research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of methyl 3′-benzamido-4′-(4-meth­­oxy­phen­yl)-1′-methyl­spiro­[indeno­[1,2-b]quinoxaline-11,2′-pyrrolidine]-3′-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aResearch Department of Physics, S. D. N. B. Vaishnav College for Women, Chromepet, Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 17 July 2016; accepted 2 August 2016; online 5 August 2016)

In the title compound, C35H30N4O3, the spiro C atom connects the five-membered pyrrolidine ring and the indeno­quinoxaline ring system. The pyrrolidine ring adopts a twist conformation. An intra­molecular N—H⋯N inter­action between the amino group and the pyrazine ring is observed. In the crystal, mol­ecules are linked by a pairs of C—H⋯O hydrogen bonds, forming inversion dimers.

1. Chemical context

Spiro pyrrolidine derivatives act as potential anti­leukemic (Abou-Gharbia & Doukas, 1979[Abou-Gharbia, M. A. & Doukas, P. H. (1979). Heterocycles, 12, 637-640.]), anti­convulsant (Jiang et al., 2006[Jiang, H., Zhao, J., Han, X. & Zhu, S. (2006). Tetrahedron, 62, 11008-11011.]), anti­viral (Lundahl et al., 1972[Lundahl, K., Schut, J., Schlatmann, J. L. M. A., Paerels, G. B. & Peters, A. J. (1972). J. Med. Chem. 15, 129-132.]) and anti-inflammatory (Hussein & Abdel-Monem, 2011[Hussein, E. M. & Abdel-Monem, M. I. (2011). ARKIVOC, x, 85-98.]) agents. Indeno­quinoxaline derivatives possess anti­metabolism properties (Sehlstedt et al., 1998[Sehlstedt, U., Aich, P., Bergman, J., Vallberg, H., Nordén, B. & Gräslund, A. (1998). J. Mol. Biol. 278, 31-56.]) and find applications in dyes. They are also used as building blocks for the synthesis of organic semiconductors (Gazit et al., 1996[Gazit, A., App, H., McMahon, G., Chen, J., Levitzki, A. & Bohmer, F. D. (1996). J. Med. Chem. 39, 2170-2177.]).

[Scheme 1]

The synthesis of di­spiro­indeno­quinoxaline pyrrolidine derivatives has been achieved by one-pot four-component 1,3-dipolar cyclo­addition reaction (Suresh Babu & Raghunathan, 2008[Suresh Babu, A. R. & Raghunathan, R. (2008). Synth. Commun. 38, 1433-1438.]) while ninhydrin-based one-pot four-component condensation reaction yielded novel alkyl­spiro­[indeno­[1,2-b]quinoxaline-11,3′-pyrrolizine]-2′-carboxyl­ate derivatives (Karsalary et al., 2010[Karsalary, A. A., Mohammadizadeh, M. R., Hasaninejad, A. R., Mohammadi, A. A. & Karimi, A. R. (2010). J. Iran. Chem. Soc. 7, 45-50.]). A series of original spiro­pyrrolizidine derivatives was synthesized by a one-pot three-component [3 + 2] cyclo­addition reaction; these exhibit extensive hydrogen bonding in the crystalline state (Haddad et al., 2015[Haddad, S., Boudriga, S., Porzio, F., Soldera, A., Askri, M., Knorr, M., Rousselin, Y., Kubicki, M. M., Golz, C. & Strohmann, C. (2015). J. Org. Chem. 80, 9064-9075.]).

2. Structural commentary

In the title compound (Fig. 1[link]), the four-fused-ring system of the 11H-indeno­[1,2-b]quinoxaline unit is approximately planar and forms a dihedral angle of 59.16 (7)° with the C29–C34 methyl­benzene ring. The methyl-substituted C7/C16/C26/C27/N4 pyrrolidine ring is in a twist conformation with puckering parameters Q(2) = 0.4238 (18) Å and φ = 215.8 (2)°. The mean plane through the C7/C16/C26/C27/N4 pyrrolidine ring is approximately orthogonal to the mean plane of the C5–C9 cyclo­pentane ring, subtending a dihedral angle of 88.78 (10)°. The mean plane of the pyrrolidine ring makes a dihedral angle of 70.33 (10)° with the attached benzene ring. The sum of bond angles around nitro­gen atom of the pyrrol­idine ring (337.11°) is in agreement with sp3 hybridization. An intra­molecular N—H⋯N hydrogen bond stabilizes the mol­ecular conformation (see Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N1 0.86 2.27 2.8107 (18) 121
C21—H33⋯O3i 0.93 2.54 3.347 (2) 146
Symmetry code: (i) -x+2, -y+1, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small arbitrary radius.
[Figure 2]
Figure 2
Partial packing diagram for the title compound, showing the formation of dimers via C—H⋯O inter­actions (dashed lines). The intra­molecular N—H⋯N hydrogen bond is also shown (dashed lines).

3. Supra­molecular features

In the crystal, symmetry-related enanti­omeric mol­ecules are linked through pairs of C—H⋯O inter­actions (Table 1[link]), forming dimers with an R22(10) graph-set motif. This inter­molecular C—H⋯O hydrogen bond, along with the intra­molecular N—H⋯N inter­action, plays an important role in stabilizing the packing of the mol­ecules.

4. Database Survey

A search of the Cambridge Structural Database (Version 5.36, last update May 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that the number of compounds containing a pyrrolidine ring is 2420 and a quinoxaline unit is 1265. Out of these entries, only 14 compounds were found to possess both pyrrolidine and quinoxaline ring systems. The geometry of the pyrrolidine ring of the title compound compares well with those reported for similar structures, for example, 4-ferrocenyl-1-methyl-3-benzoyl­spiro­[pyrrolidine-2,11′-indeno­[1,2-b]-quinoxaline (refcode: EDUSED; Vijayakumar et al., 2012[Vijayakumar, B., Sureshbabu, A. R., Gavaskar, D., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, m1576-m1577.]). The bond lengths and bond angles of quinoxalin unit are in good agreement with reported values of a related structure (refcode: MOKNUX; Chandralekha et al., 2014[Chandralekha, K., Gavaskar, D., Sureshbabu, A. R. & Lakshmi, S. (2014). Acta Cryst. E70, 124-126.]). The N—H⋯N hydrogen bond is a rare occurrence in these type of compounds (refcodes: IFOQIF, NINVEN, NIPDUN, LOSKAH, HOWCIH, BENDEF, CEFDOI, EDUSED).

5. Synthesis and crystallization

A mixture of ninhydrin (1 mmol) and 1,2-phenyl­enedi­amine (1 mmol) were stirred for 15 min in methanol (10 mL). Then, to this was added a solution of 4-(4-methyl­benzyl­idene)-2-phenyl-4H-oxazole-5-one (1 mmol) and sarcosine (1 mmol) in methanol (10 mL). The reaction mixture was refluxed for 16–18 h and the progress of the reaction was monitored by TLC. After the completion of the reaction as evidenced by TLC, the excess solvent was removed under vacuum and the crude product was purified by column chromatography using a mixture of petroleum ether and ethyl acetate as eluent (4:1). Single crystals suitable for the X-ray diffraction analysis were obtained by slow evaporation of the solvent at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in calculated positions, with C—H = 0.93–0.98 and N—H = 0.86 Å, and were refined using a riding-model approximation, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms. A rotating model was applied to the methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C35H30N4O3
Mr 554.63
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 10.1194 (4), 10.8066 (4), 14.9948 (6)
α, β, γ (°) 110.57 (2), 97.10 (2), 106.17 (2)
V3) 1429.1 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.719, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 42242, 8042, 4733
Rint 0.034
(sin θ/λ)max−1) 0.717
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.140, 1.03
No. of reflections 8042
No. of parameters 383
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Methyl 3'-benzamido-4'-(4-methoxyphenyl)-1'-methylspiro[indeno[1,2-b]quinoxaline-11,2'-pyrrolidine]-3'-carboxylate top
Crystal data top
C35H30N4O3Z = 2
Mr = 554.63F(000) = 584
Triclinic, P1Dx = 1.289 Mg m3
a = 10.1194 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8066 (4) ÅCell parameters from 42296 reflections
c = 14.9948 (6) Åθ = 2.1–30.6°
α = 110.57 (2)°µ = 0.08 mm1
β = 97.10 (2)°T = 293 K
γ = 106.17 (2)°Block, colourless
V = 1429.1 (4) Å30.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4733 reflections with I > 2σ(I)
Radiation source: graphiteRint = 0.034
Bruker axs kappa axes2 CCD Diffractometer scansθmax = 30.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.719, Tmax = 0.746k = 1515
42242 measured reflectionsl = 2020
8042 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.3893P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.140(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.23 e Å3
8042 reflectionsΔρmin = 0.20 e Å3
383 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0083 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.90953 (13)0.46770 (13)0.11738 (9)0.0534 (3)
C181.0071 (2)0.4247 (3)0.35278 (16)0.0756 (7)
H1A0.97420.34630.37050.113*
H1B1.06120.50780.41070.113*
H1C1.06570.40530.30770.113*
N10.65819 (15)0.65584 (13)0.34701 (9)0.0400 (3)
N20.73382 (15)0.62468 (15)0.52637 (9)0.0444 (3)
N30.72086 (13)0.50088 (13)0.17371 (9)0.0352 (3)
H30.67410.55730.18980.042*
N40.44863 (14)0.37083 (14)0.20107 (9)0.0401 (3)
O20.88730 (12)0.44674 (13)0.30692 (8)0.0480 (3)
C80.63890 (16)0.53406 (16)0.35130 (10)0.0350 (3)
C160.67525 (16)0.37164 (15)0.18823 (10)0.0334 (3)
C290.60006 (17)0.25131 (16)0.00058 (10)0.0375 (3)
O10.81760 (14)0.22640 (13)0.19250 (10)0.0585 (3)
C60.57491 (17)0.29247 (16)0.31890 (11)0.0377 (3)
C70.58109 (16)0.39113 (15)0.26483 (10)0.0344 (3)
C90.67140 (16)0.51875 (17)0.44116 (11)0.0367 (3)
C50.62551 (17)0.36968 (17)0.42023 (11)0.0384 (3)
C260.56904 (17)0.24648 (16)0.09437 (10)0.0379 (3)
H150.57570.15870.09640.045*
C100.76469 (18)0.75469 (17)0.52334 (12)0.0435 (4)
C170.80205 (17)0.33770 (17)0.22560 (11)0.0396 (4)
C150.72413 (18)0.77054 (17)0.43540 (12)0.0418 (4)
C190.83285 (17)0.53765 (17)0.13631 (11)0.0395 (4)
C200.85645 (17)0.66951 (17)0.11898 (12)0.0432 (4)
C300.67957 (18)0.17659 (17)0.04772 (11)0.0437 (4)
H210.70720.11670.02380.052*
C140.7555 (2)0.90641 (19)0.43761 (14)0.0551 (5)
H220.72610.91840.38090.066*
C10.5266 (2)0.14754 (18)0.28220 (13)0.0506 (4)
H230.49450.09410.21480.061*
C320.6805 (2)0.27734 (19)0.16772 (12)0.0497 (4)
C270.42273 (18)0.25135 (19)0.10854 (12)0.0477 (4)
H25A0.37250.26370.05470.057*
H25B0.36620.16460.11120.057*
C340.55824 (19)0.33612 (18)0.04027 (12)0.0469 (4)
H260.50170.38520.01130.056*
C310.7190 (2)0.18931 (19)0.13021 (12)0.0504 (4)
H270.77240.13750.16080.060*
C330.5985 (2)0.3496 (2)0.12196 (12)0.0523 (4)
H280.56980.40850.14650.063*
C110.8396 (2)0.8756 (2)0.60964 (14)0.0585 (5)
H290.86740.86650.66780.070*
C40.6250 (2)0.30391 (19)0.48471 (13)0.0493 (4)
H300.65840.35660.55220.059*
C250.8142 (2)0.77785 (19)0.17246 (14)0.0570 (5)
H310.76710.76940.22070.068*
C30.5742 (2)0.1597 (2)0.44692 (14)0.0569 (5)
H320.57200.11370.48910.068*
C210.9233 (2)0.6814 (2)0.04555 (15)0.0594 (5)
H330.95130.60860.00840.071*
C280.3265 (2)0.3608 (2)0.24324 (14)0.0590 (5)
H34A0.29880.27480.25280.088*
H34B0.24920.36150.19950.088*
H34C0.35060.43950.30530.088*
C230.9084 (2)0.9101 (3)0.08298 (19)0.0767 (7)
H350.92730.99170.07140.092*
C120.8717 (2)1.0055 (2)0.60860 (16)0.0670 (6)
H360.92271.08470.66590.080*
C130.8290 (2)1.0212 (2)0.52266 (16)0.0657 (6)
H370.85071.11100.52320.079*
C20.5264 (2)0.0822 (2)0.34684 (14)0.0596 (5)
H380.49340.01560.32230.071*
C350.7294 (3)0.2971 (3)0.25442 (15)0.0755 (7)
H39A0.65990.31780.29080.113*
H39B0.74130.21240.29620.113*
H39C0.81830.37380.23150.113*
C240.8410 (3)0.8988 (2)0.15508 (17)0.0717 (6)
H400.81340.97200.19210.086*
C220.9479 (2)0.8018 (3)0.02791 (18)0.0749 (7)
H410.99190.80950.02180.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0527 (8)0.0584 (8)0.0618 (8)0.0254 (6)0.0289 (6)0.0291 (6)
C180.0498 (12)0.1065 (19)0.0677 (13)0.0350 (12)0.0025 (10)0.0316 (13)
N10.0486 (8)0.0388 (7)0.0373 (7)0.0205 (6)0.0142 (6)0.0153 (6)
N20.0497 (8)0.0463 (8)0.0329 (7)0.0160 (7)0.0073 (6)0.0124 (6)
N30.0395 (7)0.0338 (7)0.0356 (6)0.0132 (6)0.0134 (6)0.0162 (5)
N40.0363 (7)0.0493 (8)0.0347 (7)0.0142 (6)0.0091 (6)0.0175 (6)
O20.0397 (6)0.0585 (7)0.0406 (6)0.0190 (6)0.0023 (5)0.0152 (6)
C80.0366 (8)0.0386 (8)0.0334 (7)0.0155 (7)0.0116 (6)0.0159 (6)
C160.0383 (8)0.0319 (7)0.0309 (7)0.0123 (6)0.0096 (6)0.0134 (6)
C290.0411 (9)0.0349 (8)0.0290 (7)0.0101 (7)0.0036 (6)0.0085 (6)
O10.0659 (9)0.0504 (8)0.0650 (8)0.0323 (7)0.0122 (7)0.0217 (6)
C60.0389 (8)0.0398 (8)0.0361 (8)0.0115 (7)0.0098 (7)0.0189 (7)
C70.0386 (8)0.0341 (8)0.0295 (7)0.0100 (7)0.0078 (6)0.0137 (6)
C90.0376 (8)0.0428 (9)0.0319 (7)0.0159 (7)0.0100 (6)0.0158 (7)
C50.0388 (9)0.0436 (9)0.0366 (8)0.0144 (7)0.0110 (7)0.0199 (7)
C260.0438 (9)0.0344 (8)0.0313 (7)0.0101 (7)0.0065 (7)0.0122 (6)
C100.0443 (9)0.0426 (9)0.0386 (8)0.0153 (8)0.0113 (7)0.0103 (7)
C170.0418 (9)0.0435 (9)0.0375 (8)0.0170 (8)0.0110 (7)0.0187 (7)
C150.0456 (9)0.0380 (9)0.0424 (9)0.0185 (7)0.0159 (7)0.0122 (7)
C190.0399 (9)0.0427 (9)0.0336 (8)0.0104 (7)0.0107 (7)0.0154 (7)
C200.0378 (9)0.0448 (9)0.0430 (9)0.0050 (7)0.0060 (7)0.0216 (8)
C300.0524 (10)0.0393 (9)0.0354 (8)0.0184 (8)0.0067 (7)0.0098 (7)
C140.0693 (13)0.0434 (10)0.0568 (11)0.0258 (9)0.0209 (10)0.0185 (9)
C10.0618 (12)0.0389 (9)0.0424 (9)0.0063 (8)0.0066 (8)0.0173 (8)
C320.0536 (11)0.0528 (10)0.0340 (8)0.0106 (9)0.0091 (8)0.0144 (8)
C270.0408 (9)0.0546 (10)0.0367 (8)0.0071 (8)0.0062 (7)0.0144 (8)
C340.0536 (11)0.0544 (10)0.0393 (9)0.0273 (9)0.0119 (8)0.0198 (8)
C310.0548 (11)0.0534 (10)0.0367 (9)0.0214 (9)0.0133 (8)0.0084 (8)
C330.0632 (12)0.0584 (11)0.0416 (9)0.0249 (10)0.0084 (8)0.0258 (8)
C110.0606 (12)0.0542 (11)0.0445 (10)0.0162 (10)0.0073 (9)0.0066 (9)
C40.0564 (11)0.0565 (11)0.0405 (9)0.0173 (9)0.0104 (8)0.0282 (8)
C250.0723 (13)0.0439 (10)0.0518 (10)0.0129 (9)0.0156 (10)0.0215 (9)
C30.0661 (12)0.0561 (11)0.0572 (11)0.0153 (10)0.0129 (10)0.0383 (10)
C210.0503 (11)0.0746 (13)0.0676 (12)0.0185 (10)0.0235 (10)0.0445 (11)
C280.0435 (10)0.0802 (14)0.0545 (11)0.0221 (10)0.0193 (9)0.0257 (10)
C230.0649 (14)0.0693 (15)0.1019 (18)0.0036 (12)0.0038 (13)0.0620 (14)
C120.0666 (14)0.0476 (11)0.0629 (13)0.0151 (10)0.0100 (11)0.0009 (10)
C130.0742 (14)0.0390 (10)0.0765 (14)0.0203 (10)0.0232 (12)0.0127 (10)
C20.0725 (14)0.0425 (10)0.0594 (12)0.0079 (9)0.0078 (10)0.0280 (9)
C350.0943 (18)0.0819 (15)0.0520 (12)0.0213 (13)0.0321 (12)0.0311 (11)
C240.0872 (16)0.0458 (11)0.0793 (15)0.0158 (11)0.0111 (13)0.0309 (11)
C220.0581 (13)0.0978 (18)0.0932 (17)0.0169 (13)0.0233 (12)0.0727 (16)
Geometric parameters (Å, º) top
O3—C191.2184 (19)C30—H210.9300
C18—O21.438 (2)C14—C131.363 (3)
C18—H1A0.9600C14—H220.9300
C18—H1B0.9600C1—C21.385 (2)
C18—H1C0.9600C1—H230.9300
N1—C81.3013 (19)C32—C331.376 (3)
N1—C151.380 (2)C32—C311.379 (3)
N2—C91.3085 (19)C32—C351.509 (2)
N2—C101.370 (2)C27—H25A0.9700
N3—C191.3490 (19)C27—H25B0.9700
N3—C161.4458 (18)C34—C331.380 (2)
N3—H30.8600C34—H260.9300
N4—C281.451 (2)C31—H270.9300
N4—C271.457 (2)C33—H280.9300
N4—C71.460 (2)C11—C121.356 (3)
O2—C171.3356 (19)C11—H290.9300
C8—C91.424 (2)C4—C31.370 (3)
C8—C71.520 (2)C4—H300.9300
C16—C171.524 (2)C25—C241.381 (3)
C16—C261.563 (2)C25—H310.9300
C16—C71.576 (2)C3—C21.378 (3)
C29—C301.379 (2)C3—H320.9300
C29—C341.382 (2)C21—C221.379 (3)
C29—C261.510 (2)C21—H330.9300
O1—C171.1929 (19)C28—H34A0.9600
C6—C11.377 (2)C28—H34B0.9600
C6—C51.395 (2)C28—H34C0.9600
C6—C71.543 (2)C23—C221.370 (3)
C9—C51.450 (2)C23—C241.370 (3)
C5—C41.386 (2)C23—H350.9300
C26—C271.534 (2)C12—C131.390 (3)
C26—H150.9800C12—H360.9300
C10—C111.405 (2)C13—H370.9300
C10—C151.414 (2)C2—H380.9300
C15—C141.401 (2)C35—H39A0.9600
C19—C201.497 (2)C35—H39B0.9600
C20—C251.379 (3)C35—H39C0.9600
C20—C211.386 (2)C24—H400.9300
C30—C311.385 (2)C22—H410.9300
O2—C18—H1A109.5C15—C14—H22119.9
O2—C18—H1B109.5C6—C1—C2119.23 (16)
H1A—C18—H1B109.5C6—C1—H23120.4
O2—C18—H1C109.5C2—C1—H23120.4
H1A—C18—H1C109.5C33—C32—C31117.81 (16)
H1B—C18—H1C109.5C33—C32—C35120.83 (18)
C8—N1—C15114.78 (13)C31—C32—C35121.35 (18)
C9—N2—C10114.47 (13)N4—C27—C26106.32 (13)
C19—N3—C16123.49 (13)N4—C27—H25A110.5
C19—N3—H3118.3C26—C27—H25A110.5
C16—N3—H3118.3N4—C27—H25B110.5
C28—N4—C27112.91 (14)C26—C27—H25B110.5
C28—N4—C7116.08 (13)H25A—C27—H25B108.7
C27—N4—C7108.12 (12)C33—C34—C29121.44 (16)
C17—O2—C18115.42 (15)C33—C34—H26119.3
N1—C8—C9122.96 (14)C29—C34—H26119.3
N1—C8—C7126.40 (13)C32—C31—C30121.19 (16)
C9—C8—C7110.64 (13)C32—C31—H27119.4
N3—C16—C17111.13 (12)C30—C31—H27119.4
N3—C16—C26112.04 (11)C32—C33—C34121.02 (16)
C17—C16—C26112.59 (12)C32—C33—H28119.5
N3—C16—C7107.65 (11)C34—C33—H28119.5
C17—C16—C7110.42 (11)C12—C11—C10120.40 (19)
C26—C16—C7102.58 (11)C12—C11—H29119.8
C30—C29—C34117.49 (14)C10—C11—H29119.8
C30—C29—C26120.39 (14)C3—C4—C5118.55 (16)
C34—C29—C26122.01 (14)C3—C4—H30120.7
C1—C6—C5119.04 (14)C5—C4—H30120.7
C1—C6—C7130.03 (14)C20—C25—C24120.62 (19)
C5—C6—C7110.92 (13)C20—C25—H31119.7
N4—C7—C8112.45 (12)C24—C25—H31119.7
N4—C7—C6117.15 (12)C4—C3—C2120.44 (16)
C8—C7—C6100.68 (11)C4—C3—H32119.8
N4—C7—C1699.76 (11)C2—C3—H32119.8
C8—C7—C16114.22 (12)C22—C21—C20119.6 (2)
C6—C7—C16113.29 (12)C22—C21—H33120.2
N2—C9—C8123.90 (14)C20—C21—H33120.2
N2—C9—C5127.69 (14)N4—C28—H34A109.5
C8—C9—C5108.40 (13)N4—C28—H34B109.5
C4—C5—C6121.54 (15)H34A—C28—H34B109.5
C4—C5—C9129.34 (15)N4—C28—H34C109.5
C6—C5—C9109.11 (13)H34A—C28—H34C109.5
C29—C26—C27115.40 (13)H34B—C28—H34C109.5
C29—C26—C16113.57 (12)C22—C23—C24120.20 (19)
C27—C26—C16103.91 (12)C22—C23—H35119.9
C29—C26—H15107.9C24—C23—H35119.9
C27—C26—H15107.9C11—C12—C13120.56 (19)
C16—C26—H15107.9C11—C12—H36119.7
N2—C10—C11119.22 (16)C13—C12—H36119.7
N2—C10—C15121.76 (14)C14—C13—C12120.73 (19)
C11—C10—C15119.02 (16)C14—C13—H37119.6
O1—C17—O2124.37 (15)C12—C13—H37119.6
O1—C17—C16125.32 (15)C3—C2—C1121.18 (17)
O2—C17—C16110.03 (13)C3—C2—H38119.4
N1—C15—C14119.11 (15)C1—C2—H38119.4
N1—C15—C10121.81 (14)C32—C35—H39A109.5
C14—C15—C10119.05 (15)C32—C35—H39B109.5
O3—C19—N3122.17 (14)H39A—C35—H39B109.5
O3—C19—C20122.11 (14)C32—C35—H39C109.5
N3—C19—C20115.72 (14)H39A—C35—H39C109.5
C25—C20—C21119.33 (16)H39B—C35—H39C109.5
C25—C20—C19122.78 (15)C23—C24—C25119.6 (2)
C21—C20—C19117.89 (16)C23—C24—H40120.2
C29—C30—C31121.02 (16)C25—C24—H40120.2
C29—C30—H21119.5C23—C22—C21120.6 (2)
C31—C30—H21119.5C23—C22—H41119.7
C13—C14—C15120.19 (18)C21—C22—H41119.7
C13—C14—H22119.9
C15—N1—C8—C95.3 (2)C9—N2—C10—C153.4 (2)
C15—N1—C8—C7174.39 (14)C18—O2—C17—O12.3 (2)
C19—N3—C16—C1739.35 (18)C18—O2—C17—C16176.53 (15)
C19—N3—C16—C2687.57 (17)N3—C16—C17—O1131.07 (16)
C19—N3—C16—C7160.39 (13)C26—C16—C17—O14.4 (2)
C28—N4—C7—C867.27 (17)C7—C16—C17—O1109.54 (17)
C27—N4—C7—C8164.69 (12)N3—C16—C17—O254.81 (16)
C28—N4—C7—C648.66 (19)C26—C16—C17—O2178.56 (12)
C27—N4—C7—C679.37 (15)C7—C16—C17—O264.57 (16)
C28—N4—C7—C16171.29 (14)C8—N1—C15—C14177.13 (15)
C27—N4—C7—C1643.26 (14)C8—N1—C15—C101.0 (2)
N1—C8—C7—N450.7 (2)N2—C10—C15—N13.6 (3)
C9—C8—C7—N4129.51 (13)C11—C10—C15—N1175.92 (15)
N1—C8—C7—C6176.22 (15)N2—C10—C15—C14178.32 (16)
C9—C8—C7—C64.03 (16)C11—C10—C15—C142.2 (2)
N1—C8—C7—C1662.0 (2)C16—N3—C19—O34.5 (2)
C9—C8—C7—C16117.71 (14)C16—N3—C19—C20175.11 (13)
C1—C6—C7—N455.1 (2)O3—C19—C20—C25153.06 (18)
C5—C6—C7—N4123.65 (14)N3—C19—C20—C2527.3 (2)
C1—C6—C7—C8177.36 (17)O3—C19—C20—C2127.2 (2)
C5—C6—C7—C81.41 (16)N3—C19—C20—C21152.45 (16)
C1—C6—C7—C1660.2 (2)C34—C29—C30—C311.7 (2)
C5—C6—C7—C16120.99 (14)C26—C29—C30—C31174.49 (15)
N3—C16—C7—N478.00 (13)N1—C15—C14—C13175.62 (17)
C17—C16—C7—N4160.52 (12)C10—C15—C14—C132.6 (3)
C26—C16—C7—N440.32 (13)C5—C6—C1—C21.5 (3)
N3—C16—C7—C842.15 (16)C7—C6—C1—C2177.21 (17)
C17—C16—C7—C879.32 (15)C28—N4—C27—C26158.68 (14)
C26—C16—C7—C8160.48 (12)C7—N4—C27—C2628.85 (16)
N3—C16—C7—C6156.67 (12)C29—C26—C27—N4123.90 (14)
C17—C16—C7—C635.19 (17)C16—C26—C27—N41.11 (16)
C26—C16—C7—C685.01 (14)C30—C29—C34—C332.2 (3)
C10—N2—C9—C80.9 (2)C26—C29—C34—C33173.90 (16)
C10—N2—C9—C5179.94 (15)C33—C32—C31—C301.6 (3)
N1—C8—C9—N25.7 (2)C35—C32—C31—C30176.85 (18)
C7—C8—C9—N2174.02 (14)C29—C30—C31—C320.2 (3)
N1—C8—C9—C5174.98 (14)C31—C32—C33—C341.1 (3)
C7—C8—C9—C55.26 (17)C35—C32—C33—C34177.38 (18)
C1—C6—C5—C41.6 (2)C29—C34—C33—C320.9 (3)
C7—C6—C5—C4177.35 (15)N2—C10—C11—C12179.90 (18)
C1—C6—C5—C9179.45 (15)C15—C10—C11—C120.4 (3)
C7—C6—C5—C91.63 (18)C6—C5—C4—C30.4 (3)
N2—C9—C5—C46.1 (3)C9—C5—C4—C3179.20 (17)
C8—C9—C5—C4174.62 (17)C21—C20—C25—C241.6 (3)
N2—C9—C5—C6174.99 (15)C19—C20—C25—C24178.65 (18)
C8—C9—C5—C64.25 (18)C5—C4—C3—C20.8 (3)
C30—C29—C26—C27144.82 (16)C25—C20—C21—C220.8 (3)
C34—C29—C26—C2739.2 (2)C19—C20—C21—C22179.47 (17)
C30—C29—C26—C1695.34 (17)C10—C11—C12—C131.1 (3)
C34—C29—C26—C1680.66 (19)C15—C14—C13—C121.1 (3)
N3—C16—C26—C2935.05 (17)C11—C12—C13—C140.8 (3)
C17—C16—C26—C2991.08 (15)C4—C3—C2—C10.8 (3)
C7—C16—C26—C29150.23 (12)C6—C1—C2—C30.3 (3)
N3—C16—C26—C2791.12 (14)C22—C23—C24—C250.5 (3)
C17—C16—C26—C27142.74 (13)C20—C25—C24—C231.0 (3)
C7—C16—C26—C2724.05 (14)C24—C23—C22—C211.3 (4)
C9—N2—C10—C11176.11 (15)C20—C21—C22—C230.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N10.862.272.8107 (18)121
C21—H33···O3i0.932.543.347 (2)146
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

The authors thank the single-crystal XRD facility, SAIF, IIT Madras, Chennai, for the data collection.

References

First citationAbou-Gharbia, M. A. & Doukas, P. H. (1979). Heterocycles, 12, 637–640.  CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandralekha, K., Gavaskar, D., Sureshbabu, A. R. & Lakshmi, S. (2014). Acta Cryst. E70, 124–126.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGazit, A., App, H., McMahon, G., Chen, J., Levitzki, A. & Bohmer, F. D. (1996). J. Med. Chem. 39, 2170–2177.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaddad, S., Boudriga, S., Porzio, F., Soldera, A., Askri, M., Knorr, M., Rousselin, Y., Kubicki, M. M., Golz, C. & Strohmann, C. (2015). J. Org. Chem. 80, 9064–9075.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHussein, E. M. & Abdel-Monem, M. I. (2011). ARKIVOC, x, 85–98.  Google Scholar
First citationJiang, H., Zhao, J., Han, X. & Zhu, S. (2006). Tetrahedron, 62, 11008–11011.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarsalary, A. A., Mohammadizadeh, M. R., Hasaninejad, A. R., Mohammadi, A. A. & Karimi, A. R. (2010). J. Iran. Chem. Soc. 7, 45–50.  CrossRef CAS Google Scholar
First citationLundahl, K., Schut, J., Schlatmann, J. L. M. A., Paerels, G. B. & Peters, A. J. (1972). J. Med. Chem. 15, 129–132.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSehlstedt, U., Aich, P., Bergman, J., Vallberg, H., Nordén, B. & Gräslund, A. (1998). J. Mol. Biol. 278, 31–56.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh Babu, A. R. & Raghunathan, R. (2008). Synth. Commun. 38, 1433–1438.  Web of Science CrossRef Google Scholar
First citationVijayakumar, B., Sureshbabu, A. R., Gavaskar, D., Raghunathan, R. & Velmurugan, D. (2012). Acta Cryst. E68, m1576–m1577.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds