research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-[4-(eth­­oxy­carbon­yl)piperazin-1-yl]benzoic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, bDepartment of Applied Chemistry, Aligarh Muslim University, Aligarh 202 002, India, and cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64 Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: igolenya@ua.fm

Edited by A. J. Lough, University of Toronto, Canada (Received 21 June 2016; accepted 2 August 2016; online 9 August 2016)

The asymmetric unit of the title compound, C14H18N2O4, contains two independent mol­ecules (A and B) which have essentially the same conformation. The piperazine rings adopts chair conformations with the N atoms out of plane. The dihedral angles formed by the four approximately planar C atoms of the piperazine ring and the benzene ring is 30.8 (5)° in mol­ecule A and 30.6 (5)° in mol­ecule B. In the crystal, mol­ecules A and B are connected by a pair of O—H⋯O hydrogen bonds, forming a dimer with graph-set notation R22(8). Weak C—H⋯O hydrogen bonds connect the dimers, forming zigzag chains along [001].

1. Chemical context

Piperazines are among the most important building blocks in drug discovery today. The piperazine nucleus is capable of binding to multiple receptors with high affinity and therefore piperazine has been classified as a privileged structure (Dinsmore & Beshore, 2002[Dinsmore, C. J. & Beshore, D. C. (2002). Tetrahedron, 58, 3297-3312.]). Piperazine and its derivatives are important pharmacores that can be found in biologically active compounds across a number of different therapeutic areas (Berkheij et al., 2005[Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369-2371.]), such as anti­fungal (Upadhayaya et al., 2004[Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225-2238.]), anti-bacterial, anti­malarial, anti-psychotic agents (Chaudhary et al., 2006[Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819-1826.]), HIV protease inhibitors (Dorsey et al., 1994[Dorsey, B. D., Levin, R. B., McDaniel, S. L., Vacca, J. P., Guare, J. P., Darke, P. L., Zugay, J. A., Emini, E. A., Schleif, W. A., Quintero, J. C., et al. (1994). J. Med. Chem. 37, 3443-3451.]), anti-depressant and anti-tumour activity against colon, prostate, breast, lung and leukemia tumors (Hulme & Cherrier, 1999[Hulme, C. & Cherrier, M.-P. (1999). Tetrahedron Lett. 40, 5295-5299.]). A review on the current pharmacological and toxicological information for piperazine derivatives is given by Elliott (2011[Elliott, S. (2011). Drug Test. Anal. 3, 430-438.]). The title compound also contains a carb­oxy­lic group, which has been widely used in various fields such as coordination chemistry (Rueff et al., 2001[Rueff, J. M., Masciocchi, N., Rabu, P., Sironi, A. & Skoulios, A. (2001). Eur. J. Inorg. Chem. pp. 2843-2848.]), pharmaceutical chemistry (Strachan et al., 2007[Strachan, C. J., Rades, T. & Gordon, K. C. (2007). J. Pharm. Pharmacol. 59, 261-269.]) and supra­molecular chemistry (Desiraju, 2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]). Recently, the main focus for carb­oxy­lic acids has been in crystal engineering via hydrogen-bonded assembly of organic acids and organic bases (Grossel et al., 2006[Grossel, C. M., Dwyer, A. N., Hursthouse, M. B. & Orton, J. B. (2006). CrystEngComm, 8, 123-128.]). In an attempt to further synthesis piperazine derivatives, the title compound was synthesized and the crystal structure is reported herein.

2. Structural commentary

The mol­ecular structure of the asymmetric unit is shown in Fig. 1[link]. The conformation of the two mol­ecules (A and B) is essentially the same. The piperazine rings are in chair conformations with the N atoms (N1A/N2A and N1B/N2B) out of plane of the essentially planar C atoms. The dihedral angles formed by the four approximately planar C atoms of the piperazine ring (C8A–C11A and C8B–C11B) and the benzene ring (C2A–C7A and C2B–C7B) is 30.8 (5)° in mol­ecule A and 30.6 (5)° in mol­ecule B.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structures of the two crystallographically independent mol­ecules (A and B) in the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the crystal, mol­ecules A and B are connected by a pair of O—H⋯O hydrogen bonds (Fig. 1[link], Table 1[link]), forming a dimer with graph set R22(8). In addition, weak C—H⋯O hydrogen bonds connect the dimers, forming zigzag chains along [001] (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O2B 0.84 2.14 2.973 (8) 170
C8A—H8AB⋯O3Bi 0.99 2.56 3.225 (11) 124
O1B—H1B⋯O2A 0.84 2.11 2.934 (8) 168
Symmetry code: (i) [-x+1, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure with O—H⋯O and weak C—H⋯O hydrogen bonds shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, update February 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 11 crystal structures containing the (eth­oxy­carbon­yl)piperazin-1-yl group. Three of these also contain a benzene ring attached to the other piperazine N atom viz. ethyl 4-(5-bromo-2-formyl­phen­yl)piperazine-1-carboxyl­ate (EPEPUL; Nour et al., 2011[Nour, H. F., Matei, M. F., Bassil, B. S., Kortz, U. & Kuhnert, N. (2011). Org. Biomol. Chem. 9, 3258-3271.]), ethyl 4-[4-nitro-2-(tri­fluoro­meth­yl)phen­yl]piperazine-1-carboxyl­ate (OMOJAB; Lynch & McClenaghan, 2004[Lynch, D. E. & McClenaghan, I. (2004). Acta Cryst. C60, o1-o5.]) and ethyl 4-[2-nitro-4-(tri­fluoro­meth­yl)phen­yl]piperazine-1-carboxyl­ate (OMOJEF; Lynch & McClenaghan, 2004[Lynch, D. E. & McClenaghan, I. (2004). Acta Cryst. C60, o1-o5.]). The dihedral angles formed by the four essentially planar C atoms of the piperazine ring and the benzene ring are 48.4 (1)° for EPEPUL, 44.1 (1)° for OMOJAB and 43.2 (2) and 43.7 (2)° for the two independent mol­ecules in OMOJEF.

5. Synthesis and crystallization

The title compound was prepared by a mixture of ethyl 1-piperazine­carboxyl­ate (2.0 g, 12.6 mmol), 4-fluoro­benzoic acid (1.7 g, 12.6 mmol), and K2CO3 (2.6 g, 18.9 mmol) in 10 mL of dry aceto­nitrile which was heated at 353 K for 12 h with constant stirring under a nitro­gen atmosphere. After cooling to room temperature, the mixture was poured slowly onto ice-cold water (100 ml) and acidified with glacial acetic acid (AcOH) to pH 3–5. After filtration, the product was obtained as a pale-white crystalline solid (70%). Crystals of the title compound used for X-ray analysis were obtained within three days by slow evaporation of the aceto­nitrile solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions with C—H = 0.95–0.99 Å, O—H = 0.84 Å and included in the refinement in a riding-motion approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, Cmeth­yl). The crystal quality was generally poor and although the best crystal available was selected, the precision of the structure has been affected by the crystal quality.

Table 2
Experimental details

Crystal data
Chemical formula C14H18N2O4
Mr 278.30
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 173
a, b, c (Å) 18.508 (5), 4.994 (5), 29.594 (5)
V3) 2735 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.29 × 0.21 × 0.15
 
Data collection
Diffractometer Bruker SMART APEX
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.972, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 12918, 4042, 3100
Rint 0.068
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.202, 1.08
No. of reflections 4042
No. of parameters 363
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −0.47
Absolute structure parameter 0.2 (10)
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

4-[4-(Ethoxycarbonyl)piperazin-1-yl]benzoic acid top
Crystal data top
C14H18N2O4Dx = 1.352 Mg m3
Mr = 278.30Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 999 reflections
a = 18.508 (5) Åθ = 2.2–25.5°
b = 4.994 (5) ŵ = 0.10 mm1
c = 29.594 (5) ÅT = 173 K
V = 2735 (3) Å3Block, colorless
Z = 80.29 × 0.21 × 0.15 mm
F(000) = 1184
Data collection top
Bruker SMART APEX
diffractometer
3100 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
/w–scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2221
Tmin = 0.972, Tmax = 0.985k = 55
12918 measured reflectionsl = 3525
4042 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.077 w = 1/[σ2(Fo2) + (0.1131P)2 + 0.9875P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.202(Δ/σ)max = 0.002
S = 1.08Δρmax = 0.65 e Å3
4042 reflectionsΔρmin = 0.47 e Å3
363 parametersAbsolute structure: Flack x determined using 850 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.2 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.6918 (3)0.2291 (13)0.3795 (3)0.044 (2)
H1A0.65280.27950.36780.065*
O2A0.6971 (2)0.6589 (12)0.3981 (2)0.0289 (13)
O3A1.1546 (2)0.0268 (10)0.61300 (19)0.0282 (13)
O4A1.1990 (3)0.2288 (9)0.5501 (2)0.0209 (14)
N1A0.9933 (3)0.2577 (10)0.4888 (3)0.0173 (18)
N2A1.1101 (3)0.0764 (13)0.5433 (2)0.0260 (15)
C1A0.7243 (4)0.4362 (14)0.3986 (3)0.0196 (16)
C2A0.7949 (4)0.3828 (13)0.4214 (3)0.0197 (16)
C3A0.8164 (3)0.5513 (14)0.4560 (3)0.0217 (16)
H3AA0.78650.69690.46470.026*
C4A0.8816 (3)0.5082 (14)0.4781 (3)0.0219 (16)
H4AA0.89570.62370.50210.026*
C5A0.9277 (4)0.2923 (16)0.4653 (3)0.0215 (19)
C6A0.9066 (3)0.1323 (14)0.4308 (3)0.0204 (16)
H6AA0.93690.01100.42160.024*
C7A0.8404 (4)0.1743 (18)0.4086 (3)0.0212 (16)
H7AA0.82660.05910.38450.025*
C8A0.9880 (4)0.2484 (15)0.5397 (3)0.022 (2)
H8AA0.95640.39550.55030.026*
H8AB0.96580.07670.54900.026*
C9A1.0603 (4)0.2747 (17)0.5609 (3)0.027 (2)
H9AA1.07970.45620.55510.033*
H9AB1.05580.25190.59400.033*
C10A1.1159 (4)0.0718 (17)0.4939 (3)0.0285 (19)
H10A1.14590.08280.48460.034*
H10B1.14020.23720.48340.034*
C11A1.0420 (3)0.0510 (15)0.4721 (3)0.0225 (17)
H11A1.04700.06880.43890.027*
H11B1.02110.12750.47850.027*
C12A1.1547 (3)0.0536 (14)0.5723 (2)0.0183 (16)
C13A1.2448 (4)0.3858 (16)0.5793 (3)0.0301 (19)
H13A1.21540.48680.60140.036*
H13B1.27880.26860.59590.036*
C14A1.2859 (4)0.5770 (15)0.5485 (3)0.0271 (18)
H14A1.31860.68750.56670.041*
H14B1.31410.47390.52650.041*
H14C1.25160.69260.53260.041*
O1B0.5524 (3)0.7761 (13)0.3627 (3)0.045 (2)
H1B0.59110.72220.37440.067*
O2B0.5460 (2)0.3407 (11)0.34180 (19)0.0242 (12)
O3B0.0883 (3)1.0119 (11)0.12725 (19)0.0296 (13)
O4B0.0441 (3)1.2149 (11)0.1901 (2)0.0222 (14)
N1B0.2507 (3)0.7383 (12)0.2493 (3)0.0208 (19)
N2B0.1310 (3)0.9039 (12)0.1970 (2)0.0219 (14)
C1B0.5191 (3)0.5682 (13)0.3412 (3)0.0182 (16)
C2B0.4492 (4)0.6208 (14)0.3179 (3)0.0194 (16)
C3B0.4035 (4)0.8309 (17)0.3305 (3)0.0202 (16)
H3BA0.41760.94800.35430.024*
C4B0.3379 (4)0.8706 (15)0.3089 (3)0.0205 (16)
H4BA0.30661.00940.31880.025*
C5B0.3175 (3)0.7085 (16)0.2727 (3)0.0179 (17)
C6B0.3630 (4)0.4965 (14)0.2608 (3)0.0237 (16)
H6BA0.34920.37950.23690.028*
C7B0.4273 (4)0.4547 (15)0.2829 (3)0.0222 (17)
H7BA0.45730.30930.27410.027*
C8B0.2016 (3)0.9471 (15)0.2664 (3)0.0237 (17)
H8BA0.22101.12590.25860.028*
H8BB0.19860.93480.29980.028*
C9B0.1267 (4)0.9150 (17)0.2462 (3)0.0260 (18)
H9BA0.10430.74840.25780.031*
H9BB0.09591.06770.25540.031*
C10B0.1800 (4)0.7025 (18)0.1806 (3)0.0238 (19)
H10C0.18300.71300.14720.029*
H10D0.16170.52260.18880.029*
C11B0.2552 (4)0.7435 (14)0.2011 (3)0.022 (2)
H11C0.28810.60010.19050.026*
H11D0.27510.91760.19100.026*
C12B0.0880 (4)1.0370 (15)0.1678 (3)0.0241 (18)
C13B0.0015 (4)1.3737 (16)0.1605 (3)0.0266 (18)
H13C0.03461.25640.14330.032*
H13D0.02851.47620.13890.032*
C14B0.0436 (4)1.5605 (15)0.1900 (3)0.0276 (18)
H14E0.07081.68600.17110.041*
H14F0.01031.66050.20950.041*
H14G0.07721.45740.20880.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.047 (4)0.052 (5)0.033 (5)0.000 (3)0.003 (3)0.007 (3)
O2A0.025 (3)0.024 (3)0.038 (4)0.001 (2)0.001 (2)0.006 (3)
O3A0.025 (3)0.037 (3)0.022 (3)0.003 (2)0.005 (2)0.003 (3)
O4A0.020 (3)0.026 (3)0.017 (4)0.002 (2)0.001 (2)0.001 (2)
N1A0.014 (3)0.010 (4)0.027 (5)0.005 (2)0.001 (3)0.000 (2)
N2A0.025 (3)0.035 (4)0.018 (4)0.004 (3)0.001 (3)0.003 (3)
C1A0.024 (4)0.007 (4)0.028 (5)0.002 (3)0.002 (3)0.003 (3)
C2A0.017 (4)0.014 (4)0.028 (5)0.004 (3)0.001 (3)0.004 (3)
C3A0.018 (3)0.019 (4)0.029 (4)0.000 (3)0.004 (3)0.001 (3)
C4A0.018 (3)0.017 (4)0.030 (4)0.000 (3)0.000 (3)0.001 (3)
C5A0.019 (3)0.018 (4)0.027 (5)0.004 (3)0.005 (3)0.006 (4)
C6A0.016 (3)0.013 (4)0.032 (5)0.005 (3)0.003 (3)0.003 (3)
C7A0.024 (4)0.026 (4)0.014 (4)0.005 (4)0.003 (3)0.003 (4)
C8A0.020 (4)0.033 (6)0.012 (5)0.008 (3)0.003 (3)0.005 (3)
C9A0.021 (4)0.034 (5)0.027 (5)0.003 (3)0.001 (3)0.009 (4)
C10A0.022 (4)0.040 (5)0.024 (5)0.005 (3)0.001 (3)0.003 (4)
C11A0.022 (4)0.025 (4)0.020 (4)0.002 (3)0.005 (3)0.001 (3)
C12A0.014 (3)0.024 (4)0.017 (5)0.006 (3)0.000 (3)0.001 (3)
C13A0.027 (4)0.029 (5)0.035 (5)0.007 (3)0.006 (4)0.003 (4)
C14A0.025 (4)0.016 (4)0.041 (5)0.001 (3)0.004 (3)0.000 (3)
O1B0.032 (3)0.037 (4)0.065 (6)0.004 (3)0.007 (3)0.006 (3)
O2B0.020 (2)0.020 (3)0.032 (3)0.001 (2)0.002 (2)0.001 (3)
O3B0.029 (3)0.038 (3)0.022 (3)0.007 (2)0.003 (2)0.005 (3)
O4B0.020 (3)0.026 (3)0.021 (4)0.008 (2)0.003 (2)0.003 (2)
N1B0.014 (3)0.034 (5)0.015 (4)0.004 (2)0.001 (3)0.004 (2)
N2B0.013 (3)0.026 (3)0.026 (4)0.007 (2)0.000 (3)0.001 (3)
C1B0.013 (3)0.018 (4)0.024 (4)0.002 (3)0.001 (3)0.000 (3)
C2B0.023 (4)0.015 (4)0.021 (4)0.002 (3)0.004 (3)0.005 (3)
C3B0.020 (3)0.017 (4)0.024 (4)0.004 (3)0.004 (3)0.002 (3)
C4B0.021 (3)0.020 (4)0.020 (4)0.002 (3)0.003 (3)0.001 (3)
C5B0.012 (3)0.028 (4)0.014 (4)0.001 (3)0.001 (3)0.000 (3)
C6B0.025 (4)0.020 (4)0.026 (4)0.001 (3)0.000 (3)0.007 (3)
C7B0.019 (3)0.018 (4)0.030 (5)0.005 (3)0.002 (3)0.001 (3)
C8B0.019 (3)0.030 (5)0.022 (4)0.007 (3)0.003 (3)0.004 (3)
C9B0.018 (4)0.035 (5)0.025 (5)0.005 (3)0.000 (3)0.001 (3)
C10B0.023 (4)0.031 (4)0.017 (5)0.003 (3)0.001 (3)0.002 (4)
C11B0.019 (4)0.017 (5)0.029 (6)0.001 (3)0.001 (3)0.000 (3)
C12B0.015 (3)0.023 (4)0.035 (6)0.000 (3)0.003 (3)0.000 (3)
C13B0.030 (4)0.030 (5)0.020 (4)0.006 (3)0.006 (3)0.001 (3)
C14B0.026 (4)0.025 (4)0.032 (5)0.001 (3)0.003 (3)0.008 (3)
Geometric parameters (Å, º) top
O1A—C1A1.324 (10)O1B—C1B1.365 (9)
O1A—H1A0.8400O1B—H1B0.8400
O2A—C1A1.221 (9)O2B—C1B1.241 (9)
O3A—C12A1.212 (8)O3B—C12B1.207 (9)
O4A—C12A1.367 (8)O4B—C12B1.372 (9)
O4A—C13A1.441 (9)O4B—C13B1.451 (9)
N1A—C5A1.409 (10)N1B—C5B1.425 (10)
N1A—C11A1.457 (9)N1B—C11B1.430 (11)
N1A—C8A1.510 (10)N1B—C8B1.473 (9)
N2A—C12A1.357 (9)N2B—C12B1.351 (9)
N2A—C9A1.450 (10)N2B—C10B1.439 (9)
N2A—C10A1.464 (10)N2B—C9B1.460 (10)
C1A—C2A1.494 (10)C1B—C2B1.490 (10)
C2A—C3A1.384 (10)C2B—C7B1.387 (11)
C2A—C7A1.392 (11)C2B—C3B1.399 (11)
C3A—C4A1.390 (9)C3B—C4B1.388 (10)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.427 (10)C4B—C5B1.394 (11)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.352 (12)C5B—C6B1.399 (10)
C6A—C7A1.406 (10)C6B—C7B1.376 (10)
C6A—H6AA0.9500C6B—H6BA0.9500
C7A—H7AA0.9500C7B—H7BA0.9500
C8A—C9A1.485 (11)C8B—C9B1.519 (9)
C8A—H8AA0.9900C8B—H8BA0.9900
C8A—H8AB0.9900C8B—H8BB0.9900
C9A—H9AA0.9900C9B—H9BA0.9900
C9A—H9AB0.9900C9B—H9BB0.9900
C10A—C11A1.517 (9)C10B—C11B1.532 (11)
C10A—H10A0.9900C10B—H10C0.9900
C10A—H10B0.9900C10B—H10D0.9900
C11A—H11A0.9900C11B—H11C0.9900
C11A—H11B0.9900C11B—H11D0.9900
C13A—C14A1.523 (11)C13B—C14B1.496 (11)
C13A—H13A0.9900C13B—H13C0.9900
C13A—H13B0.9900C13B—H13D0.9900
C14A—H14A0.9800C14B—H14E0.9800
C14A—H14B0.9800C14B—H14F0.9800
C14A—H14C0.9800C14B—H14G0.9800
C1A—O1A—H1A109.5C1B—O1B—H1B109.5
C12A—O4A—C13A114.4 (7)C12B—O4B—C13B114.2 (7)
C5A—N1A—C11A116.8 (7)C5B—N1B—C11B115.9 (6)
C5A—N1A—C8A116.1 (6)C5B—N1B—C8B116.2 (7)
C11A—N1A—C8A110.9 (6)C11B—N1B—C8B111.5 (6)
C12A—N2A—C9A119.0 (7)C12B—N2B—C10B119.9 (7)
C12A—N2A—C10A125.4 (6)C12B—N2B—C9B126.0 (6)
C9A—N2A—C10A114.7 (7)C10B—N2B—C9B113.5 (6)
O2A—C1A—O1A121.2 (7)O2B—C1B—O1B120.6 (6)
O2A—C1A—C2A122.0 (7)O2B—C1B—C2B121.1 (6)
O1A—C1A—C2A116.8 (6)O1B—C1B—C2B118.3 (6)
C3A—C2A—C7A118.9 (6)C7B—C2B—C3B118.2 (6)
C3A—C2A—C1A118.4 (6)C7B—C2B—C1B119.7 (6)
C7A—C2A—C1A122.7 (7)C3B—C2B—C1B122.2 (7)
C2A—C3A—C4A120.3 (6)C4B—C3B—C2B120.8 (7)
C2A—C3A—H3AA119.9C4B—C3B—H3BA119.6
C4A—C3A—H3AA119.9C2B—C3B—H3BA119.6
C3A—C4A—C5A120.7 (7)C3B—C4B—C5B120.6 (7)
C3A—C4A—H4AA119.7C3B—C4B—H4BA119.7
C5A—C4A—H4AA119.7C5B—C4B—H4BA119.7
C6A—C5A—N1A123.3 (7)C4B—C5B—C6B118.1 (7)
C6A—C5A—C4A118.3 (7)C4B—C5B—N1B123.2 (7)
N1A—C5A—C4A118.4 (7)C6B—C5B—N1B118.5 (7)
C5A—C6A—C7A121.1 (7)C7B—C6B—C5B121.0 (7)
C5A—C6A—H6AA119.4C7B—C6B—H6BA119.5
C7A—C6A—H6AA119.4C5B—C6B—H6BA119.5
C2A—C7A—C6A120.7 (7)C6B—C7B—C2B121.2 (7)
C2A—C7A—H7AA119.6C6B—C7B—H7BA119.4
C6A—C7A—H7AA119.6C2B—C7B—H7BA119.4
C9A—C8A—N1A111.2 (7)N1B—C8B—C9B110.7 (6)
C9A—C8A—H8AA109.4N1B—C8B—H8BA109.5
N1A—C8A—H8AA109.4C9B—C8B—H8BA109.5
C9A—C8A—H8AB109.4N1B—C8B—H8BB109.5
N1A—C8A—H8AB109.4C9B—C8B—H8BB109.5
H8AA—C8A—H8AB108.0H8BA—C8B—H8BB108.1
N2A—C9A—C8A111.1 (7)N2B—C9B—C8B110.2 (6)
N2A—C9A—H9AA109.4N2B—C9B—H9BA109.6
C8A—C9A—H9AA109.4C8B—C9B—H9BA109.6
N2A—C9A—H9AB109.4N2B—C9B—H9BB109.6
C8A—C9A—H9AB109.4C8B—C9B—H9BB109.6
H9AA—C9A—H9AB108.0H9BA—C9B—H9BB108.1
N2A—C10A—C11A111.1 (6)N2B—C10B—C11B110.2 (6)
N2A—C10A—H10A109.4N2B—C10B—H10C109.6
C11A—C10A—H10A109.4C11B—C10B—H10C109.6
N2A—C10A—H10B109.4N2B—C10B—H10D109.6
C11A—C10A—H10B109.4C11B—C10B—H10D109.6
H10A—C10A—H10B108.0H10C—C10B—H10D108.1
N1A—C11A—C10A111.4 (6)N1B—C11B—C10B109.8 (7)
N1A—C11A—H11A109.4N1B—C11B—H11C109.7
C10A—C11A—H11A109.4C10B—C11B—H11C109.7
N1A—C11A—H11B109.4N1B—C11B—H11D109.7
C10A—C11A—H11B109.4C10B—C11B—H11D109.7
H11A—C11A—H11B108.0H11C—C11B—H11D108.2
O3A—C12A—N2A125.1 (7)O3B—C12B—N2B125.6 (7)
O3A—C12A—O4A123.3 (7)O3B—C12B—O4B123.2 (7)
N2A—C12A—O4A111.5 (6)N2B—C12B—O4B111.1 (7)
O4A—C13A—C14A106.1 (7)O4B—C13B—C14B107.0 (6)
O4A—C13A—H13A110.5O4B—C13B—H13C110.3
C14A—C13A—H13A110.5C14B—C13B—H13C110.3
O4A—C13A—H13B110.5O4B—C13B—H13D110.3
C14A—C13A—H13B110.5C14B—C13B—H13D110.3
H13A—C13A—H13B108.7H13C—C13B—H13D108.6
C13A—C14A—H14A109.5C13B—C14B—H14E109.5
C13A—C14A—H14B109.5C13B—C14B—H14F109.5
H14A—C14A—H14B109.5H14E—C14B—H14F109.5
C13A—C14A—H14C109.5C13B—C14B—H14G109.5
H14A—C14A—H14C109.5H14E—C14B—H14G109.5
H14B—C14A—H14C109.5H14F—C14B—H14G109.5
O2A—C1A—C2A—C3A24.7 (11)O2B—C1B—C2B—C7B24.7 (11)
O1A—C1A—C2A—C3A154.3 (7)O1B—C1B—C2B—C7B156.3 (7)
O2A—C1A—C2A—C7A154.0 (8)O2B—C1B—C2B—C3B153.9 (7)
O1A—C1A—C2A—C7A27.0 (11)O1B—C1B—C2B—C3B25.1 (11)
C7A—C2A—C3A—C4A1.4 (11)C7B—C2B—C3B—C4B0.4 (11)
C1A—C2A—C3A—C4A179.8 (6)C1B—C2B—C3B—C4B178.3 (7)
C2A—C3A—C4A—C5A0.7 (11)C2B—C3B—C4B—C5B2.8 (12)
C11A—N1A—C5A—C6A4.9 (11)C3B—C4B—C5B—C6B3.7 (11)
C8A—N1A—C5A—C6A129.0 (8)C3B—C4B—C5B—N1B179.7 (7)
C11A—N1A—C5A—C4A174.5 (7)C11B—N1B—C5B—C4B131.7 (8)
C8A—N1A—C5A—C4A51.5 (9)C8B—N1B—C5B—C4B2.2 (11)
C3A—C4A—C5A—C6A0.4 (11)C11B—N1B—C5B—C6B52.3 (9)
C3A—C4A—C5A—N1A179.9 (7)C8B—N1B—C5B—C6B173.8 (7)
N1A—C5A—C6A—C7A179.7 (7)C4B—C5B—C6B—C7B2.3 (11)
C4A—C5A—C6A—C7A0.9 (12)N1B—C5B—C6B—C7B178.6 (7)
C3A—C2A—C7A—C6A1.0 (12)C5B—C6B—C7B—C2B0.1 (12)
C1A—C2A—C7A—C6A179.7 (7)C3B—C2B—C7B—C6B0.9 (11)
C5A—C6A—C7A—C2A0.1 (12)C1B—C2B—C7B—C6B179.6 (7)
C5A—N1A—C8A—C9A166.9 (6)C5B—N1B—C8B—C9B166.6 (7)
C11A—N1A—C8A—C9A56.5 (8)C11B—N1B—C8B—C9B57.6 (8)
C12A—N2A—C9A—C8A137.3 (8)C12B—N2B—C9B—C8B134.8 (7)
C10A—N2A—C9A—C8A53.3 (9)C10B—N2B—C9B—C8B54.0 (8)
N1A—C8A—C9A—N2A54.1 (9)N1B—C8B—C9B—N2B53.1 (9)
C12A—N2A—C10A—C11A139.4 (7)C12B—N2B—C10B—C11B132.7 (7)
C9A—N2A—C10A—C11A52.0 (9)C9B—N2B—C10B—C11B55.6 (9)
C5A—N1A—C11A—C10A168.5 (6)C5B—N1B—C11B—C10B165.3 (6)
C8A—N1A—C11A—C10A55.3 (8)C8B—N1B—C11B—C10B58.8 (8)
N2A—C10A—C11A—N1A52.7 (9)N2B—C10B—C11B—N1B57.2 (9)
C9A—N2A—C12A—O3A3.5 (11)C10B—N2B—C12B—O3B3.5 (11)
C10A—N2A—C12A—O3A171.6 (7)C9B—N2B—C12B—O3B174.1 (7)
C9A—N2A—C12A—O4A178.7 (6)C10B—N2B—C12B—O4B178.4 (6)
C10A—N2A—C12A—O4A10.5 (10)C9B—N2B—C12B—O4B7.7 (10)
C13A—O4A—C12A—O3A1.5 (9)C13B—O4B—C12B—O3B0.8 (10)
C13A—O4A—C12A—N2A176.4 (6)C13B—O4B—C12B—N2B177.4 (6)
C12A—O4A—C13A—C14A176.7 (6)C12B—O4B—C13B—C14B178.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O2B0.842.142.973 (8)170
C8A—H8AB···O3Bi0.992.563.225 (11)124
O1B—H1B···O2A0.842.112.934 (8)168
Symmetry code: (i) x+1, y+1, z+1/2.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBerkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369–2371.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819–1826.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDinsmore, C. J. & Beshore, D. C. (2002). Tetrahedron, 58, 3297–3312.  Web of Science CrossRef CAS Google Scholar
First citationDorsey, B. D., Levin, R. B., McDaniel, S. L., Vacca, J. P., Guare, J. P., Darke, P. L., Zugay, J. A., Emini, E. A., Schleif, W. A., Quintero, J. C., et al. (1994). J. Med. Chem. 37, 3443–3451.  CrossRef CAS PubMed Web of Science Google Scholar
First citationElliott, S. (2011). Drug Test. Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrossel, C. M., Dwyer, A. N., Hursthouse, M. B. & Orton, J. B. (2006). CrystEngComm, 8, 123–128.  Web of Science CrossRef CAS Google Scholar
First citationHulme, C. & Cherrier, M.-P. (1999). Tetrahedron Lett. 40, 5295–5299.  Web of Science CrossRef CAS Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2004). Acta Cryst. C60, o1–o5.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNour, H. F., Matei, M. F., Bassil, B. S., Kortz, U. & Kuhnert, N. (2011). Org. Biomol. Chem. 9, 3258–3271.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRueff, J. M., Masciocchi, N., Rabu, P., Sironi, A. & Skoulios, A. (2001). Eur. J. Inorg. Chem. pp. 2843–2848.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrachan, C. J., Rades, T. & Gordon, K. C. (2007). J. Pharm. Pharmacol. 59, 261–269.  Web of Science CrossRef PubMed CAS Google Scholar
First citationUpadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds