research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of calcium dizinc iron(III) tris­­(orthophosphate), CaZn2Fe(PO4)3

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: j_khmiyas@yahoo.fr

Edited by T. J. Prior, University of Hull, England (Received 20 July 2016; accepted 1 August 2016; online 5 August 2016)

Single crystals of the title compound, CaZn2Fe(PO4)3, were synthesized by conventional solid-state reaction. In the asymmetric unit, all atoms are located in fully occupied general positions of the P21/c space group. The zinc atoms are located on two crystallographically independent sites with tetra­hedral and distorted triangular-based bipyramidal geometries. Two edge-sharing triangular bipyramidal ZnO5 units form a dimer, which is linked to slightly deformed FeO6 octa­hedra via a common edge. The resulting chains are inter­connected through PO4 tetra­hedra to form a layer perpendicular to the b axis. Moreover, the remaining PO4 and ZnO4 tetra­hedra are linked together through common vertices to form tapes parallel to the c axis and surrounding a chain of Ca2+ cations to build a sheet, also perpendicular to the b axis. The stacking of the two layers along the b axis leads to the resulting three-dimensional framework, which defines channels in which the Ca2+ cations are located, each cation being coordinated by seven oxygen atoms.

1. Chemical context

Microporous compounds with an open anionic framework containing transition metals have been widely studied during recent years, especially iron phosphates, because of their potential applications in several fields such as gas sensing (Abdurahman et al., 2014[Abdurahman, A., Nizamidin, P. & Yimit, A. (2014). Mater. Sci. Semicond. Process. 22, 21-27.]), catalysis (Ai, 1999[Ai, M. (1999). Catal. Today, 52, 65-69.]), as cathode materials for rechargeable lithium batteries (Masquelier et al., 1998[Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1998). J. Solid State Chem. 135, 228-234.]), biocompatibility of glass fibres for tissue engineering (Ahmed et al., 2004[Ahmed, I., Collins, C. A., Lewis, M. P., Olsen, I. & Knowles, J. C. (2004). Biomaterials, 25, 3223-3232.]), and immobilization of spent nuclear fuel (Mesko & Day, 1999[Mesko, M. G. & Day, D. E. (1999). J. Nucl. Mater. 273, 27-36.]). Metal phosphates with an open framework can exhibit different architectures such as linear-chain, layered and three-dimensional structures with channels or cavities where a variety of cations with different sizes, ratio and charges are accommodated. The occupancy of the allowed sites by cations can provide different properties such as remarkable flexibility, fast ionic conduction and low thermal expansion, mainly observed in the compounds belonging to the NASICON family with the general formula MM2P3O12 (where M = alkali metal, alkaline-earth metal or a vacant site and M′ = Zr, Ti, Hf, etc.; Senbhagaraman et al., 1993[Senbhagaraman, S., Guru Rowb, T. N. & Umarji, A. M. (1993). J. Mater. Chem. 3, 309-314.]). In our previous hydro­thermal investigations, a variety of compounds have been synthesized and characterized with different ratios of alkaline earth metal:P, viz. Sr2Mn3(HPO4)2(PO4)2 (Khmiyas et al., 2013[Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, i50.]), BaMnII2MnIII(PO4)3 (Assani et al., 2013[Assani, A., Saadi, M., Alhakmi, G., Houmadi, E. & El Ammari, L. (2013). Acta Cryst. E69, i60.]), Mg7(PO4)2(HPO4)4 (Assani et al., 2011[Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011). Acta Cryst. E67, i52.]). In this context, our inter­est is focused on the synthesis of new iron orthophosphates with an open-framework structure. Accordingly, we have succeeded in synthesizing and structurally characterizing a new calcium, zinc and iron-based open-framework phosphate, namely CaZn2Fe(PO4)3.

2. Structural commentary

All atoms in asymmetric unit of the title compound occupy general positions of the P21/c space group. The refinement of this model was very easy and lead to an ordered structure in which the zinc cations occupy two sites with different environments. The coordination numbers of all cations were confirmed by bond-valence-sum calculations (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]). The obtained values for CaII+, ZnII+, FeIII+ and PV+ are as expected, viz. Ca1 (1.93), Zn1 (2.00), Zn2 (1.91), Fe1 (3.04), P1 (5.11), P2 (4.97) and P3 (4.94). The crystal structure is build up from PO4 and Zn1O4 tetra­hedra, distorted triangular-based bipyramidal Zn2O5 and FeO6 octa­hedra, as shown in Fig. 1[link]. The FeO6 octa­hedra are slightly deformed with Fe—O distances varying from 1.8908 (8) to 2.1318 (8) Å and share a common edge with the highly distorted [(Zn2)2O8] dimer resulting from the edge-sharing of two triangular-based bipyramidal Zn2O5 units. Sequences of these polyhedra build chains inter­connected by PO4 tetra­hedra, forming a layer perpendicular to the b axis, as shown in Fig. 2[link]. The remaining Zn1O4 tetra­hedra are linked to irregular PO4 groups via common corners, forming tapes parallel to the c axis, which are linked together by Ca2+ cations in sheets perpendicular to the b axis (see Fig. 3[link]). The obtained three-dimensional framework shows one type of channel running along the [001] direction in which the Ca2+ cations are located, each being coordinated by seven oxygen atoms (Fig. 4[link]).

[Figure 1]
Figure 1
The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, −y + [{3\over 2}], z − [{1\over 2}]; (ii) x, −y + [{3\over 2}], z + [{1\over 2}]; (iii) x + 1, y, z; (iv) −x + 1, −y + 1, −z + 1; (v) −x + 2, −y + 1, −z + 1; (vi) −x + 1, −y + 1, −z + 2; (vii) x, y, z + 1; (viii) x − 1, y, z; (ix) x − 1, −y + [{3\over 2}], z + [{1\over 2}].]
[Figure 2]
Figure 2
Edge-sharing triangular bipyramidal ZnO5 units linked to FeO6 octa­hedra and to PO4 tetra­hedra, forming a layer perpendicular to the b axis.
[Figure 3]
Figure 3
A layer perpendicular to the b axis, resulting from the chains connected via vertices of the ZnO4 and PO4 tetra­hedra.
[Figure 4]
Figure 4
Polyhedral representation of CaZn2Fe(PO4)3, showing the channels running along the [001] direction.

3. Database Survey

The formula of the title compound, CaZn2Fe(PO4)3, is similar to some compounds with alluaudite structures, space group C2/c or the α-CrPO4 structure, space group Imma. However, its structure is different and to our knowledge there is no known isotypic structure. Crystals of CaM2Fe(PO4)3 (M = Mg, Co, Ni, Cu) compounds, which are predicted to have the same structures or isotypes are in preparation, while the structures of SrM2Fe(PO4)3 (M = Co, Ni) compounds are isotypic with α-CrPO4 (Bouraima et al., 2016[Bouraima, A., Makani, T., Assani, A., Saadi, M. & El Ammari, L. (2016). Acta Cryst. E72, 1143-1146.]; Ouaatta et al., 2015[Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 1255-1258.]). Mention may also be made of other similar compounds, for example the phosphates Na2Co2Fe(PO4)3, NaCr2Zn(PO4)3 and Na1.66Zn1.66Fe1.34(PO4)3 (Bouraima et al., 2015[Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558-560.]; Souiwa et al., 2015[Souiwa, K., Hidouri, M., Toulemonde, O., Duttine, M. & Ben Amara, M. (2015). J. Alloys Compd, 627, 153-160.]; Khmiyas et al., 2015[Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690-692.]) adopting the alluaudite structure type. In conclusion, we can say that the structure of this phosphate is similar to the alluaudite structure but with lower symmetry.

4. Synthesis and crystallization

Single crystals of CaZn2Fe(PO4)3 were synthesized by a conventional solid-state method. Appropriate amounts of metal nitrate reagents, in the presence of H3PO4 85 wt%, were first dissolved in deionized water in the molar ratio Ca:Zn:Fe:P = 2:2:1:3 for 24 h. Then, the resulting solution was evaporated to dryness. The powder residue was ground in an agate mortar and progressively heated in a platinum crucible at a heating rate of 141 K h−1 until melting occurred at 1283 K. The melted product was cooled down at a rate of 5 K h−1. As result of the reaction, we obtained transparent crystals corresponding to the title compound CaZn2Fe(PO4)3.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The reflections (202) and (330) probably affected by the beam-stop were omitted from the refinement. The maximum and minimum electron densities in the final Fourier map are at 0.56 and 0.44 Å from Ca1 and Zn2, respectively.

Table 1
Experimental details

Crystal data
Chemical formula CaZn2Fe(PO4)3
Mr 511.58
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.5619 (3), 15.2699 (5), 8.1190 (3)
β (°) 117.788 (2)
V3) 939.06 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.72
Crystal size (mm) 0.30 × 0.26 × 0.18
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.600, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 54053, 4985, 4493
Rint 0.033
(sin θ/λ)max−1) 0.859
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.041, 1.04
No. of reflections 4985
No. of parameters 172
Δρmax, Δρmin (e Å−3) 1.07, −0.78
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Calcium dizinc iron(III) tris(orthophosphate) top
Crystal data top
CaZn2Fe(PO4)3F(000) = 988
Mr = 511.58Dx = 3.618 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.5619 (3) ÅCell parameters from 4985 reflections
b = 15.2699 (5) Åθ = 2.7–37.6°
c = 8.1190 (3) ŵ = 7.72 mm1
β = 117.788 (2)°T = 296 K
V = 939.06 (6) Å3Block, black
Z = 40.30 × 0.26 × 0.18 mm
Data collection top
Bruker X8 APEX
diffractometer
4985 independent reflections
Radiation source: fine-focus sealed tube4493 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 37.6°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1414
Tmin = 0.600, Tmax = 0.747k = 2626
54053 measured reflectionsl = 1013
Refinement top
Refinement on F2172 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.0174P)2 + 0.7655P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max = 0.003
S = 1.04Δρmax = 1.07 e Å3
4985 reflectionsΔρmin = 0.78 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.81685 (2)0.73588 (2)0.30142 (2)0.00740 (3)
Zn20.88412 (2)0.52265 (2)0.59417 (2)0.01026 (3)
Fe10.67075 (2)0.49009 (2)0.83003 (2)0.00500 (3)
Ca10.27619 (3)0.75762 (2)0.47919 (3)0.01070 (4)
P10.29665 (3)0.58370 (2)0.77261 (4)0.00503 (4)
P20.96807 (3)0.62244 (2)0.09438 (4)0.00499 (4)
P30.60325 (3)0.64096 (2)0.49014 (4)0.00491 (4)
O10.29942 (13)0.67932 (6)0.72349 (13)0.01271 (15)
O20.30273 (12)0.58596 (6)0.96463 (12)0.01006 (14)
O30.12207 (10)0.54161 (6)0.62684 (12)0.01114 (15)
O40.43948 (11)0.52893 (6)0.76475 (14)0.01312 (16)
O50.77926 (10)0.58832 (5)0.00379 (12)0.00895 (13)
O61.00136 (11)0.67493 (6)0.04745 (13)0.01045 (14)
O71.00262 (11)0.68143 (6)0.26134 (13)0.01055 (14)
O81.09932 (10)0.54481 (5)0.17408 (12)0.00724 (13)
O90.75426 (11)0.65280 (6)0.43941 (13)0.01160 (15)
O100.59377 (10)0.71947 (6)0.60355 (12)0.00974 (14)
O110.66602 (11)0.55677 (5)0.61102 (12)0.00822 (13)
O120.41993 (10)0.62799 (6)0.32620 (12)0.01012 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.00645 (5)0.00817 (5)0.00801 (6)0.00013 (4)0.00374 (4)0.00104 (4)
Zn20.00760 (5)0.01471 (6)0.01073 (6)0.00042 (4)0.00616 (4)0.00080 (5)
Fe10.00454 (5)0.00602 (6)0.00488 (6)0.00044 (4)0.00256 (4)0.00061 (4)
Ca10.01029 (8)0.01095 (9)0.01178 (10)0.00175 (6)0.00591 (7)0.00601 (7)
P10.00467 (9)0.00607 (10)0.00452 (10)0.00011 (7)0.00229 (8)0.00022 (8)
P20.00441 (9)0.00482 (10)0.00581 (11)0.00038 (7)0.00243 (8)0.00009 (8)
P30.00448 (9)0.00500 (10)0.00483 (10)0.00004 (7)0.00182 (8)0.00031 (8)
O10.0222 (4)0.0076 (3)0.0109 (4)0.0001 (3)0.0098 (3)0.0019 (3)
O20.0169 (3)0.0093 (3)0.0063 (3)0.0009 (3)0.0073 (3)0.0011 (3)
O30.0051 (3)0.0176 (4)0.0102 (4)0.0030 (3)0.0030 (3)0.0063 (3)
O40.0065 (3)0.0172 (4)0.0157 (4)0.0026 (3)0.0052 (3)0.0045 (3)
O50.0056 (3)0.0100 (3)0.0101 (3)0.0016 (2)0.0028 (2)0.0034 (3)
O60.0097 (3)0.0107 (3)0.0132 (4)0.0029 (3)0.0072 (3)0.0061 (3)
O70.0079 (3)0.0122 (3)0.0115 (4)0.0005 (2)0.0045 (3)0.0062 (3)
O80.0065 (3)0.0073 (3)0.0088 (3)0.0026 (2)0.0043 (2)0.0020 (2)
O90.0111 (3)0.0118 (3)0.0161 (4)0.0008 (3)0.0098 (3)0.0042 (3)
O100.0076 (3)0.0091 (3)0.0103 (3)0.0006 (2)0.0024 (3)0.0040 (3)
O110.0100 (3)0.0080 (3)0.0082 (3)0.0028 (2)0.0055 (3)0.0039 (3)
O120.0068 (3)0.0086 (3)0.0097 (3)0.0002 (2)0.0006 (3)0.0020 (3)
Geometric parameters (Å, º) top
Zn1—O91.9266 (9)Ca1—O2i2.4075 (9)
Zn1—O71.9518 (8)Ca1—O7viii2.4709 (9)
Zn1—O10i1.9578 (8)Ca1—O6ix2.4840 (9)
Zn1—O6ii2.0120 (8)Ca1—O102.4885 (8)
Zn2—O3iii1.9496 (8)Ca1—O122.8984 (9)
Zn2—O112.0038 (8)P1—O41.5073 (9)
Zn2—O3iv2.0241 (9)P1—O11.5166 (9)
Zn2—O8v2.0911 (8)P1—O21.5358 (9)
Zn2—O92.3371 (9)P1—O31.5487 (8)
Fe1—O41.8908 (8)P2—O51.5222 (8)
Fe1—O2vi1.9561 (9)P2—O61.5348 (9)
Fe1—O5vii1.9700 (8)P2—O71.5371 (9)
Fe1—O112.0330 (8)P2—O81.5519 (8)
Fe1—O8v2.0547 (8)P3—O121.5253 (8)
Fe1—O12iv2.1318 (8)P3—O101.5365 (9)
Ca1—O12.2439 (9)P3—O91.5396 (9)
Ca1—O1i2.3795 (10)P3—O111.5534 (8)
O9—Zn1—O7106.60 (4)O2i—Ca1—O6ix72.04 (3)
O9—Zn1—O10i106.09 (4)O7viii—Ca1—O6ix65.76 (3)
O7—Zn1—O10i124.80 (4)O1—Ca1—O1083.50 (3)
O9—Zn1—O6ii116.31 (4)O1i—Ca1—O1085.92 (3)
O7—Zn1—O6ii85.46 (3)O2i—Ca1—O1098.16 (3)
O10i—Zn1—O6ii116.93 (4)O7viii—Ca1—O10132.22 (3)
O3iii—Zn2—O11154.16 (4)O6ix—Ca1—O10160.73 (3)
O3iii—Zn2—O3iv77.67 (4)O1—Ca1—O1297.73 (3)
O11—Zn2—O3iv123.13 (3)O1i—Ca1—O1271.19 (3)
O3iii—Zn2—O8v108.82 (4)O2i—Ca1—O12126.00 (3)
O11—Zn2—O8v75.00 (3)O7viii—Ca1—O1279.74 (3)
O3iv—Zn2—O8v121.44 (4)O6ix—Ca1—O12145.10 (3)
O3iii—Zn2—O998.73 (4)O10—Ca1—O1253.99 (3)
O11—Zn2—O965.84 (3)O1—Ca1—O12ii69.93 (3)
O3iv—Zn2—O997.26 (4)O1i—Ca1—O12ii114.39 (3)
O8v—Zn2—O9135.92 (3)O2i—Ca1—O12ii57.96 (3)
O4—Fe1—O2vi96.63 (4)O7viii—Ca1—O12ii140.52 (3)
O4—Fe1—O5vii92.55 (4)O6ix—Ca1—O12ii78.49 (3)
O2vi—Fe1—O5vii90.75 (4)O10—Ca1—O12ii82.24 (3)
O4—Fe1—O1190.37 (4)O12—Ca1—O12ii135.98 (3)
O2vi—Fe1—O11171.82 (3)O4—P1—O1114.24 (6)
O5vii—Fe1—O1193.18 (4)O4—P1—O2114.28 (5)
O4—Fe1—O8v164.34 (4)O1—P1—O2104.36 (5)
O2vi—Fe1—O8v97.38 (3)O4—P1—O3104.50 (5)
O5vii—Fe1—O8v94.22 (3)O1—P1—O3109.05 (5)
O11—Fe1—O8v75.18 (3)O2—P1—O3110.42 (5)
O4—Fe1—O12iv93.16 (4)O5—P2—O6110.07 (5)
O2vi—Fe1—O12iv82.55 (4)O5—P2—O7110.55 (5)
O5vii—Fe1—O12iv171.65 (3)O6—P2—O7109.20 (5)
O11—Fe1—O12iv92.86 (4)O5—P2—O8109.84 (5)
O8v—Fe1—O12iv81.77 (3)O6—P2—O8111.11 (5)
O1—Ca1—O1i167.91 (4)O7—P2—O8106.00 (5)
O1—Ca1—O2i126.91 (3)O12—P3—O10107.69 (5)
O1i—Ca1—O2i60.49 (3)O12—P3—O9115.63 (5)
O1—Ca1—O7viii92.62 (3)O10—P3—O9110.75 (5)
O1i—Ca1—O7viii90.17 (3)O12—P3—O11110.86 (5)
O2i—Ca1—O7viii120.77 (3)O10—P3—O11111.50 (5)
O1—Ca1—O6ix89.31 (3)O9—P3—O11100.36 (5)
O1i—Ca1—O6ix102.55 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vi) x+1, y+1, z+2; (vii) x, y, z+1; (viii) x1, y, z; (ix) x1, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University in Rabat, Morocco, for financial support.

References

First citationAbdurahman, A., Nizamidin, P. & Yimit, A. (2014). Mater. Sci. Semicond. Process. 22, 21–27.  Web of Science CrossRef CAS Google Scholar
First citationAhmed, I., Collins, C. A., Lewis, M. P., Olsen, I. & Knowles, J. C. (2004). Biomaterials, 25, 3223–3232.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAi, M. (1999). Catal. Today, 52, 65–69.  Web of Science CrossRef CAS Google Scholar
First citationAssani, A., Saadi, M., Alhakmi, G., Houmadi, E. & El Ammari, L. (2013). Acta Cryst. E69, i60.  CrossRef IUCr Journals Google Scholar
First citationAssani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011). Acta Cryst. E67, i52.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouraima, A., Makani, T., Assani, A., Saadi, M. & El Ammari, L. (2016). Acta Cryst. E72, 1143–1146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, i50.  CrossRef IUCr Journals Google Scholar
First citationKhmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMasquelier, C., Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1998). J. Solid State Chem. 135, 228–234.  Web of Science CrossRef CAS Google Scholar
First citationMesko, M. G. & Day, D. E. (1999). J. Nucl. Mater. 273, 27–36.  Web of Science CrossRef CAS Google Scholar
First citationOuaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 1255–1258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSenbhagaraman, S., Guru Rowb, T. N. & Umarji, A. M. (1993). J. Mater. Chem. 3, 309–314.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSouiwa, K., Hidouri, M., Toulemonde, O., Duttine, M. & Ben Amara, M. (2015). J. Alloys Compd, 627, 153–160.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds