research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of N-[(4-phenyl­thia­zol-2-yl)carbamo­thio­yl]benzamide and N-{[4-(4-bromo­phen­yl)thia­zol-2-yl]carbamo­thio­yl}benzamide from synchrotron X-ray diffraction

CROSSMARK_Color_square_no_text.svg

aLaboratory of Functional Heterocyclic Compounds, Togliatti State University, 14 Belorusskaya St., Togliatti 445020, Russian Federation, bNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, cInorganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and dX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: vnkhrustalev@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 August 2016; accepted 20 August 2016; online 26 August 2016)

The title compounds, C17H13N3OS2, (I), and C17H12BrN3OS2, (II), are potential active pharmaceutical ingredients. Compound (I) comprises two almost planar fragments. The first is the central (carbamo­thio­yl)amide (r.m.s. deviation = 0.038 Å), and the second consists of the thia­zole and two phenyl rings (r.m.s. deviation = 0.053 Å). The dihedral angle between these planes is 15.17 (5)°. Unlike (I), compound (II) comprises three almost planar fragments. The first is the central N-(thia­zol-2-ylcarbamo­thio­yl)amide (r.m.s. deviation = 0.084 Å), and the two others comprise the bromo­phenyl and phenyl substituents, respectively. The dihedral angles between the central and two terminal planar fragments are 21.58 (7) and 17.90 (9)°, respectively. Both (I) and (II) feature an intra­molecular N—H⋯O hydrogen bond, which closes an S(6) ring. In the crystal of (I), mol­ecules form hydrogen-bonded layers parallel to (100) mediated by N—H⋯S and C—H⋯O hydrogen bonds. In the crystal of (II), mol­ecules form a three-dimensional framework mediated by N—H⋯Br and C—H⋯O hydrogen bonds, as well as secondary S⋯Br [3.3507 (11) Å] and S⋯S [3.4343 (14) Å] inter­actions.

1. Chemical context

Thio­ureas are the subject of significant inter­est owing to their biological properties as fungicides, herbicides (Walpole et al., 1998[Walpole, C., Ko, S. Y., Brown, M., Beattie, D., Campbell, E., Dickenson, F., Ewan, S., Hughes, G. A., Lemaire, M., Lerpiniere, J., Patel, S. & Urban, L. (1998). J. Med. Chem. 41, 3159-3173.]) and rodenticides (Sarkis & Faisal, 1985[Sarkis, G. Y. & Faisal, E. D. (1985). J. Heterocycl. Chem. 22, 137-140.]). It is also well-known that thio­urea derivatives and their metal complexes exhibit analgesic (El-Serwy et al., 2015[El-Serwy, W. S., Mohamed, N. A. & Abdel-Rahman, R. F. (2015). Int. J. Pharm. Tech. 6, 7781-7798.]), anti-inflammatory (Lin et al., 2013[Lin, I. W.-S., Lok, C.-N., Yan, K. & Che, C.-M. (2013). Chem. Commun. 49, 3297-3299.]), anti­microbial (Stefanska et al., 2016[Stefanska, J., Stepien, K., Bielenica, A., Szulczyk, D., Miroslaw, B., Koziol, A. E., Sanna, G., Iuliano, F., Madeddu, S., Jozwiak, M. & Struga, M. (2016). Med. Chem. 12, 478-488.]) and anti­cancer (Rauf et al., 2015[Rauf, M. K., Yaseen, S., Badshah, A., Zaib, S., Arshad, R., Imtiaz-ud-Din, Tahir, M. N. & Iqbal, J. (2015). J. Biol. Inorg. Chem. 20, 541-554.]) activities. Moreover, thio­urea derivatives are valuable building blocks for the synthesis of amides, guanidines and a variety of heterocycles (e.g. Kidwai et al., 2001[Kidwai, M., Venkataramanan, R. & Dave, B. (2001). Green Chem. 3, 278-279.]; Du & Curran, 2003[Du, W. & Curran, D. P. (2003). Org. Lett. 5, 1765-1768.]). Recently, thio­urea derivatives were found to have use in organocatalysis (e.g. Connon, 2006[Connon, S. J. (2006). Chem. Eur. J. 12, 5418-5427.]; McCooey & Connon, 2005[McCooey, S. H. & Connon, S. J. (2005). Angew. Chem. Int. Ed. 44, 6367-6370.]; Schreiner, 2003[Schreiner, P. R. (2003). Chem. Soc. Rev. 32, 289-296.]; Taylor & Jacobsen, 2006[Taylor, M. S. & Jacobsen, E. N. (2006). Angew. Chem. Int. Ed. 45, 1520-1543.]). For these reasons, a number of procedures have been reported for the synthesis of thio­ureas.

In this paper we report a synthetic approach for the preparation of the new thio­urea derivatives (I)[link] and (II)[link] containing thia­zole fragments, and their structural characterization by synchrotron single-crystal X-ray diffraction.

[Scheme 1]

2. Structural commentary

Compound (I)[link], C17H13N3OS2, comprises two almost planar fragments. The first is the central (carbamo­thio­yl)amide grouping (r.m.s. deviation = 0.038 Å), and the second consists of the thia­zole and two phenyl rings (r.m.s. deviation = 0.053 Å) (Fig. 1[link]). The dihedral angle between these planes is 15.17 (5)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link]. Displacement ellipsoids are shown at the 50% probability level. The dashed line indicates the intra­molecular hydrogen bond. H atoms are presented as small spheres of arbitrary radius.

Unlike (I)[link], compound (II)[link], C17H12N3OS2Br, comprises three almost planar fragments: the first is the central N-(thia­zol-2-ylcarbamo­thio­yl)amide (r.m.s. deviation = 0.084 Å), and the two others comprise the bromo­phenyl and phenyl substituents, respectively (Fig. 2[link]). The dihedral angles between the central and two terminal fragments are 21.58 (7) and 17.90 (9)°, respectively.

[Figure 2]
Figure 2
The mol­ecular structure of (II)[link]. Displacement ellipsoids are shown at the 50% probability level. The dashed line indicates the intra­molecular hydrogen bond. H atoms are presented as small spheres of arbitrary radius.

The planarity of the fragments found in (I)[link] and (II)[link] is determined by the present of bond conjugation within each of them as well as the intra­molecular N1—H1⋯O1 hydrogen bond (Tables 1[link] and 2[link], Figs. 1[link] and 2[link]). The different mol­ecular conformations observed for (I)[link] and (II)[link] may apparently be explained by the various systems of inter­molecular inter­actions present in the crystals (see the Supra­molecular features section below).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.92 1.85 2.6145 (18) 139
N2—H2⋯S1i 0.93 2.69 3.5845 (15) 162
C13—H13⋯O1ii 0.95 2.44 3.299 (2) 150
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 1.93 2.644 (3) 138
N2—H2⋯Br1i 0.88 2.97 3.692 (3) 141
C13—H13⋯O1ii 0.95 2.53 3.340 (4) 144
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

The bond-length and angle distribution within mol­ecules (I)[link] and (II)[link] are almost identical and in good agreement with those observed in related compounds (Singh et al., 2012[Singh, D. P., Pratap, S., Yildirim, S. Ö. & Butcher, R. J. (2012). Acta Cryst. E68, o3295.], 2013[Singh, D. P., Gangwar, M., Kumar, D., Nath, G. & Pratap, S. (2013). J. Chem. Crystallogr. 43, 610-621.]). The values for the C—S—C angle in (I)[link] [88.06 (8)°] and (II)[link] [87.75 (14)°] are also very close to those in previously reported analogous structures [87.62 (7)–88.11 (8)°] (Yunus et al., 2008[Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Wong, W.-Y. (2008). Acta Cryst. E64, o20.]; Saeed et al., 2010[Saeed, S., Rashid, N., Jones, P. G., Hussain, R. & Bhatti, M. H. (2010). Cent. Eur. J. Chem. 8, 550-558.]).

3. Supra­molecular features

Although the similarity of the mol­ecular geometries and types of intra­molecular hydrogen bonds might lead to similar packing motifs, this is not found in the case of (I)[link] and (II)[link]. The inter­molecular inter­actions, namely, N—H⋯X (X = S, Br) and C—H⋯O hydrogen bonding and the secondary S⋯S and S⋯Br inter­actions, combine in a different way, give rise to distinct packing motifs.

In (I)[link], the crystal packing consists of hydrogen-bonded layers parallel to (100), in which the mol­ecules are linked to each other by N2—H2⋯S1i and C13—H13⋯O1ii hydrogen bonds [Table 1[link], Fig. 3[link]; symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]]. No secondary S⋯S inter­molecular inter­actions were observed in (I)[link].

[Figure 3]
Figure 3
The crystal structure of (I)[link] illustrating the hydrogen-bonded layers parallel to (100). Dashed lines indicate the intra­molecular N—H⋯O and inter­molecular N—H⋯S and C—H⋯O hydrogen bonds.

The situation in the case of (II)[link] is quite different. The mol­ecules of (II)[link] form a three-dimensional framework mediated by the N2—H2⋯Br1i and C13—H13⋯O1ii hydrogen bonds (Table 2[link], Fig. 4[link]) as well as the secondary S1⋯Br1iii [3.3507 (11) Å] and S2⋯S2iv [3.4343 (14) Å] inter­actions [symmetry codes: (i) x, −y + 1, z − [{1\over 2}]; (ii) −x + 1, −y, −z + 1; (iii) x, −y + 1, −z + 1; (iv) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; Fig. 4[link]]. It should be pointed out that the secondary inter­molecular S⋯Br and S⋯S inter­actions in (II)[link] are significantly stronger than the inter­molecular hydrogen bonds and, consequently, structure-forming.

[Figure 4]
Figure 4
The crystal structure of (II)[link]. Dashed lines indicate the intra­molecular N—H⋯O and inter­molecular N—H⋯Br and C—H⋯O hydrogen bonds, as well as secondary inter­molecular S⋯S and S⋯Br inter­actions.

4. Synthesis and crystallization

Benzoyl chloride (0.60 ml, 0.73 g, 5.19 mmol) was added over 5 min to a freshly prepared solution of NH4SCN (0.39 g, 5.19 mmol) in acetone (40 ml), and the mixture was heated under reflux for 15 min. After heating, the appropriate 4-aryl­thia­zol-2-amine (4.33 mmol) in acetone (10 ml) was added. The mixture was heated again under reflux for 2 h (Fig. 5[link]). Then excess cracked ice was added with vigorous stirring. The resulting solid was collected and liberally washed with water. These compounds were isolated as pale-yellow crystalline solids in 41% and 45% yield for the 4-phenyl (I)[link] and 4-(4-bromo­phen­yl) (II)[link] derivatives, respectively. Single crystals of the products were obtained by slow crystallization from N,N-di­methyl­formamide solution.

[Figure 5]
Figure 5
Synthesis of new thio­urea derivatives (I)[link] and (II)[link].

Spectroscopic and physical data for (I): m.p. 481–483 K. FTIR νmax cm−1: 3025, 1671, 1518, 1441, 1246, 1170, 668, 561. 1H NMR (600 MHz, DMSO-d6, 304 K): δ = 7.35 (t, 1H, J = 7.3), 7.45 (t, 2H, J = 7.6), 7.56 (t, 2H, J = 7.6), 7.69 (t, 1H, J = 7.4), 7.74 (s, 1H), 7.94 (d, 2H, J = 7.8), 8.03 (d, 2H, J = 7.8), 12.18 (s, 1H), 14.27 (s, 1H). Analysis calculated for C17H13N3OS2: C, 60.16; H, 3.86; N, 12.38. Found: C, 60.22; H, 3.93; N, 12.47.

Spectroscopic and physical data for (II)[link]: m.p. 484–486 K. FTIR νmax cm−1: 3395, 3055, 1674, 1515, 1488, 1244, 1165, 697. 1H NMR (600 MHz, DMSO-d6,304 K): δ = 7.57 (t, 2H, J = 7.7), 7.64 (d, 2H, J = 8.0), 7.70 (t, 1H, J = 7.5), 7.83 (s, 1H), 7.90 (d, 2H, J = 8.1), 8.03 (d, 2H, J = 7.7), 1221 (s, 1H), 14.27 (s, 1H). Analysis calculated for C17H12N3OS2Br: C, 48.81; H, 2.89; N, 10.05. Found: C, 48.89; H, 2.95; N, 10.11.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. X-ray diffraction studies were carried out on the `Belok' beamline (λ = 0.96990 Å) of the National Research Center `Kurchatov Institute' (Moscow, Russian Federation) using a MAR CCD detector. For each compound, a total of 360 images were collected using an oscillation range of 1.0° (φ scan mode) and corrected for absorption using the SCALA program (Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]). The data were indexed, integrated and scaled using the utility iMOSFLM in the program CCP4 (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C17H13N3OS2 C17H12BrN3OS2
Mr 339.42 418.33
Crystal system, space group Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 100 100
a, b, c (Å) 12.901 (3), 5.5160 (11), 23.143 (5) 37.210 (7), 4.0000 (8), 28.450 (6)
β (°) 105.32 (3) 128.69 (3)
V3) 1588.4 (6) 3305.2 (18)
Z 4 8
Radiation type Synchrotron, λ = 0.96990 Å Synchrotron, λ = 0.96990 Å
μ (mm−1) 0.81 1.56
Crystal size (mm) 0.15 × 0.10 × 0.05 0.07 × 0.05 × 0.03
 
Data collection
Diffractometer MAR CCD MAR CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]) Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.870, 0.950 0.880, 0.930
No. of measured, independent and observed [I > 2σ(I)] reflections 26393, 3395, 2899 13698, 3267, 2523
Rint 0.033 0.065
(sin θ/λ)max−1) 0.642 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.03 0.040, 0.092, 1.02
No. of reflections 3395 3267
No. of parameters 209 217
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.32 0.62, −0.78
Computer programs: Automar (MarXperts, 2015[MarXperts (2015). Automar. MarXperts GmbH, D-22844 Norderstedt, Germany.]), iMOSFLM (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

The hydrogen atoms of the amino groups were localized in the difference-Fourier map and included in the refinement with fixed positional (riding model) and isotropic displacement parameters [Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and refined using in a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Supporting information


Computing details top

For both compounds, data collection: Automar (MarXperts, 2015); cell refinement: iMOSFLM (Battye et al., 2011); data reduction: iMOSFLM (Battye et al., 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(I) N-[(4-Phenylthiazol-2-yl)carbamothioyl]benzamide top
Crystal data top
C17H13N3OS2F(000) = 704
Mr = 339.42Dx = 1.419 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.96990 Å
a = 12.901 (3) ÅCell parameters from 600 reflections
b = 5.5160 (11) Åθ = 2.4–34.0°
c = 23.143 (5) ŵ = 0.81 mm1
β = 105.32 (3)°T = 100 K
V = 1588.4 (6) Å3Prism, colourless
Z = 40.15 × 0.10 × 0.05 mm
Data collection top
MAR CCD
diffractometer
2899 reflections with I > 2σ(I)
φ scanRint = 0.033
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 38.5°, θmin = 2.2°
Tmin = 0.870, Tmax = 0.950h = 1616
26393 measured reflectionsk = 67
3395 independent reflectionsl = 2928
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.566P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3395 reflectionsΔρmax = 0.32 e Å3
209 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.0035 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41550 (3)0.80075 (7)0.45047 (2)0.03118 (14)
S20.25885 (3)1.09330 (7)0.35070 (2)0.02857 (14)
O10.47826 (9)0.3167 (2)0.30362 (5)0.0333 (3)
N10.36884 (10)0.6692 (2)0.33491 (6)0.0279 (3)
H10.38530.56860.30680.033*
N20.49953 (10)0.4417 (2)0.40077 (5)0.0265 (3)
H20.53460.40480.44030.032*
N30.22879 (10)0.8127 (2)0.25771 (6)0.0270 (3)
C10.42612 (12)0.6327 (3)0.39203 (7)0.0262 (3)
C20.28765 (12)0.8397 (3)0.31264 (7)0.0265 (3)
C30.15407 (12)0.9994 (3)0.24243 (7)0.0266 (3)
C40.16011 (13)1.1685 (3)0.28659 (7)0.0291 (3)
H40.11591.30860.28260.035*
C50.07557 (12)0.9915 (3)0.18273 (7)0.0263 (3)
C60.07731 (13)0.7958 (3)0.14375 (7)0.0292 (3)
H60.13000.67220.15550.035*
C70.00219 (13)0.7826 (3)0.08808 (8)0.0342 (4)
H70.00380.64960.06230.041*
C80.07530 (13)0.9630 (3)0.06996 (8)0.0356 (4)
H80.12640.95290.03200.043*
C90.07725 (14)1.1582 (3)0.10782 (8)0.0343 (4)
H90.12981.28170.09560.041*
C100.00247 (13)1.1736 (3)0.16369 (7)0.0303 (4)
H100.00431.30800.18910.036*
C110.52613 (12)0.3002 (3)0.35705 (7)0.0268 (3)
C120.61647 (12)0.1241 (3)0.37854 (6)0.0259 (3)
C130.62162 (12)0.0727 (3)0.34049 (7)0.0280 (3)
H130.56870.09000.30340.034*
C140.70420 (13)0.2414 (3)0.35736 (7)0.0298 (3)
H140.70740.37460.33190.036*
C150.78246 (13)0.2151 (3)0.41177 (7)0.0318 (4)
H150.83890.33040.42320.038*
C160.77780 (13)0.0197 (3)0.44932 (7)0.0316 (4)
H160.83080.00310.48640.038*
C170.69563 (12)0.1514 (3)0.43264 (7)0.0282 (3)
H170.69340.28590.45790.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0401 (2)0.0298 (2)0.0231 (2)0.00420 (17)0.00737 (16)0.00296 (15)
S20.0325 (2)0.0253 (2)0.0282 (2)0.00129 (15)0.00863 (15)0.00300 (15)
O10.0376 (6)0.0382 (7)0.0228 (6)0.0089 (5)0.0059 (5)0.0010 (5)
N10.0319 (7)0.0282 (7)0.0236 (6)0.0033 (6)0.0075 (5)0.0021 (5)
N20.0288 (6)0.0286 (7)0.0214 (6)0.0022 (5)0.0056 (5)0.0004 (5)
N30.0287 (6)0.0259 (7)0.0270 (7)0.0016 (5)0.0086 (5)0.0007 (5)
C10.0271 (7)0.0260 (8)0.0264 (7)0.0013 (6)0.0087 (6)0.0004 (6)
C20.0300 (8)0.0232 (8)0.0282 (8)0.0003 (6)0.0110 (6)0.0005 (6)
C30.0276 (7)0.0231 (8)0.0314 (8)0.0003 (6)0.0120 (6)0.0024 (6)
C40.0301 (8)0.0259 (8)0.0318 (8)0.0019 (6)0.0089 (6)0.0003 (6)
C50.0265 (7)0.0239 (8)0.0300 (8)0.0012 (6)0.0103 (6)0.0026 (6)
C60.0272 (7)0.0254 (8)0.0342 (8)0.0016 (6)0.0066 (6)0.0001 (6)
C70.0342 (9)0.0286 (9)0.0375 (9)0.0005 (7)0.0058 (7)0.0038 (7)
C80.0300 (8)0.0388 (10)0.0340 (8)0.0002 (7)0.0017 (7)0.0012 (7)
C90.0330 (8)0.0323 (9)0.0377 (9)0.0087 (7)0.0098 (7)0.0063 (7)
C100.0336 (8)0.0270 (8)0.0328 (8)0.0053 (7)0.0131 (7)0.0019 (6)
C110.0282 (8)0.0290 (8)0.0234 (7)0.0012 (6)0.0074 (6)0.0001 (6)
C120.0274 (7)0.0271 (8)0.0243 (7)0.0009 (6)0.0091 (6)0.0011 (6)
C130.0291 (8)0.0306 (8)0.0252 (7)0.0022 (6)0.0085 (6)0.0013 (6)
C140.0336 (8)0.0287 (8)0.0301 (8)0.0000 (7)0.0135 (6)0.0015 (6)
C150.0320 (8)0.0309 (9)0.0343 (9)0.0065 (7)0.0120 (7)0.0050 (7)
C160.0290 (8)0.0387 (10)0.0259 (8)0.0022 (7)0.0053 (6)0.0020 (7)
C170.0317 (8)0.0287 (8)0.0250 (8)0.0014 (7)0.0089 (6)0.0011 (6)
Geometric parameters (Å, º) top
S1—C11.6747 (16)C7—C81.394 (2)
S2—C41.7313 (17)C7—H70.9500
S2—C21.7447 (16)C8—C91.393 (3)
O1—C111.2308 (19)C8—H80.9500
N1—C11.348 (2)C9—C101.397 (2)
N1—C21.401 (2)C9—H90.9500
N1—H10.9210C10—H100.9500
N2—C111.3909 (19)C11—C121.498 (2)
N2—C11.395 (2)C12—C171.399 (2)
N2—H20.9300C12—C131.410 (2)
N3—C21.306 (2)C13—C141.391 (2)
N3—C31.391 (2)C13—H130.9500
C3—C41.371 (2)C14—C151.398 (2)
C3—C51.482 (2)C14—H140.9500
C4—H40.9500C15—C161.396 (2)
C5—C101.408 (2)C15—H150.9500
C5—C61.411 (2)C16—C171.395 (2)
C6—C71.395 (2)C16—H160.9500
C6—H60.9500C17—H170.9500
C4—S2—C288.06 (8)C9—C8—H8120.2
C1—N1—C2128.58 (13)C7—C8—H8120.2
C1—N1—H1115.7C8—C9—C10120.43 (15)
C2—N1—H1115.7C8—C9—H9119.8
C11—N2—C1127.36 (13)C10—C9—H9119.8
C11—N2—H2116.3C9—C10—C5120.55 (15)
C1—N2—H2116.3C9—C10—H10119.7
C2—N3—C3110.42 (13)C5—C10—H10119.7
N1—C1—N2115.46 (13)O1—C11—N2122.31 (14)
N1—C1—S1124.67 (12)O1—C11—C12121.44 (14)
N2—C1—S1119.87 (11)N2—C11—C12116.25 (13)
N3—C2—N1117.88 (14)C17—C12—C13119.85 (14)
N3—C2—S2115.87 (12)C17—C12—C11123.20 (14)
N1—C2—S2126.22 (12)C13—C12—C11116.92 (13)
C4—C3—N3114.53 (14)C14—C13—C12119.92 (14)
C4—C3—C5127.25 (14)C14—C13—H13120.0
N3—C3—C5118.17 (14)C12—C13—H13120.0
C3—C4—S2111.10 (12)C13—C14—C15120.06 (15)
C3—C4—H4124.5C13—C14—H14120.0
S2—C4—H4124.5C15—C14—H14120.0
C10—C5—C6118.47 (15)C16—C15—C14120.09 (15)
C10—C5—C3121.79 (14)C16—C15—H15120.0
C6—C5—C3119.73 (14)C14—C15—H15120.0
C7—C6—C5120.38 (15)C15—C16—C17120.29 (15)
C7—C6—H6119.8C15—C16—H16119.9
C5—C6—H6119.8C17—C16—H16119.9
C8—C7—C6120.58 (16)C16—C17—C12119.77 (15)
C8—C7—H7119.7C16—C17—H17120.1
C6—C7—H7119.7C12—C17—H17120.1
C9—C8—C7119.56 (16)
C2—N1—C1—N2177.74 (14)C5—C6—C7—C80.3 (3)
C2—N1—C1—S13.2 (2)C6—C7—C8—C90.2 (3)
C11—N2—C1—N15.9 (2)C7—C8—C9—C100.2 (3)
C11—N2—C1—S1173.23 (12)C8—C9—C10—C50.4 (2)
C3—N3—C2—N1178.70 (13)C6—C5—C10—C90.9 (2)
C3—N3—C2—S20.34 (17)C3—C5—C10—C9178.30 (14)
C1—N1—C2—N3166.94 (15)C1—N2—C11—O16.7 (2)
C1—N1—C2—S214.9 (2)C1—N2—C11—C12173.58 (14)
C4—S2—C2—N30.53 (12)O1—C11—C12—C17157.43 (15)
C4—S2—C2—N1177.67 (14)N2—C11—C12—C1722.9 (2)
C2—N3—C3—C41.36 (19)O1—C11—C12—C1320.5 (2)
C2—N3—C3—C5176.47 (13)N2—C11—C12—C13159.15 (13)
N3—C3—C4—S21.76 (17)C17—C12—C13—C141.2 (2)
C5—C3—C4—S2175.84 (12)C11—C12—C13—C14179.22 (13)
C2—S2—C4—C31.25 (12)C12—C13—C14—C150.5 (2)
C4—C3—C5—C102.7 (2)C13—C14—C15—C160.1 (2)
N3—C3—C5—C10179.82 (13)C14—C15—C16—C170.5 (2)
C4—C3—C5—C6176.52 (15)C15—C16—C17—C121.2 (2)
N3—C3—C5—C61.0 (2)C13—C12—C17—C161.6 (2)
C10—C5—C6—C70.9 (2)C11—C12—C17—C16179.47 (14)
C3—C5—C6—C7178.33 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.921.852.6145 (18)139
N2—H2···S1i0.932.693.5845 (15)162
C13—H13···O1ii0.952.443.299 (2)150
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2.
(II) N-{[4-(4-Bromophenyl)thiazol-2-yl]carbamothioyl}benzamide top
Crystal data top
C17H12BrN3OS2F(000) = 1680
Mr = 418.33Dx = 1.681 Mg m3
Monoclinic, C2/cSynchrotron radiation, λ = 0.96990 Å
a = 37.210 (7) ÅCell parameters from 500 reflections
b = 4.0000 (8) Åθ = 4.0–33.0°
c = 28.450 (6) ŵ = 1.56 mm1
β = 128.69 (3)°T = 100 K
V = 3305.2 (18) Å3Prism, colourless
Z = 80.07 × 0.05 × 0.03 mm
Data collection top
MAR CCD
diffractometer
2523 reflections with I > 2σ(I)
φ scanRint = 0.065
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 38.4°, θmin = 4.0°
Tmin = 0.880, Tmax = 0.930h = 4444
13698 measured reflectionsk = 44
3267 independent reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
3267 reflections(Δ/σ)max = 0.002
217 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.78 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.66455 (2)0.24056 (7)0.96731 (2)0.02282 (14)
S10.67189 (2)0.95707 (16)0.58750 (3)0.02136 (19)
S20.70200 (2)0.97423 (15)0.71326 (3)0.01827 (18)
O10.55011 (6)0.3045 (5)0.53088 (9)0.0239 (5)
N10.62216 (7)0.6652 (5)0.61537 (10)0.0176 (5)
H10.59690.55510.60170.021*
N20.59498 (7)0.6073 (5)0.51692 (9)0.0194 (5)
H20.59690.67360.48900.023*
N30.64079 (7)0.6390 (5)0.71031 (9)0.0178 (5)
C10.62849 (9)0.7359 (6)0.57480 (13)0.0183 (7)
C20.65111 (9)0.7460 (6)0.67684 (13)0.0173 (6)
C30.67476 (9)0.7355 (6)0.76996 (13)0.0167 (6)
C40.70985 (8)0.9180 (6)0.77919 (12)0.0197 (6)
H40.73531.00290.81720.024*
C50.67149 (8)0.6265 (6)0.81672 (11)0.0175 (6)
C60.71033 (9)0.6346 (7)0.87798 (12)0.0213 (6)
H60.73870.71760.88940.026*
C70.70779 (8)0.5233 (6)0.92191 (12)0.0219 (7)
H70.73430.52860.96310.026*
C80.66619 (8)0.4035 (6)0.90546 (12)0.0193 (6)
C90.62698 (9)0.3949 (7)0.84512 (12)0.0223 (6)
H90.59860.31410.83400.027*
C100.63006 (9)0.5062 (6)0.80154 (12)0.0216 (6)
H100.60340.50060.76040.026*
C110.55924 (8)0.3889 (6)0.49790 (12)0.0187 (6)
C120.53267 (9)0.2627 (6)0.43455 (13)0.0184 (7)
C130.48960 (8)0.1152 (7)0.40853 (12)0.0216 (6)
H130.47850.10020.43080.026*
C140.46331 (9)0.0089 (6)0.34991 (12)0.0239 (7)
H140.43410.10620.33210.029*
C150.47950 (9)0.0089 (6)0.31750 (13)0.0253 (7)
H150.46130.07540.27750.030*
C160.52255 (9)0.1505 (7)0.34332 (13)0.0262 (7)
H160.53370.16120.32100.031*
C170.54912 (9)0.2757 (6)0.40176 (13)0.0225 (7)
H170.57850.37020.41940.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0213 (2)0.0297 (2)0.0189 (2)0.00396 (11)0.01329 (17)0.00383 (11)
S10.0214 (3)0.0250 (3)0.0184 (4)0.0048 (3)0.0128 (3)0.0023 (3)
S20.0148 (3)0.0215 (3)0.0161 (4)0.0005 (2)0.0085 (3)0.0005 (2)
O10.0196 (10)0.0343 (11)0.0182 (11)0.0039 (8)0.0119 (9)0.0011 (8)
N10.0130 (10)0.0241 (11)0.0136 (12)0.0010 (8)0.0073 (10)0.0011 (9)
N20.0181 (10)0.0249 (12)0.0119 (11)0.0010 (9)0.0078 (9)0.0018 (9)
N30.0145 (10)0.0206 (11)0.0136 (11)0.0014 (9)0.0066 (9)0.0006 (9)
C10.0154 (13)0.0199 (13)0.0149 (15)0.0050 (9)0.0072 (12)0.0032 (9)
C20.0154 (13)0.0217 (14)0.0132 (14)0.0026 (9)0.0082 (12)0.0013 (9)
C30.0144 (13)0.0169 (13)0.0156 (15)0.0024 (9)0.0079 (12)0.0009 (9)
C40.0179 (12)0.0214 (13)0.0144 (14)0.0000 (10)0.0075 (11)0.0006 (10)
C50.0171 (12)0.0196 (12)0.0132 (13)0.0035 (10)0.0083 (11)0.0004 (10)
C60.0141 (12)0.0292 (14)0.0185 (15)0.0000 (11)0.0091 (12)0.0000 (11)
C70.0141 (12)0.0308 (15)0.0129 (14)0.0024 (10)0.0046 (11)0.0020 (10)
C80.0187 (12)0.0231 (13)0.0160 (14)0.0038 (10)0.0108 (11)0.0004 (10)
C90.0186 (13)0.0268 (14)0.0211 (15)0.0028 (11)0.0122 (12)0.0021 (11)
C100.0169 (12)0.0291 (14)0.0146 (14)0.0000 (10)0.0078 (11)0.0017 (10)
C110.0131 (12)0.0221 (13)0.0142 (14)0.0019 (10)0.0054 (11)0.0031 (10)
C120.0135 (13)0.0212 (14)0.0144 (15)0.0023 (9)0.0057 (12)0.0015 (9)
C130.0174 (13)0.0244 (14)0.0193 (15)0.0022 (11)0.0097 (12)0.0018 (11)
C140.0148 (13)0.0256 (14)0.0218 (15)0.0017 (10)0.0068 (12)0.0014 (11)
C150.0212 (13)0.0269 (15)0.0161 (14)0.0000 (10)0.0059 (12)0.0025 (11)
C160.0268 (15)0.0312 (15)0.0199 (15)0.0015 (12)0.0142 (13)0.0025 (12)
C170.0153 (13)0.0269 (15)0.0186 (16)0.0029 (10)0.0073 (13)0.0004 (10)
Geometric parameters (Å, º) top
Br1—C81.913 (3)C6—H60.9500
S1—C11.670 (3)C7—C81.393 (4)
S2—C41.723 (3)C7—H70.9500
S2—C21.743 (3)C8—C91.395 (4)
O1—C111.228 (4)C9—C101.388 (4)
N1—C11.345 (4)C9—H90.9500
N1—C21.403 (4)C10—H100.9500
N1—H10.8800C11—C121.501 (4)
N2—C111.387 (3)C12—C171.401 (5)
N2—C11.401 (3)C12—C131.408 (4)
N2—H20.8800C13—C141.394 (4)
N3—C21.302 (4)C13—H130.9500
N3—C31.394 (3)C14—C151.383 (4)
C3—C41.370 (4)C14—H140.9500
C3—C51.476 (4)C15—C161.398 (4)
C4—H40.9500C15—H150.9500
C5—C101.401 (4)C16—C171.392 (4)
C5—C61.407 (3)C16—H160.9500
C6—C71.385 (4)C17—H170.9500
C4—S2—C287.75 (14)C7—C8—Br1118.4 (2)
C1—N1—C2127.7 (2)C9—C8—Br1120.9 (2)
C1—N1—H1116.1C10—C9—C8119.0 (3)
C2—N1—H1116.1C10—C9—H9120.5
C11—N2—C1128.4 (3)C8—C9—H9120.5
C11—N2—H2115.8C9—C10—C5121.6 (2)
C1—N2—H2115.8C9—C10—H10119.2
C2—N3—C3110.0 (2)C5—C10—H10119.2
N1—C1—N2115.3 (2)O1—C11—N2122.0 (3)
N1—C1—S1126.2 (2)O1—C11—C12122.4 (2)
N2—C1—S1118.6 (2)N2—C11—C12115.6 (3)
N3—C2—N1119.2 (2)C17—C12—C13119.6 (3)
N3—C2—S2116.4 (2)C17—C12—C11123.6 (2)
N1—C2—S2124.3 (2)C13—C12—C11116.8 (3)
C4—C3—N3114.3 (3)C14—C13—C12119.7 (3)
C4—C3—C5126.2 (2)C14—C13—H13120.2
N3—C3—C5119.5 (2)C12—C13—H13120.2
C3—C4—S2111.6 (2)C15—C14—C13120.4 (3)
C3—C4—H4124.2C15—C14—H14119.8
S2—C4—H4124.2C13—C14—H14119.8
C10—C5—C6118.1 (3)C14—C15—C16120.3 (3)
C10—C5—C3121.2 (2)C14—C15—H15119.9
C6—C5—C3120.7 (2)C16—C15—H15119.9
C7—C6—C5120.9 (3)C17—C16—C15119.9 (3)
C7—C6—H6119.5C17—C16—H16120.1
C5—C6—H6119.5C15—C16—H16120.1
C6—C7—C8119.7 (2)C16—C17—C12120.2 (3)
C6—C7—H7120.1C16—C17—H17119.9
C8—C7—H7120.1C12—C17—H17119.9
C7—C8—C9120.7 (3)
C2—N1—C1—N2176.6 (2)C6—C7—C8—C90.1 (4)
C2—N1—C1—S13.2 (4)C6—C7—C8—Br1178.3 (2)
C11—N2—C1—N17.5 (4)C7—C8—C9—C100.3 (4)
C11—N2—C1—S1172.2 (2)Br1—C8—C9—C10178.0 (2)
C3—N3—C2—N1177.7 (2)C8—C9—C10—C50.0 (4)
C3—N3—C2—S20.5 (3)C6—C5—C10—C90.5 (4)
C1—N1—C2—N3175.8 (2)C3—C5—C10—C9178.3 (2)
C1—N1—C2—S22.2 (4)C1—N2—C11—O17.4 (4)
C4—S2—C2—N30.2 (2)C1—N2—C11—C12172.4 (2)
C4—S2—C2—N1177.9 (2)O1—C11—C12—C17161.6 (2)
C2—N3—C3—C40.6 (3)N2—C11—C12—C1718.2 (3)
C2—N3—C3—C5176.9 (2)O1—C11—C12—C1316.4 (4)
N3—C3—C4—S20.5 (3)N2—C11—C12—C13163.8 (2)
C5—C3—C4—S2176.8 (2)C17—C12—C13—C141.6 (4)
C2—S2—C4—C30.17 (19)C11—C12—C13—C14179.6 (2)
C4—C3—C5—C10165.8 (2)C12—C13—C14—C150.7 (4)
N3—C3—C5—C1017.0 (4)C13—C14—C15—C160.3 (4)
C4—C3—C5—C615.5 (4)C14—C15—C16—C170.4 (4)
N3—C3—C5—C6161.7 (2)C15—C16—C17—C120.5 (4)
C10—C5—C6—C70.7 (4)C13—C12—C17—C161.5 (4)
C3—C5—C6—C7178.1 (2)C11—C12—C17—C16179.4 (2)
C5—C6—C7—C80.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.932.644 (3)138
N2—H2···Br1i0.882.973.692 (3)141
C13—H13···O1ii0.952.533.340 (4)144
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1, y, z+1.
 

Acknowledgements

This work was supported financially by the Ministry of Education and Science of the Russian Federation in the program to improve the competitiveness of the Peoples' Friendship University of Russia (RUDN University) among the world's leading research and education centers in 2016–2020 and in the framework of State program No. 426.

References

First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationConnon, S. J. (2006). Chem. Eur. J. 12, 5418–5427.  CrossRef PubMed Google Scholar
First citationDu, W. & Curran, D. P. (2003). Org. Lett. 5, 1765–1768.  CrossRef PubMed CAS Google Scholar
First citationEl-Serwy, W. S., Mohamed, N. A. & Abdel-Rahman, R. F. (2015). Int. J. Pharm. Tech. 6, 7781–7798.  CAS Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKidwai, M., Venkataramanan, R. & Dave, B. (2001). Green Chem. 3, 278–279.  CrossRef CAS Google Scholar
First citationLin, I. W.-S., Lok, C.-N., Yan, K. & Che, C.-M. (2013). Chem. Commun. 49, 3297–3299.  CrossRef CAS Google Scholar
First citationMarXperts (2015). Automar. MarXperts GmbH, D-22844 Norderstedt, Germany.  Google Scholar
First citationMcCooey, S. H. & Connon, S. J. (2005). Angew. Chem. Int. Ed. 44, 6367–6370.  CrossRef CAS Google Scholar
First citationRauf, M. K., Yaseen, S., Badshah, A., Zaib, S., Arshad, R., Imtiaz-ud-Din, Tahir, M. N. & Iqbal, J. (2015). J. Biol. Inorg. Chem. 20, 541–554.  CSD CrossRef CAS PubMed Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G., Hussain, R. & Bhatti, M. H. (2010). Cent. Eur. J. Chem. 8, 550–558.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarkis, G. Y. & Faisal, E. D. (1985). J. Heterocycl. Chem. 22, 137–140.  CrossRef CAS Google Scholar
First citationSchreiner, P. R. (2003). Chem. Soc. Rev. 32, 289–296.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, D. P., Gangwar, M., Kumar, D., Nath, G. & Pratap, S. (2013). J. Chem. Crystallogr. 43, 610–621.  CSD CrossRef CAS Google Scholar
First citationSingh, D. P., Pratap, S., Yildirim, S. Ö. & Butcher, R. J. (2012). Acta Cryst. E68, o3295.  CSD CrossRef IUCr Journals Google Scholar
First citationStefanska, J., Stepien, K., Bielenica, A., Szulczyk, D., Miroslaw, B., Koziol, A. E., Sanna, G., Iuliano, F., Madeddu, S., Jozwiak, M. & Struga, M. (2016). Med. Chem. 12, 478–488.  CrossRef CAS PubMed Google Scholar
First citationTaylor, M. S. & Jacobsen, E. N. (2006). Angew. Chem. Int. Ed. 45, 1520–1543.  Web of Science CrossRef CAS Google Scholar
First citationWalpole, C., Ko, S. Y., Brown, M., Beattie, D., Campbell, E., Dickenson, F., Ewan, S., Hughes, G. A., Lemaire, M., Lerpiniere, J., Patel, S. & Urban, L. (1998). J. Med. Chem. 41, 3159–3173.  CrossRef CAS PubMed Google Scholar
First citationYunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Wong, W.-Y. (2008). Acta Cryst. E64, o20.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds