research communications
Solvent inclusion in the
of bis[(adamantan-1-yl)methanaminium chloride] 1,4-dioxane hemisolvate monohydrate explained using the computed crystal energy landscapeaKhalifa University, PO BOX 127788, Abu Dhabi, United Arab Emirates
*Correspondence e-mail: sharmarke.mohamed@kustar.ac.ae
Repeated attempts to crystallize 1-adamantanemethylamine hydrochloride as an anhydrate failed but the salt was successfully crystallized as a solvate (2C11H20N+·2Cl−·0.5C4H8O2·H2O), with water and 1,4-dioxane playing a structural role in the crystal and engaging in hydrogen-bonding interactions with the cation and anion. Computational crystal-structure prediction was used to rationalize the solvent-inclusion behaviour of this salt by computing the solvent-accessible voids in the predicted low-energy structures for the anhydrate: the global lattice-energy minimum structure, which has the same packing of the ions as the solvate, has solvent-accessible voids that account for 3.71% of the total unit-cell volume and is 6 kJ mol−1 more stable than the next most stable predicted structure.
CCDC reference: 1499645
1. Chemical context
The rational synthesis of multi-component crystal forms using hydrogen-bond synthons (Desiraju, 1995) between donor and acceptor groups (Duggirala et al., 2015) to direct the three-dimensional assembly of two or more molecules in the solid state is an active area of crystal-engineering research. In recent years, there has been significant progress (Reilly et al., 2016) in computational methods for predicting the most stable crystal structures of multi-component salt and solid forms using only the molecular structures as input. By comparison, the challenge of predicting when some molecules will crystallize as solvates has received little attention (Braun et al., 2013) from the crystal-engineering community and, despite evidence (Aakeröy et al., 2007) from the Cambridge Structural Database (Groom et al., 2016) that salt solid forms are more prone to crystallizing in structures with variable compositions and stoichiometries, the underlying factors behind the crystallization of salt solvates and the rational synthesis of such solid forms remains an under-explored area of crystal-engineering research. Previous work on the solvent-inclusion behaviour of substituted adamantane hydrochloride salts (Mohamed et al., 2016) has shown that mapping the percentage solvent-accessible volumes of predicted low-energy structures can provide a qualitative assessment of the likelihood of crystallizing non-stoichiometric channel hydrates of hydrochloride salts. In this work, the computational model is extended to rationalize the solvent-inclusion behaviour of 1-adamantanemethylamine hydrochloride on the basis of the packing efficiency of the ions and calculated solvent-accessible voids for the anhydrate.
2. Structural commentary
The ) of the title structure (I) consists of two formula units of 1-adamantanemethylamine hydrochloride, half a molecule of 1,4-dioxane and one water molecule. Both cations adopt a rigid conformation due to the adamantane ring and an overlay of the ab initio gas-phase-optimized conformation of the cation at the MP2/6-31G(d,p) level of theory with the experimental conformation of each symmetry-unique cation revealed a root-mean-squared deviation of less than 0.03 Å for the non-hydrogen atoms. The C1—C11—N1 and C12—C22—N2 bond angles for the cations are 113.76 (17) and 113.72 (16)°, which is consistent with the observation of identical molecular conformations. The 1,4-dioxane molecule lies on an inversion centre with C23—O2 and C24—O2 bond distances of 1.429 (3) and 1.425 (3) Å, respectively.
(Fig. 13. Supramolecular features
All N+—H bond lengths (Table 1) are between 0.85 and 0.98 Å and N+⋯Cl− donor–acceptor distances are within the range 3.152–3.181 Å, which is consistent with the hydrogen-bond geometries in related 1-aminoadamantane hydrochloride salts derived from primary such as adamantanamine hydrochloride (Bélanger-Gariépy et al., 1987) and (3,5-dimethyl-1-adamantyl)ammonium chloride hydrate (Lou et al., 2009). All N+—H hydrogen-bond donors on the cations engage in conventional hydrogen-bonding interactions with a chloride anion except for the N1+—H1B⋯O2 hydrogen bond which involves the O atom of 1,4-dioxane as a hydrogen-bond acceptor. All hydrogen-bonding interactions involving the donor–acceptor pairs N+⋯Cl− or N+⋯O are characterized by discrete interactions of graph set D11(2). The crystal packing (Fig. 2) consists of a pleated ribbon stacking of the symmetry-inequivalent cations (A+ and B+) of 1-adamantanemethylamine along the a axis with a chloride ion hydrogen bonded to both symmetry-inequivalent cations in an infinite A+⋯Cl−⋯B+ pattern. This pleated ribbon stacking of the ions is similar to that observed in the of 1-aminoadamantane hydrochloride (Bélanger-Gariépy et al., 1987). In the title structure, each water molecule engages in discrete O—H⋯Cl− hydrogen bonding interactions and each 1,4-dioxane molecule acts as a hydrogen-bond acceptor to the N+—H donor of the cation. Both solvent molecules occupy the voids between successive pleated ribbons formed from the stacking of hydrogen-bonded N+—H⋯Cl− charged units.
4. Computed crystal energy landscape
The computed crystal energy landscape (Fig. 3) of 1-adamantanemethylamine hydrochloride was used to assess the possibility of solvent inclusion for this salt by estimating the percentage solvent-accessible volume in the predicted most stable packings. The most stable structure on the crystal energy landscape of the anhydrate displays a total potential solvent-accessible volume of 45.6 Å3, which corresponds to 3.71% of the unit-cell volume. Assuming that each water molecule occupies an approximate total volume of 40 Å3, this would suggest that the global minimum structure could be crystallized by dehydration of a monohydrate of the salt. The global lattice energy minimum structure is approximately 6 kJ mol−1 more stable than the nearest competing second-ranked structure. The observation of a clearly preferred global lattice energy minimum structure with solvent-accessible voids is not conclusive in suggesting that this hydrochloride salt cannot be crystallized as an anhydrate, but it does suggest that this system will have difficulties crystallizing as an anhydrate since there is an energetic preference for a packing of the ions that is susceptible to solvent inclusion. Although the second-ranked most stable predicted structure does not have any solvent-accessible voids, this structure is energetically competitive with the third-ranked structure which displays an unusually large percentage solvent-accessible volume of 17.42% of the The majority of the predicted structures within 10 kJ mol−1 of the global minimum structure that have solvent-accessible voids have crystal voids that are located within 4.5 Å of the charged N+/Cl− ions, which is consistent with the observation that both the water and 1,4-dioxane solvent molecules in the experimental structure engage in hydrogen-bonding interactions with the N+—H donor and Cl− acceptor groups of the salt.
Although there is a clear thermodynamically preferred global minimum structure with solvent-accessible voids, the calculations also reveal that there are a number of energetically competitive packings of the ions within 10 kJ mol−1 of the global minimum structure that do not have solvent-accessible voids. However, 88% of these structures have one or two unused N+—H donors as judged by N+⋯Cl− distances that are longer than the sum of the van der Waals radii of the N and Cl atoms, suggesting challenges in close packing of the ions which is consistent with the observation of solvent inclusion in this salt with solvent molecules engaged in hydrogen-bonding interactions. The structurally related 1-aminoadamantane molecule, which differs from 1-adamantanemethlyamine in that it lacks a methylene group bridging the adamantane ring and NH2 displays a crystal energy landscape (Mohamed et al., 2016) with a single preferred global minimum structure corresponding to the experimentally observed anhydrate structure of the salt. This illustrates the sensitivity of crystal packing to minor modifications in molecular structure and the value of mapping the percentage solvent-accessible voids in predicted low-energy structures of hydrochlorides as a means for assessing the possibility of solvent inclusion.
5. Database survey
A search of the Cambridge Structural Database (CSD Version 5.37 plus three updates, no filters; Groom et al. 2016) has shown that there are no previously reported crystal structures of 1-adamantanemethylamine or multi-component salt or structures of this primary amine. However, a dimethylformamide solvate of a platinum coordination complex involving two crystallographically inequivalent 1-adamantanemethylamine molecules coordinated onto platinum(II) metal has been reported (DUHKAT: Rochon & Tessier, 2009) from crystallization experiments involving cisplatin [cis-Pt(NH3)2Cl2] and 1-adamantanemethylamine in dimethylformamide. There are a number of reported crystal structures of substituted aminoadamantane hydrochloride salts such as 1-aminoadamantanamine hydrochloride (FINVAZ: Bélanger-Gariépy et al., 1987), (3,5-dimethyl-1-adamantyl)ammonium chloride hydrate (DUCYAC: Lou et al., 2009) and (RS)-1-(1-adamantyl)ethanamine hydrochloride (TOKWUN: Mishnev & Stepanovs, 2014).
6. Synthesis and crystallization
A 1:5 ratio of HCl:acetone mixture was prepared and 0.3 ml of 1-adamantanemethylamine was added to a vial containing 2 ml of the HCl:acetone mixture. The contents of the vial were further diluted by adding 3 ml of a 1:1 mixture of 1,4-dioxane:ethanol. The contents of the vial were shaken vigorously for two minutes and filtered under gravity. The solvent was allowed to evaporate under laboratory temperature and pressure conditions and after 24 h crystals of the title solvate with needle morphology were isolated.
7. Refinement
Crystal data, data collection and structure . Hydrogen atoms attached to N and O atoms were located from difference Fourier maps and freely refined. All other hydrogen atoms were positioned geometrically (C—H = 0.99–1.00 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(carrier).
details are summarized in Table 2
|
8. Computational modelling methodology
The crystal energy landscape of 1-adamantanemethylamine hydrochloride was calculated using a search criterion that restricted crystal packings to those with one (Z′ = 1) or two (Z′ = 2) formula units of the ions in the using the Materials Studio 8.0 (Accelrys, 2014) code. Hypothetical crystal structures were generated in five of the most common space groups (P, P21, P21/c, P212121, C2/c) for organic crystal structures using the MP2/6-31G(d,p) optimized geometry for the protonated 1-adamantanemethylamine cation. The atomic charges on the cation were derived by fitting to the molecular electrostatic potential of the optimized conformation using the ChelpG (Breneman & Wiberg, 1990) scheme. The molecular geometry and fitted charges for the cation were calculated using GAUSSIAN09 (Frisch et al., 2009). The final lattice energies for the predicted structures were estimated using a distributed multipole model for the charges using DMACRYS (Price et al., 2010). Dispersion-repulsion contributions towards the lattice energy were estimated using the revised Williams99 force field (Williams, 2001) supplemented with the potential parameter set for the Cl− ion (Hejczyk, 2010). For all predicted structures in the crystal energy landscape, the solvent-accessible volume per was estimated using PLATON (Spek, 2009) assuming a probe radius of 1.2 Å. Detailed settings for the Materials Studio 8.0 search for putative crystal structures and the DMACRYS lattice energy optimizations are the same as those reported in recent work (Mohamed et al., 2016) investigating the utility of computed crystal energy landscapes for inferring the risk of crystal hydration in substituted adamantane hydrochloride salts.
Supporting information
CCDC reference: 1499645
https://doi.org/10.1107/S2056989016013256/hb7608sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016013256/hb7608Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016013256/hb7608Isup4.cdx
Data collection: APEX2 (Bruker 2015); cell
SAINT (Bruker 2015); data reduction: SAINT (Bruker 2015); program(s) used to solve structure: XT (Sheldrick, 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).2C11H20N+·2Cl−·0.5C4H8O2·H2O | Z = 2 |
Mr = 465.53 | F(000) = 508 |
Triclinic, P1 | Dx = 1.229 Mg m−3 |
a = 6.4941 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 13.491 (2) Å | Cell parameters from 4531 reflections |
c = 15.086 (3) Å | θ = 2.3–28.0° |
α = 102.911 (3)° | µ = 0.28 mm−1 |
β = 91.824 (3)° | T = 100 K |
γ = 101.500 (3)° | Needle, clear light colourless |
V = 1258.5 (4) Å3 | 0.2 × 0.05 × 0.05 mm |
Bruker APEXII CCD diffractometer | 4285 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.096 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | θmax = 28.4°, θmin = 1.6° |
Tmin = 0.655, Tmax = 0.746 | h = −8→8 |
35014 measured reflections | k = −18→17 |
6312 independent reflections | l = −20→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.105 | w = 1/[σ2(Fo2) + (0.0415P)2 + 0.1332P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
6312 reflections | Δρmax = 0.49 e Å−3 |
303 parameters | Δρmin = −0.39 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.87597 (8) | 0.25420 (4) | 0.41712 (4) | 0.02117 (14) | |
O1 | 0.7543 (3) | 0.01392 (17) | 0.29766 (13) | 0.0350 (4) | |
H1D | 0.744 (5) | −0.019 (3) | 0.337 (2) | 0.067 (12)* | |
H1E | 0.789 (5) | 0.081 (3) | 0.331 (2) | 0.069 (11)* | |
N1 | 0.3859 (3) | 0.22378 (16) | 0.37519 (13) | 0.0184 (4) | |
H1A | 0.347 (4) | 0.202 (2) | 0.4221 (18) | 0.034 (7)* | |
H1B | 0.331 (4) | 0.280 (2) | 0.3786 (16) | 0.032 (7)* | |
H1C | 0.540 (5) | 0.242 (2) | 0.3820 (18) | 0.049 (8)* | |
C1 | 0.3307 (3) | 0.17360 (15) | 0.20310 (13) | 0.0124 (4) | |
C2 | 0.1981 (3) | 0.25504 (15) | 0.19496 (14) | 0.0149 (4) | |
H2A | 0.0482 | 0.2266 | 0.2017 | 0.018* | |
H2B | 0.2472 | 0.3185 | 0.2443 | 0.018* | |
C3 | 0.2196 (3) | 0.28259 (15) | 0.10183 (14) | 0.0150 (4) | |
H3 | 0.1337 | 0.3354 | 0.0972 | 0.018* | |
C4 | 0.4520 (3) | 0.32784 (16) | 0.09241 (14) | 0.0161 (4) | |
H4A | 0.4666 | 0.3470 | 0.0329 | 0.019* | |
H4B | 0.5031 | 0.3914 | 0.1414 | 0.019* | |
C5 | 0.5838 (3) | 0.24691 (15) | 0.09893 (13) | 0.0141 (4) | |
H5 | 0.7351 | 0.2763 | 0.0925 | 0.017* | |
C6 | 0.5625 (3) | 0.21869 (16) | 0.19195 (13) | 0.0131 (4) | |
H6A | 0.6486 | 0.1669 | 0.1966 | 0.016* | |
H6B | 0.6157 | 0.2816 | 0.2414 | 0.016* | |
C7 | 0.5040 (3) | 0.14874 (16) | 0.02254 (14) | 0.0172 (4) | |
H7A | 0.5184 | 0.1662 | −0.0376 | 0.021* | |
H7B | 0.5894 | 0.0964 | 0.0261 | 0.021* | |
C8 | 0.2722 (3) | 0.10384 (16) | 0.03253 (14) | 0.0160 (4) | |
H8 | 0.2205 | 0.0399 | −0.0172 | 0.019* | |
C9 | 0.1409 (3) | 0.18475 (16) | 0.02568 (14) | 0.0174 (4) | |
H9A | 0.1532 | 0.2025 | −0.0344 | 0.021* | |
H9B | −0.0094 | 0.1558 | 0.0312 | 0.021* | |
C10 | 0.2512 (3) | 0.07589 (15) | 0.12521 (13) | 0.0153 (4) | |
H10A | 0.3343 | 0.0228 | 0.1293 | 0.018* | |
H10B | 0.1017 | 0.0461 | 0.1314 | 0.018* | |
C11 | 0.3041 (3) | 0.13900 (16) | 0.29224 (13) | 0.0166 (4) | |
H11A | 0.1525 | 0.1115 | 0.2965 | 0.020* | |
H11B | 0.3785 | 0.0815 | 0.2912 | 0.020* | |
Cl2 | 1.31606 (7) | 0.11138 (4) | 0.53791 (3) | 0.01540 (12) | |
O2 | 0.4015 (2) | 0.44325 (11) | 0.41377 (10) | 0.0234 (4) | |
C23 | 0.2855 (3) | 0.49326 (18) | 0.48258 (16) | 0.0282 (6) | |
H23A | 0.1386 | 0.4529 | 0.4765 | 0.034* | |
H23B | 0.2817 | 0.5637 | 0.4744 | 0.034* | |
C24 | 0.6155 (4) | 0.49844 (19) | 0.42468 (16) | 0.0307 (6) | |
H24A | 0.6217 | 0.5691 | 0.4150 | 0.037* | |
H24B | 0.6960 | 0.4621 | 0.3781 | 0.037* | |
N2 | 0.8388 (3) | 0.12390 (16) | 0.56887 (12) | 0.0161 (4) | |
H2C | 0.785 (4) | 0.062 (2) | 0.5387 (16) | 0.022 (6)* | |
H2D | 0.788 (4) | 0.165 (2) | 0.5421 (17) | 0.031 (7)* | |
H2E | 0.977 (4) | 0.1327 (19) | 0.5613 (16) | 0.033 (7)* | |
C12 | 0.8559 (3) | 0.24495 (15) | 0.72436 (13) | 0.0113 (4) | |
C13 | 1.0863 (3) | 0.29809 (15) | 0.71971 (14) | 0.0145 (4) | |
H13A | 1.1811 | 0.2563 | 0.7388 | 0.017* | |
H13B | 1.1111 | 0.3024 | 0.6561 | 0.017* | |
C14 | 1.1355 (3) | 0.40791 (16) | 0.78235 (14) | 0.0157 (4) | |
H14 | 1.2854 | 0.4421 | 0.7784 | 0.019* | |
C15 | 0.9883 (3) | 0.47258 (16) | 0.75293 (14) | 0.0172 (4) | |
H15A | 1.0211 | 0.5437 | 0.7928 | 0.021* | |
H15B | 1.0101 | 0.4781 | 0.6894 | 0.021* | |
C16 | 0.7587 (3) | 0.42114 (16) | 0.75939 (13) | 0.0154 (4) | |
H16 | 0.6633 | 0.4637 | 0.7403 | 0.019* | |
C17 | 0.7099 (3) | 0.31176 (15) | 0.69597 (13) | 0.0131 (4) | |
H17A | 0.7303 | 0.3170 | 0.6323 | 0.016* | |
H17B | 0.5610 | 0.2781 | 0.6989 | 0.016* | |
C18 | 0.7244 (3) | 0.41275 (16) | 0.85783 (13) | 0.0173 (4) | |
H18A | 0.7535 | 0.4831 | 0.8989 | 0.021* | |
H18B | 0.5760 | 0.3791 | 0.8619 | 0.021* | |
C19 | 0.8716 (3) | 0.34845 (16) | 0.88730 (14) | 0.0167 (4) | |
H19 | 0.8498 | 0.3433 | 0.9516 | 0.020* | |
C20 | 1.1009 (3) | 0.40095 (16) | 0.88100 (14) | 0.0181 (5) | |
H20A | 1.1967 | 0.3603 | 0.9011 | 0.022* | |
H20B | 1.1332 | 0.4716 | 0.9216 | 0.022* | |
C21 | 0.8212 (3) | 0.23899 (16) | 0.82383 (13) | 0.0148 (4) | |
H21A | 0.6729 | 0.2053 | 0.8280 | 0.018* | |
H21B | 0.9132 | 0.1961 | 0.8434 | 0.018* | |
C22 | 0.8034 (3) | 0.13331 (15) | 0.66746 (13) | 0.0135 (4) | |
H22A | 0.8908 | 0.0923 | 0.6928 | 0.016* | |
H22B | 0.6538 | 0.1027 | 0.6727 | 0.016* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0178 (3) | 0.0247 (3) | 0.0229 (3) | 0.0049 (2) | 0.0017 (2) | 0.0091 (2) |
O1 | 0.0399 (11) | 0.0353 (12) | 0.0310 (11) | 0.0050 (9) | 0.0045 (9) | 0.0126 (10) |
N1 | 0.0183 (10) | 0.0238 (11) | 0.0151 (10) | 0.0056 (9) | 0.0019 (8) | 0.0071 (8) |
C1 | 0.0111 (9) | 0.0120 (10) | 0.0140 (10) | 0.0014 (8) | 0.0006 (8) | 0.0037 (8) |
C2 | 0.0119 (10) | 0.0136 (10) | 0.0197 (11) | 0.0041 (8) | 0.0023 (8) | 0.0035 (9) |
C3 | 0.0145 (10) | 0.0123 (10) | 0.0194 (11) | 0.0052 (8) | −0.0013 (8) | 0.0043 (8) |
C4 | 0.0187 (11) | 0.0146 (11) | 0.0162 (11) | 0.0026 (9) | −0.0006 (9) | 0.0070 (9) |
C5 | 0.0100 (10) | 0.0165 (11) | 0.0152 (10) | 0.0008 (8) | 0.0025 (8) | 0.0045 (8) |
C6 | 0.0111 (10) | 0.0144 (10) | 0.0138 (10) | 0.0029 (8) | −0.0010 (8) | 0.0034 (8) |
C7 | 0.0189 (11) | 0.0192 (11) | 0.0150 (11) | 0.0079 (9) | 0.0034 (9) | 0.0037 (9) |
C8 | 0.0179 (11) | 0.0142 (11) | 0.0137 (10) | 0.0027 (9) | −0.0021 (8) | −0.0002 (8) |
C9 | 0.0146 (10) | 0.0188 (11) | 0.0179 (11) | 0.0013 (9) | −0.0054 (8) | 0.0052 (9) |
C10 | 0.0143 (10) | 0.0107 (10) | 0.0204 (11) | 0.0019 (8) | −0.0006 (8) | 0.0036 (8) |
C11 | 0.0140 (10) | 0.0172 (11) | 0.0183 (11) | 0.0007 (9) | 0.0006 (8) | 0.0061 (9) |
Cl2 | 0.0146 (2) | 0.0168 (3) | 0.0135 (2) | 0.0022 (2) | −0.00028 (19) | 0.00194 (19) |
O2 | 0.0235 (8) | 0.0231 (9) | 0.0205 (8) | 0.0020 (7) | −0.0008 (7) | 0.0018 (7) |
C23 | 0.0159 (11) | 0.0221 (13) | 0.0420 (15) | 0.0058 (10) | 0.0027 (10) | −0.0034 (11) |
C24 | 0.0343 (14) | 0.0258 (13) | 0.0270 (13) | −0.0027 (11) | 0.0181 (11) | 0.0018 (10) |
N2 | 0.0175 (10) | 0.0147 (10) | 0.0136 (9) | 0.0033 (8) | −0.0004 (8) | −0.0013 (8) |
C12 | 0.0111 (9) | 0.0121 (10) | 0.0102 (9) | 0.0019 (8) | −0.0001 (8) | 0.0019 (8) |
C13 | 0.0103 (10) | 0.0169 (11) | 0.0155 (10) | 0.0023 (8) | 0.0013 (8) | 0.0025 (8) |
C14 | 0.0114 (10) | 0.0133 (10) | 0.0189 (11) | −0.0015 (8) | 0.0018 (8) | 0.0001 (8) |
C15 | 0.0226 (11) | 0.0119 (11) | 0.0163 (11) | 0.0024 (9) | 0.0033 (9) | 0.0026 (8) |
C16 | 0.0157 (10) | 0.0163 (11) | 0.0155 (11) | 0.0057 (9) | 0.0012 (8) | 0.0040 (8) |
C17 | 0.0117 (10) | 0.0170 (11) | 0.0115 (10) | 0.0044 (8) | −0.0002 (8) | 0.0042 (8) |
C18 | 0.0173 (11) | 0.0182 (11) | 0.0153 (11) | 0.0041 (9) | 0.0042 (8) | 0.0010 (9) |
C19 | 0.0195 (11) | 0.0201 (11) | 0.0103 (10) | 0.0038 (9) | 0.0023 (8) | 0.0033 (8) |
C20 | 0.0186 (11) | 0.0169 (11) | 0.0158 (11) | 0.0019 (9) | −0.0032 (9) | 0.0000 (9) |
C21 | 0.0152 (10) | 0.0172 (11) | 0.0130 (10) | 0.0022 (9) | 0.0013 (8) | 0.0065 (8) |
C22 | 0.0133 (10) | 0.0129 (10) | 0.0139 (10) | 0.0013 (8) | 0.0013 (8) | 0.0039 (8) |
O1—H1D | 0.82 (3) | C23—H23B | 0.9900 |
O1—H1E | 0.91 (4) | C23—C24i | 1.493 (3) |
N1—H1A | 0.85 (3) | C24—C23i | 1.493 (3) |
N1—H1B | 0.89 (3) | C24—H24A | 0.9900 |
N1—H1C | 0.98 (3) | C24—H24B | 0.9900 |
N1—C11 | 1.494 (3) | N2—H2C | 0.86 (2) |
C1—C2 | 1.547 (3) | N2—H2D | 0.86 (3) |
C1—C6 | 1.537 (3) | N2—H2E | 0.90 (3) |
C1—C10 | 1.544 (3) | N2—C22 | 1.493 (3) |
C1—C11 | 1.523 (3) | C12—C13 | 1.536 (3) |
C2—H2A | 0.9900 | C12—C17 | 1.543 (3) |
C2—H2B | 0.9900 | C12—C21 | 1.542 (3) |
C2—C3 | 1.535 (3) | C12—C22 | 1.523 (3) |
C3—H3 | 1.0000 | C13—H13A | 0.9900 |
C3—C4 | 1.535 (3) | C13—H13B | 0.9900 |
C3—C9 | 1.529 (3) | C13—C14 | 1.535 (3) |
C4—H4A | 0.9900 | C14—H14 | 1.0000 |
C4—H4B | 0.9900 | C14—C15 | 1.533 (3) |
C4—C5 | 1.533 (3) | C14—C20 | 1.533 (3) |
C5—H5 | 1.0000 | C15—H15A | 0.9900 |
C5—C6 | 1.537 (3) | C15—H15B | 0.9900 |
C5—C7 | 1.535 (3) | C15—C16 | 1.530 (3) |
C6—H6A | 0.9900 | C16—H16 | 1.0000 |
C6—H6B | 0.9900 | C16—C17 | 1.535 (3) |
C7—H7A | 0.9900 | C16—C18 | 1.534 (3) |
C7—H7B | 0.9900 | C17—H17A | 0.9900 |
C7—C8 | 1.532 (3) | C17—H17B | 0.9900 |
C8—H8 | 1.0000 | C18—H18A | 0.9900 |
C8—C9 | 1.532 (3) | C18—H18B | 0.9900 |
C8—C10 | 1.531 (3) | C18—C19 | 1.530 (3) |
C9—H9A | 0.9900 | C19—H19 | 1.0000 |
C9—H9B | 0.9900 | C19—C20 | 1.531 (3) |
C10—H10A | 0.9900 | C19—C21 | 1.536 (3) |
C10—H10B | 0.9900 | C20—H20A | 0.9900 |
C11—H11A | 0.9900 | C20—H20B | 0.9900 |
C11—H11B | 0.9900 | C21—H21A | 0.9900 |
O2—C23 | 1.429 (3) | C21—H21B | 0.9900 |
O2—C24 | 1.425 (3) | C22—H22A | 0.9900 |
C23—H23A | 0.9900 | C22—H22B | 0.9900 |
H1D—O1—H1E | 102 (3) | C24i—C23—H23B | 109.5 |
H1A—N1—H1B | 105 (2) | O2—C24—C23i | 111.48 (18) |
H1A—N1—H1C | 106 (2) | O2—C24—H24A | 109.3 |
H1B—N1—H1C | 111 (2) | O2—C24—H24B | 109.3 |
C11—N1—H1A | 108.3 (17) | C23i—C24—H24A | 109.3 |
C11—N1—H1B | 113.6 (16) | C23i—C24—H24B | 109.3 |
C11—N1—H1C | 112.3 (16) | H24A—C24—H24B | 108.0 |
C6—C1—C2 | 108.98 (16) | H2C—N2—H2D | 106 (2) |
C6—C1—C10 | 108.68 (16) | H2C—N2—H2E | 105 (2) |
C10—C1—C2 | 108.41 (16) | H2D—N2—H2E | 108 (2) |
C11—C1—C2 | 111.88 (16) | C22—N2—H2C | 109.5 (15) |
C11—C1—C6 | 111.96 (16) | C22—N2—H2D | 116.8 (16) |
C11—C1—C10 | 106.81 (16) | C22—N2—H2E | 110.1 (16) |
C1—C2—H2A | 109.7 | C13—C12—C17 | 109.06 (16) |
C1—C2—H2B | 109.7 | C13—C12—C21 | 108.64 (16) |
H2A—C2—H2B | 108.2 | C21—C12—C17 | 108.24 (15) |
C3—C2—C1 | 109.98 (15) | C22—C12—C13 | 112.02 (15) |
C3—C2—H2A | 109.7 | C22—C12—C17 | 112.31 (16) |
C3—C2—H2B | 109.7 | C22—C12—C21 | 106.42 (15) |
C2—C3—H3 | 109.4 | C12—C13—H13A | 109.6 |
C4—C3—C2 | 109.32 (16) | C12—C13—H13B | 109.6 |
C4—C3—H3 | 109.4 | H13A—C13—H13B | 108.1 |
C9—C3—C2 | 109.66 (16) | C14—C13—C12 | 110.21 (15) |
C9—C3—H3 | 109.4 | C14—C13—H13A | 109.6 |
C9—C3—C4 | 109.58 (16) | C14—C13—H13B | 109.6 |
C3—C4—H4A | 109.8 | C13—C14—H14 | 109.6 |
C3—C4—H4B | 109.8 | C15—C14—C13 | 109.61 (16) |
H4A—C4—H4B | 108.2 | C15—C14—H14 | 109.6 |
C5—C4—C3 | 109.55 (16) | C20—C14—C13 | 109.53 (17) |
C5—C4—H4A | 109.8 | C20—C14—H14 | 109.6 |
C5—C4—H4B | 109.8 | C20—C14—C15 | 108.95 (16) |
C4—C5—H5 | 109.5 | C14—C15—H15A | 109.7 |
C4—C5—C6 | 109.41 (15) | C14—C15—H15B | 109.7 |
C4—C5—C7 | 109.42 (16) | H15A—C15—H15B | 108.2 |
C6—C5—H5 | 109.5 | C16—C15—C14 | 109.89 (16) |
C7—C5—H5 | 109.5 | C16—C15—H15A | 109.7 |
C7—C5—C6 | 109.35 (16) | C16—C15—H15B | 109.7 |
C1—C6—C5 | 110.25 (16) | C15—C16—H16 | 109.6 |
C1—C6—H6A | 109.6 | C15—C16—C17 | 108.88 (16) |
C1—C6—H6B | 109.6 | C15—C16—C18 | 109.79 (17) |
C5—C6—H6A | 109.6 | C17—C16—H16 | 109.6 |
C5—C6—H6B | 109.6 | C18—C16—H16 | 109.6 |
H6A—C6—H6B | 108.1 | C18—C16—C17 | 109.39 (16) |
C5—C7—H7A | 109.8 | C12—C17—H17A | 109.6 |
C5—C7—H7B | 109.8 | C12—C17—H17B | 109.6 |
H7A—C7—H7B | 108.2 | C16—C17—C12 | 110.35 (16) |
C8—C7—C5 | 109.49 (16) | C16—C17—H17A | 109.6 |
C8—C7—H7A | 109.8 | C16—C17—H17B | 109.6 |
C8—C7—H7B | 109.8 | H17A—C17—H17B | 108.1 |
C7—C8—H8 | 109.4 | C16—C18—H18A | 109.8 |
C9—C8—C7 | 109.42 (17) | C16—C18—H18B | 109.8 |
C9—C8—H8 | 109.4 | H18A—C18—H18B | 108.2 |
C10—C8—C7 | 109.55 (16) | C19—C18—C16 | 109.57 (16) |
C10—C8—H8 | 109.4 | C19—C18—H18A | 109.8 |
C10—C8—C9 | 109.59 (16) | C19—C18—H18B | 109.8 |
C3—C9—C8 | 109.52 (16) | C18—C19—H19 | 109.6 |
C3—C9—H9A | 109.8 | C18—C19—C20 | 109.50 (17) |
C3—C9—H9B | 109.8 | C18—C19—C21 | 108.92 (17) |
C8—C9—H9A | 109.8 | C20—C19—H19 | 109.6 |
C8—C9—H9B | 109.8 | C20—C19—C21 | 109.70 (16) |
H9A—C9—H9B | 108.2 | C21—C19—H19 | 109.6 |
C1—C10—H10A | 109.6 | C14—C20—H20A | 109.7 |
C1—C10—H10B | 109.6 | C14—C20—H20B | 109.7 |
C8—C10—C1 | 110.29 (16) | C19—C20—C14 | 109.72 (16) |
C8—C10—H10A | 109.6 | C19—C20—H20A | 109.7 |
C8—C10—H10B | 109.6 | C19—C20—H20B | 109.7 |
H10A—C10—H10B | 108.1 | H20A—C20—H20B | 108.2 |
N1—C11—C1 | 113.76 (17) | C12—C21—H21A | 109.6 |
N1—C11—H11A | 108.8 | C12—C21—H21B | 109.6 |
N1—C11—H11B | 108.8 | C19—C21—C12 | 110.50 (16) |
C1—C11—H11A | 108.8 | C19—C21—H21A | 109.6 |
C1—C11—H11B | 108.8 | C19—C21—H21B | 109.6 |
H11A—C11—H11B | 107.7 | H21A—C21—H21B | 108.1 |
C24—O2—C23 | 109.78 (16) | N2—C22—C12 | 113.72 (16) |
O2—C23—H23A | 109.5 | N2—C22—H22A | 108.8 |
O2—C23—H23B | 109.5 | N2—C22—H22B | 108.8 |
O2—C23—C24i | 110.56 (18) | C12—C22—H22A | 108.8 |
H23A—C23—H23B | 108.1 | C12—C22—H22B | 108.8 |
C24i—C23—H23A | 109.5 | H22A—C22—H22B | 107.7 |
C1—C2—C3—C4 | −60.0 (2) | C24—O2—C23—C24i | −56.6 (3) |
C1—C2—C3—C9 | 60.1 (2) | C12—C13—C14—C15 | −59.2 (2) |
C2—C1—C6—C5 | −58.9 (2) | C12—C13—C14—C20 | 60.3 (2) |
C2—C1—C10—C8 | 59.2 (2) | C13—C12—C17—C16 | −59.1 (2) |
C2—C1—C11—N1 | −64.9 (2) | C13—C12—C21—C19 | 58.9 (2) |
C2—C3—C4—C5 | 60.5 (2) | C13—C12—C22—N2 | −58.5 (2) |
C2—C3—C9—C8 | −60.0 (2) | C13—C14—C15—C16 | 60.1 (2) |
C3—C4—C5—C6 | −60.2 (2) | C13—C14—C20—C19 | −59.6 (2) |
C3—C4—C5—C7 | 59.6 (2) | C14—C15—C16—C17 | −60.3 (2) |
C4—C3—C9—C8 | 60.0 (2) | C14—C15—C16—C18 | 59.5 (2) |
C4—C5—C6—C1 | 59.8 (2) | C15—C14—C20—C19 | 60.3 (2) |
C4—C5—C7—C8 | −59.9 (2) | C15—C16—C17—C12 | 60.1 (2) |
C5—C7—C8—C9 | 60.2 (2) | C15—C16—C18—C19 | −59.1 (2) |
C5—C7—C8—C10 | −60.0 (2) | C16—C18—C19—C20 | 59.5 (2) |
C6—C1—C2—C3 | 59.0 (2) | C16—C18—C19—C21 | −60.4 (2) |
C6—C1—C10—C8 | −59.1 (2) | C17—C12—C13—C14 | 58.4 (2) |
C6—C1—C11—N1 | 57.8 (2) | C17—C12—C21—C19 | −59.4 (2) |
C6—C5—C7—C8 | 59.9 (2) | C17—C12—C22—N2 | 64.6 (2) |
C7—C5—C6—C1 | −60.0 (2) | C17—C16—C18—C19 | 60.3 (2) |
C7—C8—C9—C3 | −60.2 (2) | C18—C16—C17—C12 | −59.9 (2) |
C7—C8—C10—C1 | 59.9 (2) | C18—C19—C20—C14 | −60.4 (2) |
C9—C3—C4—C5 | −59.7 (2) | C18—C19—C21—C12 | 60.7 (2) |
C9—C8—C10—C1 | −60.1 (2) | C20—C14—C15—C16 | −59.8 (2) |
C10—C1—C2—C3 | −59.1 (2) | C20—C19—C21—C12 | −59.1 (2) |
C10—C1—C6—C5 | 59.1 (2) | C21—C12—C13—C14 | −59.4 (2) |
C10—C1—C11—N1 | 176.65 (16) | C21—C12—C17—C16 | 58.9 (2) |
C10—C8—C9—C3 | 59.9 (2) | C21—C12—C22—N2 | −177.13 (16) |
C11—C1—C2—C3 | −176.61 (16) | C21—C19—C20—C14 | 59.0 (2) |
C11—C1—C6—C5 | 176.84 (16) | C22—C12—C13—C14 | −176.66 (16) |
C11—C1—C10—C8 | 179.95 (15) | C22—C12—C17—C16 | 176.07 (15) |
C23—O2—C24—C23i | 57.1 (3) | C22—C12—C21—C19 | 179.66 (15) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1D···Cl2ii | 0.82 (3) | 2.48 (3) | 3.295 (2) | 175 (3) |
O1—H1E···Cl1 | 0.91 (4) | 2.36 (4) | 3.265 (2) | 180 (3) |
N1—H1A···Cl2iii | 0.85 (3) | 2.33 (3) | 3.161 (2) | 163 (2) |
N1—H1B···O2 | 0.89 (3) | 2.10 (3) | 2.867 (3) | 144 (2) |
N1—H1C···Cl1 | 0.98 (3) | 2.19 (3) | 3.152 (2) | 166 (2) |
N2—H2C···Cl2ii | 0.86 (2) | 2.31 (3) | 3.166 (2) | 172 (2) |
N2—H2D···Cl1 | 0.86 (3) | 2.48 (3) | 3.171 (2) | 138 (2) |
N2—H2E···Cl2 | 0.90 (3) | 2.30 (3) | 3.181 (2) | 166 (2) |
Symmetry codes: (ii) −x+2, −y, −z+1; (iii) x−1, y, z. |
Acknowledgements
Professor Panče Naumov and Dr Durga Prasad Karothu of New York University Abu Dhabi are acknowledged for their support during the course of this research. Dr Liang Li is acknowledged for his support on data collection and structure solution. This research was carried out using Core Technology Platform resources at New York University Abu Dhabi.
References
Aakeröy, C. B., Fasulo, M. E. & Desper, J. (2007). Mol. Pharm. 4, 317–322. Web of Science PubMed Google Scholar
Accelrys (2014). Materials Studio, Version 8.0. Accelrys Inc., San Diego, California, USA. Google Scholar
Bélanger-Gariépy, F., Brisse, F., Harvey, P. D., Butler, I. S. & Gilson, D. F. R. (1987). Acta Cryst. C43, 756–759. CSD CrossRef Web of Science IUCr Journals Google Scholar
Braun, D. E., Bhardwaj, R. M., Arlin, J.-B., Florence, A. J., Kahlenberg, V., Griesser, U. J., Tocher, D. A. & Price, S. L. (2013). Cryst. Growth Des. 13, 4071–4083. Web of Science CSD CrossRef CAS PubMed Google Scholar
Breneman, C. M. & Wiberg, K. B. (1990). J. Comput. Chem. 11, 361–373. CrossRef CAS Web of Science Google Scholar
Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duggirala, N. K., Wood, G. P., Fischer, A., Wojtas, Ł., Perry, M. L. & Zaworotko, M. J. (2015). Cryst. Growth Des. 15, 4341–4354. Web of Science CSD CrossRef CAS Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ø., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian INC., Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hejczyk, K. E. (2010). PhD thesis. University of Cambridge, UK. Google Scholar
Lou, W.-J., Hu, X.-R. & Gu, J.-M. (2009). Acta Cryst. E65, o2191. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mishnev, A. & Stepanovs, D. (2014). Z. Naturforsch. Teil B, 69, 823–828. CAS Google Scholar
Mohamed, S., Karothu, D. P. & Naumov, P. (2016). Acta Cryst. B72, 551–561. CSD CrossRef IUCr Journals Google Scholar
Price, S. L., Leslie, M., Welch, G. W. A., Habgood, M., Price, L. S., Karamertzanis, P. G. & Day, G. M. (2010). Phys. Chem. Chem. Phys. 12, 8478–8490. Web of Science CrossRef CAS PubMed Google Scholar
Reilly, A. M., Cooper, R. I., Adjiman, C. S., Bhattacharya, S., Boese, A. D., Brandenburg, J. G., Bygrave, P. J., Bylsma, R., Campbell, J. E., Car, R., Case, D. H., Chadha, R., Cole, J. C., Cosburn, K., Cuppen, H. M., Curtis, F., Day, G. M., DiStasio, R. A. Jr, Dzyabchenko, A., van Eijck, B. P., Elking, D. M., van den Ende, J. A., Facelli, J. C., Ferraro, M. B., Fusti-Molnar, L., Gatsiou, C.-A., Gee, T. S., de Gelder, R., Ghiringhelli, L. M., Goto, H., Grimme, S., Guo, R., Hofmann, D. W. M., Hoja, J., Hylton, R. K., Iuzzolino, L., Jankiewicz, W., de Jong, D. T., Kendrick, J., de Klerk, N. J. J., Ko, H.-Y., Kuleshova, L. N., Li, X., Lohani, S., Leusen, F. J. J., Lund, A. M., Lv, J., Ma, Y., Marom, N., Masunov, A. E., McCabe, P., McMahon, D. P., Meekes, H., Metz, M. P., Misquitta, A. J., Mohamed, S., Monserrat, B., Needs, R. J., Neumann, M. A., Nyman, J., Obata, S., Oberhofer, H., Oganov, A. R., Orendt, A. M., Pagola, G. I., Pantelides, C. C., Pickard, C. J., Podeszwa, R., Price, L. S., Price, S. L., Pulido, A., Read, M. G., Reuter, K., Schneider, E., Schober, C., Shields, G. P., Singh, P., Sugden, I. J., Szalewicz, K., Taylor, C. R., Tkatchenko, A., Tuckerman, M. E., Vacarro, F., Vasileiadis, M., Vazquez-Mayagoitia, A., Vogt, L., Wang, Y., Watson, R. E., de Wijs, G. A., Yang, J., Zhu, Q. & Groom, C. R. (2016). Acta Cryst. B72, 439–459. CSD CrossRef IUCr Journals Google Scholar
Rochon, F. D. & Tessier, C. (2009). Acta Cryst. E65, m1297–m1298. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Williams, D. E. (2001). J. Comput. Chem. 22, 1154–1166. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.