 (8)0.0296 (2)0.3607 (4)0.0367 (6)
O40.55366 (8)0.14517 (18)0.2763 (3)0.0279 (5)
C20.80673 (11)0.2564 (2)0.4636 (4)0.0148 (5)
N30.75204 (10)0.27926 (18)0.4676 (3)0.0155 (5)
C40.72122 (10)0.1639 (2)0.4202 (4)0.0152 (5)
C50.75302 (11)0.0509 (2)0.3800 (4)0.0172 (5)
H50.73830.03600.34490.021*
C60.85019 (10)0.3582 (2)0.5131 (4)0.0160 (5)
C70.83664 (11)0.4896 (2)0.5898 (4)0.0148 (6)
N70.77977 (9)0.5244 (2)0.6077 (3)0.0163 (5)
H70.7579 (13)0.467 (3)0.575 (5)0.020*
C80.88015 (12)0.5776 (2)0.6456 (4)0.0180 (6)
H80.87150.66430.69920.022*
C90.93587 (11)0.5388 (3)0.6230 (4)0.0192 (6)
H90.96490.59920.66220.023*
C100.94981 (12)0.4124 (2)0.5438 (4)0.0196 (6)
H100.98800.38730.52690.024*
C110.90696 (11)0.3236 (2)0.4899 (4)0.0179 (6)
H110.91640.23750.43600.021*
C120.75647 (11)0.6442 (2)0.6700 (4)0.0155 (5)
C130.66740 (11)0.7511 (3)0.7127 (4)0.0202 (6)
H13A0.67950.83110.63710.024*
H13B0.67290.77310.84680.024*
C140.60652 (11)0.7183 (3)0.6745 (4)0.0240 (6)
H14A0.60150.69870.54090.036*
H14B0.58320.79710.70960.036*
H14C0.59530.63800.74820.036*
C150.65919 (10)0.1740 (2)0.4257 (4)0.0157 (5)
C160.62493 (11)0.0627 (2)0.3740 (4)0.0168 (6)
H160.64100.02080.33110.020*
C170.56702 (10)0.0777 (2)0.3873 (4)0.0173 (6)
N170.53118 (10)0.0404 (2)0.3375 (4)0.0216 (5)
C180.54099 (11)0.1977 (3)0.4468 (4)0.0198 (6)
H180.50130.20420.45470.024*
C190.57550 (11)0.3088 (2)0.4949 (4)0.0188 (6)
H190.55910.39270.53510.023*
C200.63338 (11)0.2970 (2)0.4843 (4)0.0179 (6)
H200.65610.37340.51730.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0182 (3)0.0103 (3)0.0221 (4)0.0010 (2)0.0001 (3)0.0034 (3)
O10.0226 (10)0.0118 (9)0.0320 (13)0.0024 (7)0.0008 (8)0.0069 (8)
O20.0139 (10)0.0151 (9)0.0260 (11)0.0009 (7)0.0029 (8)0.0035 (8)
O30.0206 (11)0.0298 (11)0.0596 (19)0.0090 (8)0.0045 (11)0.0107 (11)
O40.0282 (11)0.0123 (9)0.0432 (14)0.0024 (8)0.0086 (10)0.0063 (9)
C20.0186 (13)0.0127 (11)0.0131 (14)0.0002 (10)0.0006 (9)0.0000 (10)
N30.0187 (11)0.0117 (9)0.0160 (13)0.0007 (8)0.0000 (9)0.0010 (8)
C40.0213 (12)0.0104 (11)0.0138 (14)0.0023 (9)0.0019 (11)0.0003 (10)
C50.0206 (12)0.0128 (10)0.0181 (15)0.0025 (10)0.0009 (12)0.0018 (11)
C60.0199 (14)0.0119 (12)0.0161 (15)0.0011 (10)0.0007 (11)0.0014 (10)
C70.0152 (12)0.0128 (12)0.0165 (16)0.0012 (9)0.0014 (10)0.0017 (10)
N70.0148 (11)0.0094 (10)0.0248 (14)0.0014 (8)0.0019 (9)0.0050 (9)
C80.0219 (14)0.0105 (12)0.0215 (16)0.0008 (9)0.0019 (11)0.0002 (11)
C90.0185 (13)0.0152 (12)0.0240 (16)0.0027 (10)0.0013 (11)0.0032 (11)
C100.0182 (14)0.0176 (14)0.0231 (16)0.0003 (9)0.0001 (11)0.0009 (11)
C110.0210 (13)0.0133 (12)0.0194 (15)0.0027 (9)0.0010 (11)0.0001 (10)
C120.0184 (13)0.0104 (11)0.0177 (14)0.0003 (10)0.0004 (11)0.0026 (10)
C130.0188 (13)0.0136 (13)0.0282 (17)0.0063 (10)0.0021 (12)0.0010 (12)
C140.0187 (13)0.0273 (15)0.0259 (18)0.0029 (11)0.0015 (11)0.0001 (12)
C150.0207 (13)0.0110 (11)0.0153 (14)0.0008 (9)0.0010 (11)0.0029 (10)
C160.0212 (13)0.0121 (11)0.0170 (16)0.0004 (9)0.0013 (11)0.0008 (10)
C170.0200 (12)0.0120 (11)0.0200 (16)0.0050 (9)0.0009 (13)0.0011 (11)
N170.0222 (12)0.0145 (10)0.0282 (15)0.0028 (9)0.0037 (10)0.0005 (10)
C180.0199 (13)0.0179 (13)0.0215 (17)0.0013 (10)0.0011 (11)0.0010 (11)
C190.0208 (13)0.0115 (12)0.0243 (15)0.0006 (10)0.0012 (11)0.0019 (11)
C200.0211 (13)0.0133 (12)0.0192 (14)0.0010 (10)0.0006 (11)0.0009 (10)
Geometric parameters (Å, º) top
S1—C51.717 (3)C9—H90.9500
S1—C21.750 (2)C10—C111.393 (4)
O1—C121.218 (3)C10—H100.9500
O2—C121.362 (3)C11—H110.9500
O2—C131.455 (3)C13—C141.511 (4)
O3—N171.239 (3)C13—H13A0.9900
O4—N171.233 (3)C13—H13B0.9900
C2—N31.323 (3)C14—H14A0.9800
C2—C61.477 (3)C14—H14B0.9800
N3—C41.385 (3)C14—H14C0.9800
C4—C51.367 (3)C15—C161.406 (3)
C4—C151.482 (3)C15—C201.411 (3)
C5—H50.9500C16—C171.391 (3)
C6—C111.405 (3)C16—H160.9500
C6—C71.429 (3)C17—C181.390 (3)
C7—N71.404 (3)C17—N171.477 (3)
C7—C81.403 (4)C18—C191.402 (4)
N7—C121.367 (3)C18—H180.9500
N7—H70.80 (3)C19—C201.387 (4)
C8—C91.391 (4)C19—H190.9500
C8—H80.9500C20—H200.9500
C9—C101.395 (4)
C5—S1—C289.94 (12)O2—C12—N7107.6 (2)
C12—O2—C13115.65 (18)O2—C13—C14107.0 (2)
N3—C2—C6125.0 (2)O2—C13—H13A110.3
N3—C2—S1112.64 (17)C14—C13—H13A110.3
C6—C2—S1122.34 (19)O2—C13—H13B110.3
C2—N3—C4112.41 (19)C14—C13—H13B110.3
C5—C4—N3114.2 (2)H13A—C13—H13B108.6
C5—C4—C15127.8 (2)C13—C14—H14A109.5
N3—C4—C15118.0 (2)C13—C14—H14B109.5
C4—C5—S1110.78 (18)H14A—C14—H14B109.5
C4—C5—H5124.6C13—C14—H14C109.5
S1—C5—H5124.6H14A—C14—H14C109.5
C11—C6—C7118.6 (2)H14B—C14—H14C109.5
C11—C6—C2119.1 (2)C16—C15—C20118.6 (2)
C7—C6—C2122.3 (2)C16—C15—C4121.4 (2)
N7—C7—C8122.7 (2)C20—C15—C4120.0 (2)
N7—C7—C6118.0 (2)C17—C16—C15118.5 (2)
C8—C7—C6119.3 (2)C17—C16—H16120.7
C12—N7—C7128.9 (2)C15—C16—H16120.7
C12—N7—H7116 (2)C18—C17—C16123.5 (2)
C7—N7—H7116 (2)C18—C17—N17118.1 (2)
C9—C8—C7120.5 (2)C16—C17—N17118.4 (2)
C9—C8—H8119.8O4—N17—O3123.2 (2)
C7—C8—H8119.8O4—N17—C17118.6 (2)
C8—C9—C10121.0 (2)O3—N17—C17118.2 (2)
C8—C9—H9119.5C17—C18—C19117.5 (2)
C10—C9—H9119.5C17—C18—H18121.3
C11—C10—C9119.0 (2)C19—C18—H18121.3
C11—C10—H10120.5C20—C19—C18120.5 (2)
C9—C10—H10120.5C20—C19—H19119.8
C10—C11—C6121.7 (2)C18—C19—H19119.8
C10—C11—H11119.2C19—C20—C15121.4 (2)
C6—C11—H11119.2C19—C20—H20119.3
O1—C12—O2124.5 (2)C15—C20—H20119.3
O1—C12—N7127.9 (2)
C5—S1—C2—N30.4 (2)C2—C6—C11—C10176.4 (3)
C5—S1—C2—C6178.0 (2)C13—O2—C12—O13.8 (4)
C6—C2—N3—C4178.0 (2)C13—O2—C12—N7176.5 (2)
S1—C2—N3—C40.4 (3)C7—N7—C12—O10.6 (5)
C2—N3—C4—C50.2 (3)C7—N7—C12—O2179.8 (2)
C2—N3—C4—C15177.9 (2)C12—O2—C13—C14174.2 (2)
N3—C4—C5—S10.1 (3)C5—C4—C15—C164.7 (5)
C15—C4—C5—S1177.3 (2)N3—C4—C15—C16178.0 (3)
C2—S1—C5—C40.3 (2)C5—C4—C15—C20175.1 (3)
N3—C2—C6—C11175.5 (2)N3—C4—C15—C202.2 (4)
S1—C2—C6—C117.2 (4)C20—C15—C16—C171.5 (4)
N3—C2—C6—C76.7 (4)C4—C15—C16—C17178.3 (3)
S1—C2—C6—C7170.7 (2)C15—C16—C17—C180.8 (4)
C11—C6—C7—N7178.4 (2)C15—C16—C17—N17178.5 (3)
C2—C6—C7—N73.7 (4)C18—C17—N17—O4176.7 (3)
C11—C6—C7—C82.3 (4)C16—C17—N17—O43.9 (4)
C2—C6—C7—C8175.6 (2)C18—C17—N17—O33.9 (4)
C8—C7—N7—C123.2 (5)C16—C17—N17—O3175.5 (3)
C6—C7—N7—C12177.5 (3)C16—C17—C18—C190.3 (4)
N7—C7—C8—C9179.3 (3)N17—C17—C18—C19179.6 (2)
C6—C7—C8—C91.3 (4)C17—C18—C19—C200.6 (4)
C7—C8—C9—C100.4 (4)C18—C19—C20—C150.1 (4)
C8—C9—C10—C111.1 (4)C16—C15—C20—C191.2 (4)
C9—C10—C11—C60.1 (4)C4—C15—C20—C19178.6 (2)
C7—C6—C11—C101.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.323.260 (3)168
N7—H7···N30.80 (3)1.98 (3)2.672 (3)144 (3)
C8—H8···O10.952.322.946 (3)123
Symmetry code: (i) x+3/2, y1, z1/2.
 

Acknowledgements

The authors are grateful to the Ministry of Education and Science of the Russian Federation (State program No. 426).

References

First citationAaminaNaaz, Y., Sathiyaraj, S., Kalaimani, S., Nasar, A. S. & SubbiahPandi, A. (2015). Acta Cryst. E71, o969–o970.  CSD CrossRef IUCr Journals Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBérdy, J. (2005). J. Antibiot. 58, 1–26.  PubMed Google Scholar
First citationBister, B., Bischoff, D., Ströbele, M., Riedlinger, J., Reicke, A., Wolter, F., Bull, A. T., Zähner, H., Fiedler, H. P. & Süssmuth, R. D. (2004). Angew. Chem. Int. Ed. 43, 2574–2576.  CSD CrossRef CAS Google Scholar
First citationBull, A. T. & Stach, J. E. (2007). Trends Microbiol. 15, 491–499.  CrossRef PubMed CAS Google Scholar
First citationBunev, A. S., Rudakova, Y. I., Statsyuk, V. E., Ostapenko, G. I. & Khrustalev, V. N. (2014). Acta Cryst. E70, o139.  CSD CrossRef IUCr Journals Google Scholar
First citationCarroll, A. R., Coll, J. C., Bourne, D. L., MacLeod, J. K., Ireland, C. M. & Bowden, B. F. (1996). Aust. J. Chem. 49, 659–667.  CAS Google Scholar
First citationCharan, R. D., Schlingmann, G., Janso, J., Bernan, V., Feng, X. & Carter, G. T. (2004). J. Nat. Prod. 67, 1431–1433.  CrossRef PubMed CAS Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeling, R. H., Buchanan, G. O., Mincer, T. J., Kauffman, C. A., Jensen, P. R. & Fenical, W. (2003). Angew. Chem. Int. Ed. 42, 355–357.  CSD CrossRef CAS Google Scholar
First citationFenical, W. & Jensen, P. R. (2006). Nat. Chem. Biol. 2, 666–673.  CrossRef PubMed CAS Google Scholar
First citationFu, P. & MacMillan, J. B. (2015). J. Nat. Prod. 78, 548–551.  CrossRef CAS PubMed Google Scholar
First citationFu, P., Wang, S., Hong, K., Li, X., Liu, P., Wang, Y. & Zhu, W. (2011). J. Nat. Prod. 74, 1751–1756.  CrossRef CAS PubMed Google Scholar
First citationGarden, S. J., Corrêa, M. B., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o234–o238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHua, G., Du, J., Slawin, A. M. Z. & Woollins, J. D. (2014). J. Org. Chem. 79, 3876–3886.  CSD CrossRef CAS PubMed Google Scholar
First citationKwon, H. C., Kauffman, C. A., Jensen, P. R. & Fenical, W. (2006). J. Am. Chem. Soc. 128, 1622–1632.  CrossRef PubMed CAS Google Scholar
First citationLam, K. S. (2006). Curr. Opin. Microbiol. 9, 245–251.  CrossRef PubMed CAS Google Scholar
First citationLuesch, H., Yoshida, W. Y., Moore, R. E., Paul, V. J. & Corbett, T. H. (2001). J. Am. Chem. Soc. 123, 5418–5423.  CrossRef PubMed CAS Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o907–o908.  CSD CrossRef IUCr Journals Google Scholar
First citationMarXperts. (2015). Automar. MarXperts GmbH, D-22844 Norderstedt, Germany.  Google Scholar
First citationMolinski, T. F., Dalisay, D. S., Lievens, S. L. & Saludes, J. P. (2009). Nat. Rev. Drug Discov. 8, 69–85.  CrossRef PubMed CAS Google Scholar
First citationMoreno-Fuquen, R., Castillo, J. C., Becerra, D., Camargo, H. & Henao, J. A. (2015). Acta Cryst. E71, o882–o883.  CSD CrossRef IUCr Journals Google Scholar
First citationNayak, S. K., Venugopala, K. N., Chopra, D., Govender, T., Kruger, H. G., Maguire, G. E. M. & Guru Row, T. N. (2009). Acta Cryst. E65, o2611–o2612.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŞen, F., Dinçer, M., Çukurovalı, A., Yılmaz, İ. (2013). J. Mol. Struct. 1046, 1–8.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimanaka, K., Kinoshita, N., Iinuma, H., Hamada, M. & Takeuchi, T. (1994). J. Antibiot. 47, 668–674.  CrossRef CAS PubMed Google Scholar
First citationTaori, K., Paul, V. J. & Luesch, H. (2008). J. Am. Chem. Soc. 130, 1806–1807.  CrossRef PubMed CAS Google Scholar
First citationYun, B. S., Hidaka, T., Furihata, K. & Seto, H. (1994). J. Antibiot. 47, 510–514.  CrossRef CAS PubMed Google Scholar
First citationZabriskie, T. M., Foster, M. P., Stout, T. Y., Clardy, J. & Ireland, C. M. (1990). J. Am. Chem. Soc. 112, 8080–8084.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds