research communications
Crystal structures of N-[(4-phenylthiazol-2-yl)carbamothioyl]benzamide and N-{[4-(4-bromophenyl)thiazol-2-yl]carbamothioyl}benzamide from synchrotron X-ray diffraction
aLaboratory of Functional Heterocyclic Compounds, Togliatti State University, 14 Belorusskaya St., Togliatti 445020, Russian Federation, bNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, cInorganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and dX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: vnkhrustalev@gmail.com
The title compounds, C17H13N3OS2, (I), and C17H12BrN3OS2, (II), are potential active pharmaceutical ingredients. Compound (I) comprises two almost planar fragments. The first is the central (carbamothioyl)amide (r.m.s. deviation = 0.038 Å), and the second consists of the thiazole and two phenyl rings (r.m.s. deviation = 0.053 Å). The dihedral angle between these planes is 15.17 (5)°. Unlike (I), compound (II) comprises three almost planar fragments. The first is the central N-(thiazol-2-ylcarbamothioyl)amide (r.m.s. deviation = 0.084 Å), and the two others comprise the bromophenyl and phenyl substituents, respectively. The dihedral angles between the central and two terminal planar fragments are 21.58 (7) and 17.90 (9)°, respectively. Both (I) and (II) feature an intramolecular N—H⋯O hydrogen bond, which closes an S(6) ring. In the crystal of (I), molecules form hydrogen-bonded layers parallel to (100) mediated by N—H⋯S and C—H⋯O hydrogen bonds. In the crystal of (II), molecules form a three-dimensional framework mediated by N—H⋯Br and C—H⋯O hydrogen bonds, as well as secondary S⋯Br [3.3507 (11) Å] and S⋯S [3.4343 (14) Å] interactions.
Keywords: crystal structure; thiourea; thiazoles; synchrotron; hydrogen bonds.
1. Chemical context
Thioureas are the subject of significant interest owing to their biological properties as fungicides, herbicides (Walpole et al., 1998) and rodenticides (Sarkis & Faisal, 1985). It is also well-known that thiourea derivatives and their metal complexes exhibit analgesic (El-Serwy et al., 2015), anti-inflammatory (Lin et al., 2013), antimicrobial (Stefanska et al., 2016) and anticancer (Rauf et al., 2015) activities. Moreover, thiourea derivatives are valuable building blocks for the synthesis of guanidines and a variety of heterocycles (e.g. Kidwai et al., 2001; Du & Curran, 2003). Recently, thiourea derivatives were found to have use in organocatalysis (e.g. Connon, 2006; McCooey & Connon, 2005; Schreiner, 2003; Taylor & Jacobsen, 2006). For these reasons, a number of procedures have been reported for the synthesis of thioureas.
In this paper we report a synthetic approach for the preparation of the new thiourea derivatives (I) and (II) containing thiazole fragments, and their structural characterization by synchrotron single-crystal X-ray diffraction.
2. Structural commentary
Compound (I), C17H13N3OS2, comprises two almost planar fragments. The first is the central (carbamothioyl)amide grouping (r.m.s. deviation = 0.038 Å), and the second consists of the thiazole and two phenyl rings (r.m.s. deviation = 0.053 Å) (Fig. 1). The dihedral angle between these planes is 15.17 (5)°.
Unlike (I), compound (II), C17H12N3OS2Br, comprises three almost planar fragments: the first is the central N-(thiazol-2-ylcarbamothioyl)amide (r.m.s. deviation = 0.084 Å), and the two others comprise the bromophenyl and phenyl substituents, respectively (Fig. 2). The dihedral angles between the central and two terminal fragments are 21.58 (7) and 17.90 (9)°, respectively.
The planarity of the fragments found in (I) and (II) is determined by the present of bond conjugation within each of them as well as the intramolecular N1—H1⋯O1 hydrogen bond (Tables 1 and 2, Figs. 1 and 2). The different molecular conformations observed for (I) and (II) may apparently be explained by the various systems of intermolecular interactions present in the crystals (see the Supramolecular features section below).
|
|
The bond-length and angle distribution within molecules (I) and (II) are almost identical and in good agreement with those observed in related compounds (Singh et al., 2012, 2013). The values for the C—S—C angle in (I) [88.06 (8)°] and (II) [87.75 (14)°] are also very close to those in previously reported analogous structures [87.62 (7)–88.11 (8)°] (Yunus et al., 2008; Saeed et al., 2010).
3. Supramolecular features
Although the similarity of the molecular geometries and types of intramolecular hydrogen bonds might lead to similar packing motifs, this is not found in the case of (I) and (II). The intermolecular interactions, namely, N—H⋯X (X = S, Br) and C—H⋯O hydrogen bonding and the secondary S⋯S and S⋯Br interactions, combine in a different way, give rise to distinct packing motifs.
In (I), the crystal packing consists of hydrogen-bonded layers parallel to (100), in which the molecules are linked to each other by N2—H2⋯S1i and C13—H13⋯O1ii hydrogen bonds [Table 1, Fig. 3; symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, y − , −z + ]. No secondary S⋯S intermolecular interactions were observed in (I).
The situation in the case of (II) is quite different. The molecules of (II) form a three-dimensional framework mediated by the N2—H2⋯Br1i and C13—H13⋯O1ii hydrogen bonds (Table 2, Fig. 4) as well as the secondary S1⋯Br1iii [3.3507 (11) Å] and S2⋯S2iv [3.4343 (14) Å] interactions [symmetry codes: (i) x, −y + 1, z − ; (ii) −x + 1, −y, −z + 1; (iii) x, −y + 1, −z + 1; (iv) −x + , y + , −z + ; Fig. 4]. It should be pointed out that the secondary intermolecular S⋯Br and S⋯S interactions in (II) are significantly stronger than the intermolecular hydrogen bonds and, consequently, structure-forming.
4. Synthesis and crystallization
Benzoyl chloride (0.60 ml, 0.73 g, 5.19 mmol) was added over 5 min to a freshly prepared solution of NH4SCN (0.39 g, 5.19 mmol) in acetone (40 ml), and the mixture was heated under reflux for 15 min. After heating, the appropriate 4-arylthiazol-2-amine (4.33 mmol) in acetone (10 ml) was added. The mixture was heated again under reflux for 2 h (Fig. 5). Then excess cracked ice was added with vigorous stirring. The resulting solid was collected and liberally washed with water. These compounds were isolated as pale-yellow crystalline solids in 41% and 45% yield for the 4-phenyl (I) and 4-(4-bromophenyl) (II) derivatives, respectively. Single crystals of the products were obtained by slow crystallization from N,N-dimethylformamide solution.
Spectroscopic and physical data for (I): m.p. 481–483 K. FTIR νmax cm−1: 3025, 1671, 1518, 1441, 1246, 1170, 668, 561. 1H NMR (600 MHz, DMSO-d6, 304 K): δ = 7.35 (t, 1H, J = 7.3), 7.45 (t, 2H, J = 7.6), 7.56 (t, 2H, J = 7.6), 7.69 (t, 1H, J = 7.4), 7.74 (s, 1H), 7.94 (d, 2H, J = 7.8), 8.03 (d, 2H, J = 7.8), 12.18 (s, 1H), 14.27 (s, 1H). Analysis calculated for C17H13N3OS2: C, 60.16; H, 3.86; N, 12.38. Found: C, 60.22; H, 3.93; N, 12.47.
Spectroscopic and physical data for (II): m.p. 484–486 K. FTIR νmax cm−1: 3395, 3055, 1674, 1515, 1488, 1244, 1165, 697. 1H NMR (600 MHz, DMSO-d6,304 K): δ = 7.57 (t, 2H, J = 7.7), 7.64 (d, 2H, J = 8.0), 7.70 (t, 1H, J = 7.5), 7.83 (s, 1H), 7.90 (d, 2H, J = 8.1), 8.03 (d, 2H, J = 7.7), 1221 (s, 1H), 14.27 (s, 1H). Analysis calculated for C17H12N3OS2Br: C, 48.81; H, 2.89; N, 10.05. Found: C, 48.89; H, 2.95; N, 10.11.
5. Refinement
Crystal data, data collection and structure . X-ray diffraction studies were carried out on the `Belok' beamline (λ = 0.96990 Å) of the National Research Center `Kurchatov Institute' (Moscow, Russian Federation) using a MAR CCD detector. For each compound, a total of 360 images were collected using an oscillation range of 1.0° (φ scan mode) and corrected for absorption using the SCALA program (Evans, 2006). The data were indexed, integrated and scaled using the utility iMOSFLM in the program CCP4 (Battye et al., 2011).
details are summarized in Table 3The hydrogen atoms of the amino groups were localized in the difference-Fourier map and included in the Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and refined using in a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].
with fixed positional (riding model) and isotropic displacement parameters [Supporting information
https://doi.org/10.1107/S2056989016013396/hb7611sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016013396/hb7611Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989016013396/hb7611IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016013396/hb7611Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989016013396/hb7611IIsup5.cml
For both compounds, data collection: Automar (MarXperts, 2015); cell
iMOSFLM (Battye et al., 2011); data reduction: iMOSFLM (Battye et al., 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H13N3OS2 | F(000) = 704 |
Mr = 339.42 | Dx = 1.419 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.96990 Å |
a = 12.901 (3) Å | Cell parameters from 600 reflections |
b = 5.5160 (11) Å | θ = 2.4–34.0° |
c = 23.143 (5) Å | µ = 0.81 mm−1 |
β = 105.32 (3)° | T = 100 K |
V = 1588.4 (6) Å3 | Prism, colourless |
Z = 4 | 0.15 × 0.10 × 0.05 mm |
MAR CCD diffractometer | 2899 reflections with I > 2σ(I) |
φ scan | Rint = 0.033 |
Absorption correction: multi-scan (SCALA; Evans, 2006) | θmax = 38.5°, θmin = 2.2° |
Tmin = 0.870, Tmax = 0.950 | h = −16→16 |
26393 measured reflections | k = −6→7 |
3395 independent reflections | l = −29→28 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.0566P)2 + 0.566P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3395 reflections | Δρmax = 0.32 e Å−3 |
209 parameters | Δρmin = −0.32 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.0035 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.41550 (3) | 0.80075 (7) | 0.45047 (2) | 0.03118 (14) | |
S2 | 0.25885 (3) | 1.09330 (7) | 0.35070 (2) | 0.02857 (14) | |
O1 | 0.47826 (9) | 0.3167 (2) | 0.30362 (5) | 0.0333 (3) | |
N1 | 0.36884 (10) | 0.6692 (2) | 0.33491 (6) | 0.0279 (3) | |
H1 | 0.3853 | 0.5686 | 0.3068 | 0.033* | |
N2 | 0.49953 (10) | 0.4417 (2) | 0.40077 (5) | 0.0265 (3) | |
H2 | 0.5346 | 0.4048 | 0.4403 | 0.032* | |
N3 | 0.22879 (10) | 0.8127 (2) | 0.25771 (6) | 0.0270 (3) | |
C1 | 0.42612 (12) | 0.6327 (3) | 0.39203 (7) | 0.0262 (3) | |
C2 | 0.28765 (12) | 0.8397 (3) | 0.31264 (7) | 0.0265 (3) | |
C3 | 0.15407 (12) | 0.9994 (3) | 0.24243 (7) | 0.0266 (3) | |
C4 | 0.16011 (13) | 1.1685 (3) | 0.28659 (7) | 0.0291 (3) | |
H4 | 0.1159 | 1.3086 | 0.2826 | 0.035* | |
C5 | 0.07557 (12) | 0.9915 (3) | 0.18273 (7) | 0.0263 (3) | |
C6 | 0.07731 (13) | 0.7958 (3) | 0.14375 (7) | 0.0292 (3) | |
H6 | 0.1300 | 0.6722 | 0.1555 | 0.035* | |
C7 | 0.00219 (13) | 0.7826 (3) | 0.08808 (8) | 0.0342 (4) | |
H7 | 0.0038 | 0.6496 | 0.0623 | 0.041* | |
C8 | −0.07530 (13) | 0.9630 (3) | 0.06996 (8) | 0.0356 (4) | |
H8 | −0.1264 | 0.9529 | 0.0320 | 0.043* | |
C9 | −0.07725 (14) | 1.1582 (3) | 0.10782 (8) | 0.0343 (4) | |
H9 | −0.1298 | 1.2817 | 0.0956 | 0.041* | |
C10 | −0.00247 (13) | 1.1736 (3) | 0.16369 (7) | 0.0303 (4) | |
H10 | −0.0043 | 1.3080 | 0.1891 | 0.036* | |
C11 | 0.52613 (12) | 0.3002 (3) | 0.35705 (7) | 0.0268 (3) | |
C12 | 0.61647 (12) | 0.1241 (3) | 0.37854 (6) | 0.0259 (3) | |
C13 | 0.62162 (12) | −0.0727 (3) | 0.34049 (7) | 0.0280 (3) | |
H13 | 0.5687 | −0.0900 | 0.3034 | 0.034* | |
C14 | 0.70420 (13) | −0.2414 (3) | 0.35736 (7) | 0.0298 (3) | |
H14 | 0.7074 | −0.3746 | 0.3319 | 0.036* | |
C15 | 0.78246 (13) | −0.2151 (3) | 0.41177 (7) | 0.0318 (4) | |
H15 | 0.8389 | −0.3304 | 0.4232 | 0.038* | |
C16 | 0.77780 (13) | −0.0197 (3) | 0.44932 (7) | 0.0316 (4) | |
H16 | 0.8308 | −0.0031 | 0.4864 | 0.038* | |
C17 | 0.69563 (12) | 0.1514 (3) | 0.43264 (7) | 0.0282 (3) | |
H17 | 0.6934 | 0.2859 | 0.4579 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0401 (2) | 0.0298 (2) | 0.0231 (2) | 0.00420 (17) | 0.00737 (16) | −0.00296 (15) |
S2 | 0.0325 (2) | 0.0253 (2) | 0.0282 (2) | 0.00129 (15) | 0.00863 (15) | −0.00300 (15) |
O1 | 0.0376 (6) | 0.0382 (7) | 0.0228 (6) | 0.0089 (5) | 0.0059 (5) | −0.0010 (5) |
N1 | 0.0319 (7) | 0.0282 (7) | 0.0236 (6) | 0.0033 (6) | 0.0075 (5) | −0.0021 (5) |
N2 | 0.0288 (6) | 0.0286 (7) | 0.0214 (6) | 0.0022 (5) | 0.0056 (5) | 0.0004 (5) |
N3 | 0.0287 (6) | 0.0259 (7) | 0.0270 (7) | 0.0016 (5) | 0.0086 (5) | 0.0007 (5) |
C1 | 0.0271 (7) | 0.0260 (8) | 0.0264 (7) | −0.0013 (6) | 0.0087 (6) | 0.0004 (6) |
C2 | 0.0300 (8) | 0.0232 (8) | 0.0282 (8) | 0.0003 (6) | 0.0110 (6) | 0.0005 (6) |
C3 | 0.0276 (7) | 0.0231 (8) | 0.0314 (8) | 0.0003 (6) | 0.0120 (6) | 0.0024 (6) |
C4 | 0.0301 (8) | 0.0259 (8) | 0.0318 (8) | 0.0019 (6) | 0.0089 (6) | 0.0003 (6) |
C5 | 0.0265 (7) | 0.0239 (8) | 0.0300 (8) | −0.0012 (6) | 0.0103 (6) | 0.0026 (6) |
C6 | 0.0272 (7) | 0.0254 (8) | 0.0342 (8) | 0.0016 (6) | 0.0066 (6) | −0.0001 (6) |
C7 | 0.0342 (9) | 0.0286 (9) | 0.0375 (9) | 0.0005 (7) | 0.0058 (7) | −0.0038 (7) |
C8 | 0.0300 (8) | 0.0388 (10) | 0.0340 (8) | 0.0002 (7) | 0.0017 (7) | 0.0012 (7) |
C9 | 0.0330 (8) | 0.0323 (9) | 0.0377 (9) | 0.0087 (7) | 0.0098 (7) | 0.0063 (7) |
C10 | 0.0336 (8) | 0.0270 (8) | 0.0328 (8) | 0.0053 (7) | 0.0131 (7) | 0.0019 (6) |
C11 | 0.0282 (8) | 0.0290 (8) | 0.0234 (7) | −0.0012 (6) | 0.0074 (6) | 0.0001 (6) |
C12 | 0.0274 (7) | 0.0271 (8) | 0.0243 (7) | −0.0009 (6) | 0.0091 (6) | 0.0011 (6) |
C13 | 0.0291 (8) | 0.0306 (8) | 0.0252 (7) | −0.0022 (6) | 0.0085 (6) | −0.0013 (6) |
C14 | 0.0336 (8) | 0.0287 (8) | 0.0301 (8) | 0.0000 (7) | 0.0135 (6) | −0.0015 (6) |
C15 | 0.0320 (8) | 0.0309 (9) | 0.0343 (9) | 0.0065 (7) | 0.0120 (7) | 0.0050 (7) |
C16 | 0.0290 (8) | 0.0387 (10) | 0.0259 (8) | 0.0022 (7) | 0.0053 (6) | 0.0020 (7) |
C17 | 0.0317 (8) | 0.0287 (8) | 0.0250 (8) | −0.0014 (7) | 0.0089 (6) | −0.0011 (6) |
S1—C1 | 1.6747 (16) | C7—C8 | 1.394 (2) |
S2—C4 | 1.7313 (17) | C7—H7 | 0.9500 |
S2—C2 | 1.7447 (16) | C8—C9 | 1.393 (3) |
O1—C11 | 1.2308 (19) | C8—H8 | 0.9500 |
N1—C1 | 1.348 (2) | C9—C10 | 1.397 (2) |
N1—C2 | 1.401 (2) | C9—H9 | 0.9500 |
N1—H1 | 0.9210 | C10—H10 | 0.9500 |
N2—C11 | 1.3909 (19) | C11—C12 | 1.498 (2) |
N2—C1 | 1.395 (2) | C12—C17 | 1.399 (2) |
N2—H2 | 0.9300 | C12—C13 | 1.410 (2) |
N3—C2 | 1.306 (2) | C13—C14 | 1.391 (2) |
N3—C3 | 1.391 (2) | C13—H13 | 0.9500 |
C3—C4 | 1.371 (2) | C14—C15 | 1.398 (2) |
C3—C5 | 1.482 (2) | C14—H14 | 0.9500 |
C4—H4 | 0.9500 | C15—C16 | 1.396 (2) |
C5—C10 | 1.408 (2) | C15—H15 | 0.9500 |
C5—C6 | 1.411 (2) | C16—C17 | 1.395 (2) |
C6—C7 | 1.395 (2) | C16—H16 | 0.9500 |
C6—H6 | 0.9500 | C17—H17 | 0.9500 |
C4—S2—C2 | 88.06 (8) | C9—C8—H8 | 120.2 |
C1—N1—C2 | 128.58 (13) | C7—C8—H8 | 120.2 |
C1—N1—H1 | 115.7 | C8—C9—C10 | 120.43 (15) |
C2—N1—H1 | 115.7 | C8—C9—H9 | 119.8 |
C11—N2—C1 | 127.36 (13) | C10—C9—H9 | 119.8 |
C11—N2—H2 | 116.3 | C9—C10—C5 | 120.55 (15) |
C1—N2—H2 | 116.3 | C9—C10—H10 | 119.7 |
C2—N3—C3 | 110.42 (13) | C5—C10—H10 | 119.7 |
N1—C1—N2 | 115.46 (13) | O1—C11—N2 | 122.31 (14) |
N1—C1—S1 | 124.67 (12) | O1—C11—C12 | 121.44 (14) |
N2—C1—S1 | 119.87 (11) | N2—C11—C12 | 116.25 (13) |
N3—C2—N1 | 117.88 (14) | C17—C12—C13 | 119.85 (14) |
N3—C2—S2 | 115.87 (12) | C17—C12—C11 | 123.20 (14) |
N1—C2—S2 | 126.22 (12) | C13—C12—C11 | 116.92 (13) |
C4—C3—N3 | 114.53 (14) | C14—C13—C12 | 119.92 (14) |
C4—C3—C5 | 127.25 (14) | C14—C13—H13 | 120.0 |
N3—C3—C5 | 118.17 (14) | C12—C13—H13 | 120.0 |
C3—C4—S2 | 111.10 (12) | C13—C14—C15 | 120.06 (15) |
C3—C4—H4 | 124.5 | C13—C14—H14 | 120.0 |
S2—C4—H4 | 124.5 | C15—C14—H14 | 120.0 |
C10—C5—C6 | 118.47 (15) | C16—C15—C14 | 120.09 (15) |
C10—C5—C3 | 121.79 (14) | C16—C15—H15 | 120.0 |
C6—C5—C3 | 119.73 (14) | C14—C15—H15 | 120.0 |
C7—C6—C5 | 120.38 (15) | C15—C16—C17 | 120.29 (15) |
C7—C6—H6 | 119.8 | C15—C16—H16 | 119.9 |
C5—C6—H6 | 119.8 | C17—C16—H16 | 119.9 |
C8—C7—C6 | 120.58 (16) | C16—C17—C12 | 119.77 (15) |
C8—C7—H7 | 119.7 | C16—C17—H17 | 120.1 |
C6—C7—H7 | 119.7 | C12—C17—H17 | 120.1 |
C9—C8—C7 | 119.56 (16) | ||
C2—N1—C1—N2 | 177.74 (14) | C5—C6—C7—C8 | 0.3 (3) |
C2—N1—C1—S1 | −3.2 (2) | C6—C7—C8—C9 | 0.2 (3) |
C11—N2—C1—N1 | 5.9 (2) | C7—C8—C9—C10 | −0.2 (3) |
C11—N2—C1—S1 | −173.23 (12) | C8—C9—C10—C5 | −0.4 (2) |
C3—N3—C2—N1 | −178.70 (13) | C6—C5—C10—C9 | 0.9 (2) |
C3—N3—C2—S2 | −0.34 (17) | C3—C5—C10—C9 | −178.30 (14) |
C1—N1—C2—N3 | −166.94 (15) | C1—N2—C11—O1 | −6.7 (2) |
C1—N1—C2—S2 | 14.9 (2) | C1—N2—C11—C12 | 173.58 (14) |
C4—S2—C2—N3 | −0.53 (12) | O1—C11—C12—C17 | 157.43 (15) |
C4—S2—C2—N1 | 177.67 (14) | N2—C11—C12—C17 | −22.9 (2) |
C2—N3—C3—C4 | 1.36 (19) | O1—C11—C12—C13 | −20.5 (2) |
C2—N3—C3—C5 | −176.47 (13) | N2—C11—C12—C13 | 159.15 (13) |
N3—C3—C4—S2 | −1.76 (17) | C17—C12—C13—C14 | 1.2 (2) |
C5—C3—C4—S2 | 175.84 (12) | C11—C12—C13—C14 | 179.22 (13) |
C2—S2—C4—C3 | 1.25 (12) | C12—C13—C14—C15 | −0.5 (2) |
C4—C3—C5—C10 | 2.7 (2) | C13—C14—C15—C16 | 0.1 (2) |
N3—C3—C5—C10 | −179.82 (13) | C14—C15—C16—C17 | −0.5 (2) |
C4—C3—C5—C6 | −176.52 (15) | C15—C16—C17—C12 | 1.2 (2) |
N3—C3—C5—C6 | 1.0 (2) | C13—C12—C17—C16 | −1.6 (2) |
C10—C5—C6—C7 | −0.9 (2) | C11—C12—C17—C16 | −179.47 (14) |
C3—C5—C6—C7 | 178.33 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.92 | 1.85 | 2.6145 (18) | 139 |
N2—H2···S1i | 0.93 | 2.69 | 3.5845 (15) | 162 |
C13—H13···O1ii | 0.95 | 2.44 | 3.299 (2) | 150 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y−1/2, −z+1/2. |
C17H12BrN3OS2 | F(000) = 1680 |
Mr = 418.33 | Dx = 1.681 Mg m−3 |
Monoclinic, C2/c | Synchrotron radiation, λ = 0.96990 Å |
a = 37.210 (7) Å | Cell parameters from 500 reflections |
b = 4.0000 (8) Å | θ = 4.0–33.0° |
c = 28.450 (6) Å | µ = 1.56 mm−1 |
β = 128.69 (3)° | T = 100 K |
V = 3305.2 (18) Å3 | Prism, colourless |
Z = 8 | 0.07 × 0.05 × 0.03 mm |
MAR CCD diffractometer | 2523 reflections with I > 2σ(I) |
φ scan | Rint = 0.065 |
Absorption correction: multi-scan (SCALA; Evans, 2006) | θmax = 38.4°, θmin = 4.0° |
Tmin = 0.880, Tmax = 0.930 | h = −44→44 |
13698 measured reflections | k = −4→4 |
3267 independent reflections | l = −32→32 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.02P)2] where P = (Fo2 + 2Fc2)/3 |
3267 reflections | (Δ/σ)max = 0.002 |
217 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −0.78 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.66455 (2) | 0.24056 (7) | 0.96731 (2) | 0.02282 (14) | |
S1 | 0.67189 (2) | 0.95707 (16) | 0.58750 (3) | 0.02136 (19) | |
S2 | 0.70200 (2) | 0.97423 (15) | 0.71326 (3) | 0.01827 (18) | |
O1 | 0.55011 (6) | 0.3045 (5) | 0.53088 (9) | 0.0239 (5) | |
N1 | 0.62216 (7) | 0.6652 (5) | 0.61537 (10) | 0.0176 (5) | |
H1 | 0.5969 | 0.5551 | 0.6017 | 0.021* | |
N2 | 0.59498 (7) | 0.6073 (5) | 0.51692 (9) | 0.0194 (5) | |
H2 | 0.5969 | 0.6736 | 0.4890 | 0.023* | |
N3 | 0.64079 (7) | 0.6390 (5) | 0.71031 (9) | 0.0178 (5) | |
C1 | 0.62849 (9) | 0.7359 (6) | 0.57480 (13) | 0.0183 (7) | |
C2 | 0.65111 (9) | 0.7460 (6) | 0.67684 (13) | 0.0173 (6) | |
C3 | 0.67476 (9) | 0.7355 (6) | 0.76996 (13) | 0.0167 (6) | |
C4 | 0.70985 (8) | 0.9180 (6) | 0.77919 (12) | 0.0197 (6) | |
H4 | 0.7353 | 1.0029 | 0.8172 | 0.024* | |
C5 | 0.67149 (8) | 0.6265 (6) | 0.81672 (11) | 0.0175 (6) | |
C6 | 0.71033 (9) | 0.6346 (7) | 0.87798 (12) | 0.0213 (6) | |
H6 | 0.7387 | 0.7176 | 0.8894 | 0.026* | |
C7 | 0.70779 (8) | 0.5233 (6) | 0.92191 (12) | 0.0219 (7) | |
H7 | 0.7343 | 0.5286 | 0.9631 | 0.026* | |
C8 | 0.66619 (8) | 0.4035 (6) | 0.90546 (12) | 0.0193 (6) | |
C9 | 0.62698 (9) | 0.3949 (7) | 0.84512 (12) | 0.0223 (6) | |
H9 | 0.5986 | 0.3141 | 0.8340 | 0.027* | |
C10 | 0.63006 (9) | 0.5062 (6) | 0.80154 (12) | 0.0216 (6) | |
H10 | 0.6034 | 0.5006 | 0.7604 | 0.026* | |
C11 | 0.55924 (8) | 0.3889 (6) | 0.49790 (12) | 0.0187 (6) | |
C12 | 0.53267 (9) | 0.2627 (6) | 0.43455 (13) | 0.0184 (7) | |
C13 | 0.48960 (8) | 0.1152 (7) | 0.40853 (12) | 0.0216 (6) | |
H13 | 0.4785 | 0.1002 | 0.4308 | 0.026* | |
C14 | 0.46331 (9) | −0.0089 (6) | 0.34991 (12) | 0.0239 (7) | |
H14 | 0.4341 | −0.1062 | 0.3321 | 0.029* | |
C15 | 0.47950 (9) | 0.0089 (6) | 0.31750 (13) | 0.0253 (7) | |
H15 | 0.4613 | −0.0754 | 0.2775 | 0.030* | |
C16 | 0.52255 (9) | 0.1505 (7) | 0.34332 (13) | 0.0262 (7) | |
H16 | 0.5337 | 0.1612 | 0.3210 | 0.031* | |
C17 | 0.54912 (9) | 0.2757 (6) | 0.40176 (13) | 0.0225 (7) | |
H17 | 0.5785 | 0.3702 | 0.4194 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0213 (2) | 0.0297 (2) | 0.0189 (2) | 0.00396 (11) | 0.01329 (17) | 0.00383 (11) |
S1 | 0.0214 (3) | 0.0250 (3) | 0.0184 (4) | −0.0048 (3) | 0.0128 (3) | −0.0023 (3) |
S2 | 0.0148 (3) | 0.0215 (3) | 0.0161 (4) | −0.0005 (2) | 0.0085 (3) | −0.0005 (2) |
O1 | 0.0196 (10) | 0.0343 (11) | 0.0182 (11) | −0.0039 (8) | 0.0119 (9) | 0.0011 (8) |
N1 | 0.0130 (10) | 0.0241 (11) | 0.0136 (12) | −0.0010 (8) | 0.0073 (10) | 0.0011 (9) |
N2 | 0.0181 (10) | 0.0249 (12) | 0.0119 (11) | −0.0010 (9) | 0.0078 (9) | 0.0018 (9) |
N3 | 0.0145 (10) | 0.0206 (11) | 0.0136 (11) | 0.0014 (9) | 0.0066 (9) | 0.0006 (9) |
C1 | 0.0154 (13) | 0.0199 (13) | 0.0149 (15) | 0.0050 (9) | 0.0072 (12) | 0.0032 (9) |
C2 | 0.0154 (13) | 0.0217 (14) | 0.0132 (14) | 0.0026 (9) | 0.0082 (12) | 0.0013 (9) |
C3 | 0.0144 (13) | 0.0169 (13) | 0.0156 (15) | 0.0024 (9) | 0.0079 (12) | −0.0009 (9) |
C4 | 0.0179 (12) | 0.0214 (13) | 0.0144 (14) | 0.0000 (10) | 0.0075 (11) | −0.0006 (10) |
C5 | 0.0171 (12) | 0.0196 (12) | 0.0132 (13) | 0.0035 (10) | 0.0083 (11) | 0.0004 (10) |
C6 | 0.0141 (12) | 0.0292 (14) | 0.0185 (15) | 0.0000 (11) | 0.0091 (12) | 0.0000 (11) |
C7 | 0.0141 (12) | 0.0308 (15) | 0.0129 (14) | 0.0024 (10) | 0.0046 (11) | −0.0020 (10) |
C8 | 0.0187 (12) | 0.0231 (13) | 0.0160 (14) | 0.0038 (10) | 0.0108 (11) | 0.0004 (10) |
C9 | 0.0186 (13) | 0.0268 (14) | 0.0211 (15) | −0.0028 (11) | 0.0122 (12) | −0.0021 (11) |
C10 | 0.0169 (12) | 0.0291 (14) | 0.0146 (14) | 0.0000 (10) | 0.0078 (11) | −0.0017 (10) |
C11 | 0.0131 (12) | 0.0221 (13) | 0.0142 (14) | 0.0019 (10) | 0.0054 (11) | 0.0031 (10) |
C12 | 0.0135 (13) | 0.0212 (14) | 0.0144 (15) | 0.0023 (9) | 0.0057 (12) | 0.0015 (9) |
C13 | 0.0174 (13) | 0.0244 (14) | 0.0193 (15) | 0.0022 (11) | 0.0097 (12) | 0.0018 (11) |
C14 | 0.0148 (13) | 0.0256 (14) | 0.0218 (15) | −0.0017 (10) | 0.0068 (12) | −0.0014 (11) |
C15 | 0.0212 (13) | 0.0269 (15) | 0.0161 (14) | 0.0000 (10) | 0.0059 (12) | −0.0025 (11) |
C16 | 0.0268 (15) | 0.0312 (15) | 0.0199 (15) | −0.0015 (12) | 0.0142 (13) | −0.0025 (12) |
C17 | 0.0153 (13) | 0.0269 (15) | 0.0186 (16) | −0.0029 (10) | 0.0073 (13) | −0.0004 (10) |
Br1—C8 | 1.913 (3) | C6—H6 | 0.9500 |
S1—C1 | 1.670 (3) | C7—C8 | 1.393 (4) |
S2—C4 | 1.723 (3) | C7—H7 | 0.9500 |
S2—C2 | 1.743 (3) | C8—C9 | 1.395 (4) |
O1—C11 | 1.228 (4) | C9—C10 | 1.388 (4) |
N1—C1 | 1.345 (4) | C9—H9 | 0.9500 |
N1—C2 | 1.403 (4) | C10—H10 | 0.9500 |
N1—H1 | 0.8800 | C11—C12 | 1.501 (4) |
N2—C11 | 1.387 (3) | C12—C17 | 1.401 (5) |
N2—C1 | 1.401 (3) | C12—C13 | 1.408 (4) |
N2—H2 | 0.8800 | C13—C14 | 1.394 (4) |
N3—C2 | 1.302 (4) | C13—H13 | 0.9500 |
N3—C3 | 1.394 (3) | C14—C15 | 1.383 (4) |
C3—C4 | 1.370 (4) | C14—H14 | 0.9500 |
C3—C5 | 1.476 (4) | C15—C16 | 1.398 (4) |
C4—H4 | 0.9500 | C15—H15 | 0.9500 |
C5—C10 | 1.401 (4) | C16—C17 | 1.392 (4) |
C5—C6 | 1.407 (3) | C16—H16 | 0.9500 |
C6—C7 | 1.385 (4) | C17—H17 | 0.9500 |
C4—S2—C2 | 87.75 (14) | C7—C8—Br1 | 118.4 (2) |
C1—N1—C2 | 127.7 (2) | C9—C8—Br1 | 120.9 (2) |
C1—N1—H1 | 116.1 | C10—C9—C8 | 119.0 (3) |
C2—N1—H1 | 116.1 | C10—C9—H9 | 120.5 |
C11—N2—C1 | 128.4 (3) | C8—C9—H9 | 120.5 |
C11—N2—H2 | 115.8 | C9—C10—C5 | 121.6 (2) |
C1—N2—H2 | 115.8 | C9—C10—H10 | 119.2 |
C2—N3—C3 | 110.0 (2) | C5—C10—H10 | 119.2 |
N1—C1—N2 | 115.3 (2) | O1—C11—N2 | 122.0 (3) |
N1—C1—S1 | 126.2 (2) | O1—C11—C12 | 122.4 (2) |
N2—C1—S1 | 118.6 (2) | N2—C11—C12 | 115.6 (3) |
N3—C2—N1 | 119.2 (2) | C17—C12—C13 | 119.6 (3) |
N3—C2—S2 | 116.4 (2) | C17—C12—C11 | 123.6 (2) |
N1—C2—S2 | 124.3 (2) | C13—C12—C11 | 116.8 (3) |
C4—C3—N3 | 114.3 (3) | C14—C13—C12 | 119.7 (3) |
C4—C3—C5 | 126.2 (2) | C14—C13—H13 | 120.2 |
N3—C3—C5 | 119.5 (2) | C12—C13—H13 | 120.2 |
C3—C4—S2 | 111.6 (2) | C15—C14—C13 | 120.4 (3) |
C3—C4—H4 | 124.2 | C15—C14—H14 | 119.8 |
S2—C4—H4 | 124.2 | C13—C14—H14 | 119.8 |
C10—C5—C6 | 118.1 (3) | C14—C15—C16 | 120.3 (3) |
C10—C5—C3 | 121.2 (2) | C14—C15—H15 | 119.9 |
C6—C5—C3 | 120.7 (2) | C16—C15—H15 | 119.9 |
C7—C6—C5 | 120.9 (3) | C17—C16—C15 | 119.9 (3) |
C7—C6—H6 | 119.5 | C17—C16—H16 | 120.1 |
C5—C6—H6 | 119.5 | C15—C16—H16 | 120.1 |
C6—C7—C8 | 119.7 (2) | C16—C17—C12 | 120.2 (3) |
C6—C7—H7 | 120.1 | C16—C17—H17 | 119.9 |
C8—C7—H7 | 120.1 | C12—C17—H17 | 119.9 |
C7—C8—C9 | 120.7 (3) | ||
C2—N1—C1—N2 | 176.6 (2) | C6—C7—C8—C9 | −0.1 (4) |
C2—N1—C1—S1 | −3.2 (4) | C6—C7—C8—Br1 | 178.3 (2) |
C11—N2—C1—N1 | −7.5 (4) | C7—C8—C9—C10 | 0.3 (4) |
C11—N2—C1—S1 | 172.2 (2) | Br1—C8—C9—C10 | −178.0 (2) |
C3—N3—C2—N1 | 177.7 (2) | C8—C9—C10—C5 | 0.0 (4) |
C3—N3—C2—S2 | −0.5 (3) | C6—C5—C10—C9 | −0.5 (4) |
C1—N1—C2—N3 | −175.8 (2) | C3—C5—C10—C9 | 178.3 (2) |
C1—N1—C2—S2 | 2.2 (4) | C1—N2—C11—O1 | 7.4 (4) |
C4—S2—C2—N3 | 0.2 (2) | C1—N2—C11—C12 | −172.4 (2) |
C4—S2—C2—N1 | −177.9 (2) | O1—C11—C12—C17 | −161.6 (2) |
C2—N3—C3—C4 | 0.6 (3) | N2—C11—C12—C17 | 18.2 (3) |
C2—N3—C3—C5 | −176.9 (2) | O1—C11—C12—C13 | 16.4 (4) |
N3—C3—C4—S2 | −0.5 (3) | N2—C11—C12—C13 | −163.8 (2) |
C5—C3—C4—S2 | 176.8 (2) | C17—C12—C13—C14 | −1.6 (4) |
C2—S2—C4—C3 | 0.17 (19) | C11—C12—C13—C14 | −179.6 (2) |
C4—C3—C5—C10 | 165.8 (2) | C12—C13—C14—C15 | 0.7 (4) |
N3—C3—C5—C10 | −17.0 (4) | C13—C14—C15—C16 | 0.3 (4) |
C4—C3—C5—C6 | −15.5 (4) | C14—C15—C16—C17 | −0.4 (4) |
N3—C3—C5—C6 | 161.7 (2) | C15—C16—C17—C12 | −0.5 (4) |
C10—C5—C6—C7 | 0.7 (4) | C13—C12—C17—C16 | 1.5 (4) |
C3—C5—C6—C7 | −178.1 (2) | C11—C12—C17—C16 | 179.4 (2) |
C5—C6—C7—C8 | −0.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.88 | 1.93 | 2.644 (3) | 138 |
N2—H2···Br1i | 0.88 | 2.97 | 3.692 (3) | 141 |
C13—H13···O1ii | 0.95 | 2.53 | 3.340 (4) | 144 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+1, −y, −z+1. |
Acknowledgements
This work was supported financially by the Ministry of Education and Science of the Russian Federation in the program to improve the competitiveness of the Peoples' Friendship University of Russia (RUDN University) among the world's leading research and education centers in 2016–2020 and in the framework of State program No. 426.
References
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Connon, S. J. (2006). Chem. Eur. J. 12, 5418–5427. CrossRef PubMed Google Scholar
Du, W. & Curran, D. P. (2003). Org. Lett. 5, 1765–1768. CrossRef PubMed CAS Google Scholar
El-Serwy, W. S., Mohamed, N. A. & Abdel-Rahman, R. F. (2015). Int. J. Pharm. Tech. 6, 7781–7798. CAS Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kidwai, M., Venkataramanan, R. & Dave, B. (2001). Green Chem. 3, 278–279. CrossRef CAS Google Scholar
Lin, I. W.-S., Lok, C.-N., Yan, K. & Che, C.-M. (2013). Chem. Commun. 49, 3297–3299. CrossRef CAS Google Scholar
MarXperts (2015). Automar. MarXperts GmbH, D-22844 Norderstedt, Germany. Google Scholar
McCooey, S. H. & Connon, S. J. (2005). Angew. Chem. Int. Ed. 44, 6367–6370. CrossRef CAS Google Scholar
Rauf, M. K., Yaseen, S., Badshah, A., Zaib, S., Arshad, R., Imtiaz-ud-Din, Tahir, M. N. & Iqbal, J. (2015). J. Biol. Inorg. Chem. 20, 541–554. CSD CrossRef CAS PubMed Google Scholar
Saeed, S., Rashid, N., Jones, P. G., Hussain, R. & Bhatti, M. H. (2010). Cent. Eur. J. Chem. 8, 550–558. Web of Science CSD CrossRef CAS Google Scholar
Sarkis, G. Y. & Faisal, E. D. (1985). J. Heterocycl. Chem. 22, 137–140. CrossRef CAS Google Scholar
Schreiner, P. R. (2003). Chem. Soc. Rev. 32, 289–296. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, D. P., Gangwar, M., Kumar, D., Nath, G. & Pratap, S. (2013). J. Chem. Crystallogr. 43, 610–621. CSD CrossRef CAS Google Scholar
Singh, D. P., Pratap, S., Yildirim, S. Ö. & Butcher, R. J. (2012). Acta Cryst. E68, o3295. CSD CrossRef IUCr Journals Google Scholar
Stefanska, J., Stepien, K., Bielenica, A., Szulczyk, D., Miroslaw, B., Koziol, A. E., Sanna, G., Iuliano, F., Madeddu, S., Jozwiak, M. & Struga, M. (2016). Med. Chem. 12, 478–488. CrossRef CAS PubMed Google Scholar
Taylor, M. S. & Jacobsen, E. N. (2006). Angew. Chem. Int. Ed. 45, 1520–1543. Web of Science CrossRef CAS Google Scholar
Walpole, C., Ko, S. Y., Brown, M., Beattie, D., Campbell, E., Dickenson, F., Ewan, S., Hughes, G. A., Lemaire, M., Lerpiniere, J., Patel, S. & Urban, L. (1998). J. Med. Chem. 41, 3159–3173. CrossRef CAS PubMed Google Scholar
Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Wong, W.-Y. (2008). Acta Cryst. E64, o20. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.