research communications
of hexaaquanickel(II) bis{5-bromo-7-[(2-hydroxyethyl)amino]-1-methyl-6-oxidoquinolin-1-ium-3-sulfonate} monohydrate
aChemistry Department, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and bKU Leuven – University of Leuven, Department of Chemistry, Celestijnenlaan 200F - bus 2404, B-3001 Heverlee, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be
The 2O)6](C12H12BrN2O5S)2·H2O, contains a half hexaaquanickel(II) complex cation with the NiII ion lying on an inversion center, one 5-bromo-7-[(2-hydroxyethyl)amino]-1-methyl-6-oxidoquinolin-1-ium-3-sulfonate (QAO) anion and a half lattice water molecule on a twofold rotation axis. In the crystal, QAO anions are stacked in a column along the c axis by π–π stacking interactions [centroid–centroid distances 3.5922 (10)–3.7223 (11) Å]. The columns are interlinked by hexaaquanickel(II) cations through O—H⋯O and N—H⋯O hydrogen bonds.
of the title compound, [Ni(HKeywords: crystal structure; quinoline; hydrogen bonding; π–π stacking.
CCDC reference: 1497073
1. Chemical context
Among heterocyclic rings, the quinoline ring system is of great importance due to its therapeutic and biological activities. Many new quinoline derivatives have been synthesized and used as new potential agents to treat HIV (Cecchetti et al., 2000; Tabarrini et al., 2008) and malaria (Nayyar et al., 2006) or to inhibit human tumor cell growth (Rashad et al., 2010). Recently, a simple aminoquinoline derivative has been used in colorimetric sensors for pH (Wang et al., 2014). In addition, complexes of quinoline compounds with transition metals are also known to exhibit a wide variety of structures and possess profound biochemical activities which allow them to act as antimicrobial, anti-Alzheimer's (Deraeve et al., 2008) or antitumoral agents (Yan et al., 2012; Kitanovic et al., 2014). Some complexes of polysubstituted quinoline compounds have also been used in dye-sensitized solar cells or in efficient organic heterojunction solar cells (Li et al., 2012).
The new quinoline derivative (6-hydroxy-3-sulfoquinolin-7-yloxy)acetic acid (Q) was synthesized from eugenol and its antibacterial activities have been reported (Dinh et al., 2012). From Q, a series of polysubstituted quinoline compounds has been synthesized, including 5-bromo-6-hydroxy-7-[(2-hydroxyethyl)amino]-1-methyl-3-sulfoquinoline (QAO). As polysubstituted quinoline rings are known to coordinate to metal ions, the reaction between QAO and NiCl2 was studied. The reaction product could not be characterized unambiguously by IR or 1H NMR spectroscopy. Although the obtained spectroscopic data are different from those of free QAO, indicating the presence of a deprotonated hydroxyl group, no conclusion about complex formation was possible and further investigation by X-ray diffraction was necessary.
2. Structural commentary
The II is not complexed directly with QAO, but is present as a hexaaqua complex, [Ni(H2O)6]2+, located about an inversion center (Fig. 1). The 6-hydroxy group as well as the 3-sulfonic acid group of QAO are deprotonated. The substituent atom Br16 deviates most [0.125 (1) Å] from the best plane through the quinoline ring system (r.m.s. deviation = 0.009 Å). The 2-hydroxyethylamino substituent shows a +sc conformation [torsion angle N18—C19—C20—O21 = 57.0 (2)°].
shows that Ni3. Supramolecular features
The crystal packing (Fig. 2) is characterized by columns of stacking QAO molecules running along the c axis through π–π stacking interactions between the quinoline ring systems [Cg1⋯Cg1i = 3.5922 (10) Å, Cg2⋯Cg2i = 3.5793 (11) Å, Cg1⋯Cg2ii = 3.7223 (11) Å; Cg1 and Cg2 are the centroids of the rings N1/C2–C6 and C5–C10, respectively; symmetry codes: (i) −x + 2, y, −z + ; (ii) −x + 2, −y + 1, −z + 1; Fig. 3]. Within these columns additional C—H⋯Br and C—H⋯O interactions occur (Table 1 and Fig. 3). The columns interact with the hexaaquanickel(II) cations through hydrogen bonding. The lattice water molecule interacts with two neighboring cations. One [Ni(H2O)6]2+ complex interacts in total with twelve QAO molecules and two water molecules through O—H⋯O and N—H⋯O hydrogen bonds (Table 1 and Fig. 4).
4. Database survey
A search of the Cambridge Structural Database (Version 5.37; last update May 2016; Groom et al., 2016) for 3-quinolinium gives six hits of which four have a zwitterionic form [CSD refcodes PUSMOH (Le Thi Hong et al., 2015), BAPBOK (Skrzypek & Suwinska, 2002), HIVHUQ (Skrzypek & Suwinska, 2007) and QUNREY (Dinh et al., 2012)]. The remaining two are N-methylated [CSD refcode HIVJEC (Skrzypek & Suwinska, 2007)] or N-ethylated [CSD refcode HIVJAY (Skrzypek & Suwinska, 2007)] and have a hydroxyl group at the 4-position.
5. Synthesis and crystallization
The quinoline derivative (6-hydroxy-3-sulfoquinolin-7-yloxy)acetic acid (Q) was synthesized starting from the natural product eugenol and further transformed to 5-bromo-6-hydroxy-7-[(2-hydroxyethyl)amino]-1-methyl-3-sulfoquinoline (QAO) according to a procedure described by Dinh et al. (2012).
A solution containing NiCl2·6H2O (262 mg, 1.1 mmol) in 10 mL water was added dropwise to 15 mL aqueous solution of QAO (754 mg, 2 mmol) and NH3 (pH ≃ 6–7). The obtained solution was stirred and refluxed at 313–323 K for three h. The brown precipitate was collected by filtration, washed consecutively with ethanol and dried in vacuo. The obtained crystals were soluble in water and DMSO, but insoluble in ethanol, acetone and chloroform. The yield was 60%. Single crystals suitable for X-ray investigation were obtained by slow evaporation from a ethanol–water (1:2 v/v) solution at room temperature.
IR (Impack-410 Nicolet spectrometer, KBr, cm−1): 3510, 3334 (νNH, νOH); 3080, 2942 (νC-H); 1588, 1540 (νC=Cring or νC=N); 1190, 1036 (νC-O, νS-O), 632 (νC-Br). 1H NMR (Bruker Avance 500 MHz, d6-DMSO): 8.34 (1H, d, J =1.0Hz, Ar), 8.27 (1H, s, Ar), 6.51 (1H, s, Ar), 4.22 (3H, s, N-CH3); 3.69 (2H, t, J = 5.5Hz); 3.45 (2H, q, J = 5.5Hz), 7.34 (NH).
6. Refinement
Crystal data, data collection and structure . H atoms for N18, O21, O23, O24, O25 and O26 were located in difference Fourier maps. The coordinates of H21 and H26 were refined freely, while the other H atoms were refined as riding. All C-bound H atoms were placed at idealized positions and refined as riding, with C—H distances of 0.95 (aromatic), 0.99 (methylene) and 0.98 Å (methyl). For most H atoms, Uiso(H) values were assigned as 1.5Ueq of the parent atoms (1.2Ueq for H2, H4, H10, H18, H19A/B and H20A/B).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1497073
https://doi.org/10.1107/S2056989016012408/is5459sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016012408/is5459Isup2.hkl
Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell
CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Ni(H2O)6](C12H12BrN2O5S)2·H2O | F(000) = 1904 |
Mr = 937.23 | Dx = 1.887 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7315 (4) Å | Cell parameters from 5359 reflections |
b = 27.4581 (13) Å | θ = 2.8–29.0° |
c = 13.7943 (6) Å | µ = 3.22 mm−1 |
β = 94.061 (4)° | T = 100 K |
V = 3298.9 (3) Å3 | Plate, orange |
Z = 4 | 0.4 × 0.2 × 0.1 mm |
Agilent SuperNova (single source at offset, Eos detector) diffractometer | 3372 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 3041 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.020 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.5° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) | k = −34→32 |
Tmin = 0.546, Tmax = 0.725 | l = −12→17 |
9171 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.024 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.056 | w = 1/[σ2(Fo2) + (0.0207P)2 + 5.2045P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.002 |
3372 reflections | Δρmax = 0.41 e Å−3 |
235 parameters | Δρmin = −0.49 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.90237 (18) | 0.43668 (6) | 0.37155 (11) | 0.0110 (3) | |
C2 | 0.9801 (2) | 0.39411 (8) | 0.37514 (14) | 0.0132 (4) | |
H2 | 0.9254 | 0.3642 | 0.3739 | 0.016* | |
C3 | 1.1379 (2) | 0.39384 (8) | 0.38056 (14) | 0.0131 (4) | |
C4 | 1.2182 (2) | 0.43770 (8) | 0.38321 (13) | 0.0134 (4) | |
H4 | 1.3273 | 0.4374 | 0.3877 | 0.016* | |
C5 | 1.1403 (2) | 0.48189 (8) | 0.37930 (13) | 0.0108 (4) | |
C6 | 0.9750 (2) | 0.48132 (8) | 0.37471 (13) | 0.0104 (4) | |
C7 | 1.2125 (2) | 0.52820 (8) | 0.38177 (14) | 0.0119 (4) | |
C8 | 1.1373 (2) | 0.57248 (8) | 0.38109 (13) | 0.0122 (4) | |
C9 | 0.9683 (2) | 0.56934 (8) | 0.37556 (13) | 0.0110 (4) | |
C10 | 0.8918 (2) | 0.52466 (8) | 0.37301 (13) | 0.0113 (4) | |
H10 | 0.7828 | 0.5238 | 0.3701 | 0.014* | |
C11 | 0.7332 (2) | 0.43449 (8) | 0.36504 (14) | 0.0128 (4) | |
H11A | 0.6923 | 0.4543 | 0.3101 | 0.019* | |
H11B | 0.6950 | 0.4470 | 0.4253 | 0.019* | |
H11C | 0.6999 | 0.4006 | 0.3553 | 0.019* | |
S12 | 1.23734 (6) | 0.33760 (2) | 0.37750 (4) | 0.01589 (12) | |
O13 | 1.3871 (2) | 0.34725 (7) | 0.42443 (13) | 0.0360 (5) | |
O14 | 1.24175 (17) | 0.32666 (6) | 0.27422 (10) | 0.0200 (3) | |
O15 | 1.1481 (2) | 0.30278 (6) | 0.42858 (12) | 0.0323 (4) | |
Br16 | 1.42949 (2) | 0.53172 (2) | 0.38060 (2) | 0.01722 (7) | |
O17 | 1.19947 (16) | 0.61482 (5) | 0.38363 (10) | 0.0154 (3) | |
N18 | 0.89569 (19) | 0.61215 (7) | 0.37205 (12) | 0.0136 (4) | |
H18 | 0.9506 | 0.6391 | 0.3730 | 0.016* | |
C19 | 0.7298 (2) | 0.61683 (8) | 0.35993 (15) | 0.0139 (4) | |
H19A | 0.6846 | 0.6070 | 0.4208 | 0.017* | |
H19B | 0.6892 | 0.5947 | 0.3075 | 0.017* | |
C20 | 0.6831 (2) | 0.66848 (8) | 0.33499 (15) | 0.0162 (4) | |
H20A | 0.5699 | 0.6704 | 0.3248 | 0.019* | |
H20B | 0.7159 | 0.6902 | 0.3899 | 0.019* | |
O21 | 0.75070 (19) | 0.68455 (6) | 0.24924 (11) | 0.0229 (4) | |
H21 | 0.760 (3) | 0.6610 (11) | 0.213 (2) | 0.034* | |
Ni22 | 0.2500 | 0.7500 | 0.5000 | 0.01747 (10) | |
O23 | 0.35588 (18) | 0.75193 (6) | 0.37316 (12) | 0.0273 (4) | |
H23A | 0.3304 | 0.7799 | 0.3392 | 0.041* | |
H23B | 0.3270 | 0.7270 | 0.3322 | 0.041* | |
O24 | 0.31091 (17) | 0.67782 (6) | 0.52289 (12) | 0.0237 (4) | |
H24A | 0.4136 | 0.6748 | 0.5315 | 0.036* | |
H24B | 0.2816 | 0.6604 | 0.4695 | 0.036* | |
O25 | 0.44976 (16) | 0.77588 (5) | 0.57273 (12) | 0.0196 (3) | |
H25A | 0.5337 | 0.7662 | 0.5414 | 0.029* | |
H25B | 0.4680 | 0.7661 | 0.6357 | 0.029* | |
O26 | 0.5000 | 0.73024 (9) | 0.7500 | 0.0218 (5) | |
H26 | 0.570 (3) | 0.7142 (10) | 0.746 (2) | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0109 (8) | 0.0116 (9) | 0.0102 (8) | 0.0017 (7) | 0.0001 (6) | −0.0009 (7) |
C2 | 0.0169 (10) | 0.0120 (10) | 0.0106 (9) | 0.0023 (8) | −0.0005 (8) | 0.0001 (8) |
C3 | 0.0151 (10) | 0.0137 (11) | 0.0102 (9) | 0.0061 (8) | 0.0001 (7) | −0.0021 (8) |
C4 | 0.0125 (10) | 0.0178 (11) | 0.0098 (9) | 0.0049 (8) | 0.0007 (7) | −0.0004 (8) |
C5 | 0.0103 (9) | 0.0153 (11) | 0.0070 (8) | 0.0009 (8) | 0.0010 (7) | −0.0001 (8) |
C6 | 0.0118 (9) | 0.0132 (11) | 0.0064 (8) | −0.0002 (8) | 0.0014 (7) | −0.0001 (8) |
C7 | 0.0075 (9) | 0.0184 (11) | 0.0099 (9) | 0.0003 (8) | 0.0009 (7) | 0.0005 (8) |
C8 | 0.0109 (10) | 0.0178 (11) | 0.0078 (9) | −0.0010 (8) | 0.0003 (7) | 0.0001 (8) |
C9 | 0.0111 (10) | 0.0142 (11) | 0.0077 (9) | 0.0018 (8) | 0.0003 (7) | −0.0011 (8) |
C10 | 0.0079 (9) | 0.0150 (11) | 0.0111 (9) | 0.0017 (8) | 0.0007 (7) | 0.0001 (8) |
C11 | 0.0079 (9) | 0.0140 (11) | 0.0166 (10) | 0.0003 (8) | 0.0005 (7) | 0.0003 (8) |
S12 | 0.0176 (3) | 0.0156 (3) | 0.0141 (2) | 0.0096 (2) | −0.00095 (19) | −0.0023 (2) |
O13 | 0.0268 (9) | 0.0349 (11) | 0.0431 (11) | 0.0212 (8) | −0.0198 (8) | −0.0210 (9) |
O14 | 0.0243 (8) | 0.0199 (9) | 0.0156 (7) | 0.0105 (7) | 0.0008 (6) | −0.0038 (6) |
O15 | 0.0481 (11) | 0.0194 (9) | 0.0315 (9) | 0.0170 (8) | 0.0186 (8) | 0.0112 (8) |
Br16 | 0.00740 (10) | 0.02418 (13) | 0.02029 (11) | 0.00080 (8) | 0.00253 (7) | 0.00294 (9) |
O17 | 0.0144 (7) | 0.0140 (8) | 0.0177 (7) | −0.0023 (6) | −0.0002 (6) | 0.0003 (6) |
N18 | 0.0113 (8) | 0.0107 (9) | 0.0189 (9) | −0.0004 (7) | 0.0006 (7) | 0.0002 (7) |
C19 | 0.0094 (10) | 0.0138 (11) | 0.0184 (10) | 0.0013 (8) | 0.0001 (8) | 0.0003 (9) |
C20 | 0.0162 (10) | 0.0160 (11) | 0.0163 (10) | 0.0034 (9) | −0.0004 (8) | −0.0003 (9) |
O21 | 0.0355 (9) | 0.0159 (9) | 0.0179 (8) | 0.0045 (7) | 0.0053 (7) | 0.0017 (7) |
Ni22 | 0.00750 (18) | 0.0097 (2) | 0.0349 (2) | −0.00015 (14) | −0.00080 (16) | −0.00713 (17) |
O23 | 0.0182 (8) | 0.0217 (9) | 0.0422 (10) | −0.0036 (7) | 0.0036 (7) | −0.0123 (8) |
O24 | 0.0136 (7) | 0.0140 (8) | 0.0422 (10) | 0.0032 (6) | −0.0073 (7) | −0.0106 (7) |
O25 | 0.0107 (7) | 0.0148 (8) | 0.0331 (9) | −0.0003 (6) | 0.0004 (6) | −0.0042 (7) |
O26 | 0.0133 (11) | 0.0133 (12) | 0.0403 (14) | 0.000 | 0.0117 (10) | 0.000 |
N1—C2 | 1.351 (3) | S12—O15 | 1.4474 (18) |
N1—C6 | 1.380 (3) | N18—H18 | 0.8806 |
N1—C11 | 1.475 (2) | N18—C19 | 1.452 (2) |
C2—H2 | 0.9500 | C19—H19A | 0.9900 |
C2—C3 | 1.374 (3) | C19—H19B | 0.9900 |
C3—C4 | 1.393 (3) | C19—C20 | 1.509 (3) |
C3—S12 | 1.774 (2) | C20—H20A | 0.9900 |
C4—H4 | 0.9500 | C20—H20B | 0.9900 |
C4—C5 | 1.390 (3) | C20—O21 | 1.429 (3) |
C5—C6 | 1.440 (3) | O21—H21 | 0.83 (3) |
C5—C7 | 1.418 (3) | Ni22—O23i | 2.0366 (17) |
C6—C10 | 1.394 (3) | Ni22—O23 | 2.0366 (17) |
C7—C8 | 1.381 (3) | Ni22—O24 | 2.0704 (15) |
C7—Br16 | 1.8983 (19) | Ni22—O24i | 2.0704 (15) |
C8—C9 | 1.474 (3) | Ni22—O25 | 2.0750 (14) |
C8—O17 | 1.283 (3) | Ni22—O25i | 2.0750 (14) |
C9—C10 | 1.397 (3) | O23—H23A | 0.9191 |
C9—N18 | 1.335 (3) | O23—H23B | 0.9115 |
C10—H10 | 0.9500 | O24—H24A | 0.9003 |
C11—H11A | 0.9800 | O24—H24B | 0.9001 |
C11—H11B | 0.9800 | O25—H25A | 0.9163 |
C11—H11C | 0.9800 | O25—H25B | 0.9128 |
S12—O13 | 1.4420 (17) | O26—H26 | 0.76 (3) |
S12—O14 | 1.4592 (15) | ||
C2—N1—C6 | 122.61 (17) | O15—S12—O14 | 113.06 (10) |
C2—N1—C11 | 117.74 (18) | C9—N18—H18 | 118.8 |
C6—N1—C11 | 119.64 (17) | C9—N18—C19 | 123.35 (18) |
N1—C2—H2 | 119.8 | C19—N18—H18 | 117.7 |
N1—C2—C3 | 120.4 (2) | N18—C19—H19A | 109.4 |
C3—C2—H2 | 119.8 | N18—C19—H19B | 109.4 |
C2—C3—C4 | 119.84 (19) | N18—C19—C20 | 111.15 (17) |
C2—C3—S12 | 119.61 (17) | H19A—C19—H19B | 108.0 |
C4—C3—S12 | 120.46 (15) | C20—C19—H19A | 109.4 |
C3—C4—H4 | 119.7 | C20—C19—H19B | 109.4 |
C5—C4—C3 | 120.66 (19) | C19—C20—H20A | 109.4 |
C5—C4—H4 | 119.7 | C19—C20—H20B | 109.4 |
C4—C5—C6 | 118.55 (19) | H20A—C20—H20B | 108.0 |
C4—C5—C7 | 124.51 (18) | O21—C20—C19 | 111.00 (17) |
C7—C5—C6 | 116.92 (18) | O21—C20—H20A | 109.4 |
N1—C6—C5 | 117.92 (18) | O21—C20—H20B | 109.4 |
N1—C6—C10 | 121.32 (18) | C20—O21—H21 | 109 (2) |
C10—C6—C5 | 120.76 (19) | O23i—Ni22—O23 | 180.00 (4) |
C5—C7—Br16 | 119.16 (15) | O23i—Ni22—O24 | 88.36 (7) |
C8—C7—C5 | 125.37 (18) | O23—Ni22—O24i | 88.36 (7) |
C8—C7—Br16 | 115.42 (15) | O23—Ni22—O24 | 91.64 (7) |
C7—C8—C9 | 114.98 (19) | O23i—Ni22—O24i | 91.64 (7) |
O17—C8—C7 | 126.71 (18) | O23i—Ni22—O25i | 89.39 (6) |
O17—C8—C9 | 118.31 (18) | O23—Ni22—O25 | 89.39 (6) |
C10—C9—C8 | 121.87 (19) | O23i—Ni22—O25 | 90.61 (6) |
N18—C9—C8 | 114.94 (18) | O23—Ni22—O25i | 90.61 (6) |
N18—C9—C10 | 123.18 (18) | O24—Ni22—O24i | 180.0 |
C6—C10—C9 | 120.10 (18) | O24i—Ni22—O25 | 86.79 (6) |
C6—C10—H10 | 120.0 | O24—Ni22—O25 | 93.21 (6) |
C9—C10—H10 | 120.0 | O24—Ni22—O25i | 86.79 (6) |
N1—C11—H11A | 109.5 | O24i—Ni22—O25i | 93.21 (6) |
N1—C11—H11B | 109.5 | O25i—Ni22—O25 | 180.0 |
N1—C11—H11C | 109.5 | Ni22—O23—H23A | 110.6 |
H11A—C11—H11B | 109.5 | Ni22—O23—H23B | 113.0 |
H11A—C11—H11C | 109.5 | H23A—O23—H23B | 105.3 |
H11B—C11—H11C | 109.5 | Ni22—O24—H24A | 110.6 |
O13—S12—C3 | 105.03 (10) | Ni22—O24—H24B | 109.2 |
O13—S12—O14 | 112.98 (10) | H24A—O24—H24B | 106.3 |
O13—S12—O15 | 113.89 (12) | Ni22—O25—H25A | 110.3 |
O14—S12—C3 | 104.43 (9) | Ni22—O25—H25B | 116.3 |
O15—S12—C3 | 106.39 (10) | H25A—O25—H25B | 105.9 |
N1—C2—C3—C4 | 0.5 (3) | C6—N1—C2—C3 | −1.1 (3) |
N1—C2—C3—S12 | −176.06 (14) | C6—C5—C7—C8 | 0.7 (3) |
N1—C6—C10—C9 | −179.52 (17) | C6—C5—C7—Br16 | −176.56 (13) |
C2—N1—C6—C5 | 1.8 (3) | C7—C5—C6—N1 | 179.55 (16) |
C2—N1—C6—C10 | −178.59 (17) | C7—C5—C6—C10 | −0.1 (3) |
C2—C3—C4—C5 | −0.7 (3) | C7—C8—C9—C10 | 1.1 (3) |
C2—C3—S12—O13 | −156.31 (17) | C7—C8—C9—N18 | −178.14 (17) |
C2—C3—S12—O14 | 84.58 (17) | C8—C9—C10—C6 | −0.6 (3) |
C2—C3—S12—O15 | −35.24 (19) | C8—C9—N18—C19 | 175.77 (17) |
C3—C4—C5—C6 | 1.4 (3) | C9—N18—C19—C20 | −166.55 (18) |
C3—C4—C5—C7 | 179.87 (18) | C10—C9—N18—C19 | −3.5 (3) |
C4—C3—S12—O13 | 27.10 (19) | C11—N1—C2—C3 | 179.54 (17) |
C4—C3—S12—O14 | −92.01 (17) | C11—N1—C6—C5 | −178.90 (16) |
C4—C3—S12—O15 | 148.17 (17) | C11—N1—C6—C10 | 0.8 (3) |
C4—C5—C6—N1 | −1.9 (3) | S12—C3—C4—C5 | 175.84 (14) |
C4—C5—C6—C10 | 178.47 (17) | Br16—C7—C8—C9 | 176.19 (13) |
C4—C5—C7—C8 | −177.81 (18) | Br16—C7—C8—O17 | −3.0 (3) |
C4—C5—C7—Br16 | 5.0 (3) | O17—C8—C9—C10 | −179.67 (17) |
C5—C6—C10—C9 | 0.1 (3) | O17—C8—C9—N18 | 1.1 (3) |
C5—C7—C8—C9 | −1.1 (3) | N18—C9—C10—C6 | 178.53 (17) |
C5—C7—C8—O17 | 179.72 (18) | N18—C19—C20—O21 | 57.0 (2) |
Symmetry code: (i) −x+1/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O21—H21···O17ii | 0.83 (3) | 1.89 (3) | 2.707 (2) | 170 (3) |
C11—H11B···Br16iii | 0.98 | 3.02 | 3.987 (2) | 171 |
C19—H19A···O13iii | 0.99 | 2.59 | 3.360 (3) | 134 |
N18—H18···O25iv | 0.88 | 2.58 | 3.422 (2) | 159 |
O23—H23A···O14v | 0.92 | 2.09 | 2.971 (2) | 161 |
O23—H23B···O21vi | 0.91 | 1.72 | 2.630 (2) | 172 |
O24—H24A···O13iii | 0.90 | 1.90 | 2.772 (2) | 162 |
O24—H24B···O17vii | 0.90 | 1.83 | 2.714 (2) | 165 |
O25—H25A···O15viii | 0.92 | 2.16 | 2.826 (2) | 129 |
O25—H25B···O26 | 0.91 | 1.86 | 2.755 (2) | 165 |
O26—H26···O14iii | 0.76 (3) | 2.03 (3) | 2.783 (2) | 175 (3) |
Symmetry codes: (ii) −x+2, y, −z+1/2; (iii) −x+2, −y+1, −z+1; (iv) −x+3/2, −y+3/2, −z+1; (v) −x+3/2, y+1/2, −z+1/2; (vi) −x+1, y, −z+1/2; (vii) x−1, y, z; (viii) x−1/2, y+1/2, z. |
Acknowledgements
The authors thank VLIR–UOS (project ZEIN2014Z182) for financial support and the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.
References
Cecchetti, V., Parolin, C., Moro, S., Pecere, T., Filipponi, E., Calistri, A., Tabarrini, O., Gatto, B., Palumbo, M., Fravolini, A. & Palu', G. (2000). J. Med. Chem. 43, 3799–3802. Web of Science CrossRef PubMed CAS Google Scholar
Deraeve, C., Boldron, C., Maraval, A., Mazarguil, H., Gornitzka, H., Vendier, L., Pitié, M. & Meunier, B. (2008). Chem. Eur. J. 14, 682–696. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dinh, N. H., Co, L. V., Tuan, N. M., Hai, L. T. H. & Van Meervelt, L. (2012). Heterocycles, 85, 627–637. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kitanovic, I., Can, S., Alborzinia, H., Kitanovic, A., Pierroz, V., Leonidova, A., Pinto, A., Spingler, B., Ferrari, S., Molteni, R., Steffen, A., Metzler-Nolte, N., Wölfl, S. & Gasser, G. (2014). Chem. Eur. J. 20, 2496–2507. Web of Science CSD CrossRef CAS PubMed Google Scholar
Le Thi Hong, H., Nguyen Thi Ngoc, V., Tran Thi, D., Nguyen Bich, N. & Van Meervelt, L. (2015). Acta Cryst. E71, 1105–1108. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, J.-Y., Chen, C.-Y., Ho, W.-C., Chen, S.-H. & Wu, C.-G. (2012). Org. Lett. 14, 5420–5423. Web of Science CrossRef CAS PubMed Google Scholar
Nayyar, A., Malde, A., Coutinho, E. & Jain, R. (2006). Bioorg. Med. Chem. 14, 7302–7310. Web of Science CrossRef PubMed CAS Google Scholar
Rashad, A. E., El-Sayed, W. A., Mohamed, A. M. & Ali, M. M. (2010). Arch. Pharm. Pharm. Med. Chem. 343, 440–448. Web of Science CrossRef CAS Google Scholar
Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Skrzypek, L. & Suwinska, K. (2002). Heterocycles, 57, 2035–2044. CSD CrossRef CAS Google Scholar
Skrzypek, L. & Suwinska, K. (2007). Heterocycles, 71, 1363–1370. CSD CrossRef CAS Google Scholar
Tabarrini, O., Massari, S., Daelemans, D., Stevens, M., Manfroni, G., Sabatini, S., Balzarini, J., Cecchetti, V., Pannecouque, C. & Fravolini, A. (2008). J. Med. Chem. 51, 5454–5458. Web of Science CrossRef PubMed CAS Google Scholar
Wang, Q., Li, R., Qui, S., Lin, Z., Chen, G. & Luo, L. (2014). Anal. Methods, 6, 5016–5019. Web of Science CrossRef CAS Google Scholar
Yan, L., Wang, X., Wang, Y., Zhang, Y., Li, Y. & Guo, Z. (2012). J. Inorg. Biochem. 106, 46–51. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.