research communications
mer-Trichloridotris(tetrahydrothiophene-κS)iridium(III): preparation and comparison with other mer-trichloridotris(tetrahydrothiophene-κS)metal complexes
aDepartment of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
*Correspondence e-mail: jmerola@vt.edu
The title complex, [IrCl3(C4H8S)3], was prepared according to a literature method. A suitable crystal was obtained by diffusion of pentane into a dichloromethane solution and analyzed by single-crystal X-ray diffraction at 100 K. The title complex is isotypic with mer-trichloridotris(tetrahydrothiophene-κS)rhodium(III). However, the orientation of the tetrahydrothiophene rings is different from an earlier report of mer-trichloridotris(tetrahydrothiophene-κS)iridium(III) deposited in the Cambridge Structural Database. The IrS3Cl3 core shows a nearly octahedral structure with various bond angles within 1–2° of the perfect 90 or 180° expected for an octahedron. The structure of the title compound is compared with the previous iridium complex as well as the rhodium and other octahedral metal tris-tetrahydrothiophene compounds previously structurally characterized. DFT calculations were performed, which indicate the mer isomer is significantly lower in energy than the fac isomer by 50.1 kJ mol−1, thereby accounting for all compounds in the CSD being of the mer geometry. Powder X-ray diffraction of the bulk material showed that the preparation method yielded only the isomorph reported in this communication.
Keywords: crystal structure; iridium; tetrahydrothiophene; conformers.
CCDC reference: 1495966
1. Chemical context
We have been engaged in various studies of iridium chemistry for many years (Merola, 1997; Merola & Franks, 2015; Merola et al., 2013) and recently had need to find alternate routes to some iridium(III) complexes for our research. An examination of the literature led to the title compound as a possible anhydrous source of iridium(III) that we could use as a starting material (Allen & Wilkinson, 1972). mer-Trichloridotris(tetrahydrothiophene-κS)iridium(III) has been mentioned in the literature as a starting material for other organometallic iridium complexes (Hay-Motherwell et al., 1989, 1992, 1990; John et al., 2000, 2001, 2014), and most recently has been the starting material of choice for new emissive materials (Chang et al., 2008, 2011, 2013; Chiu et al., 2009; Hung et al., 2010; Lin, Chang et al., 2011; Lin, Chi et al., 2011; Lin et al., 2012). However, no crystallographic studies had been published on this compound. Given its increasing importance, we decided that a single determination of the title compound would be worthwhile.
2. Structural commentary
mer-Trichloridotris(tetrahydrothiophene-κS)iridium(III) (CCDC refcode 1495966) crystallizes in the P21/n with one molecule in the (Fig. 1). The core structure (heavy atoms around the iridium) is very close to rigorous octahedral geometry with the largest angular variation [Cl1—Ir1—Cl33, 177.35 (3)°] being less than 2.7° from ideal linearity.
The Ir—Cl bond lengths [range 2.3648 (8)–2.3774 (9) Å] are somewhat longer than the Ir—S bonds [range 2.3279 (9)–2.3575 (9) Å], as expected from the slightly larger radius of Cl. A search for Ir—S bonds in the CSD (Groom et al., 2016) and analyzed with Mercury (Macrae et al., 2008) found 2566 instances with distances ranging from 2.134 to 2.633 Å and a mean value of 2.358 Å. That places the bond lengths for the title compound slightly above the mean value. Similarly, a Mercury data analysis of the CSD for Ir—Cl bond lengths found 3965 instances with distances ranging from 2.121 to 2.816 Å and a mean value of 2.413 Å, which places the Ir—Cl distances for the title compound lower than the mean. This comparison should not be considered as too significant since it was not possible to compare bond lengths only for iridium(III) compounds and the analysis includes quite a few iridium(I) complexes. The tetrahydrothiophene rings are well ordered in the title structure, adopting a puckered conformation consistent with trying to minimize ring strain. Two of the rings are positioned with the center of the ring aligned over a chlorine atom in the structure, while the third is aligned over a sulfur atom of another ring. More will be said about the ring conformations in the Database survey section.
3. Supramolecular features
An examination of the packing diagrams for the title compound shows no unusual intermolecular features other than van der Waals interactions.
4. Database survey
A survey of the CCDC database (Groom et al., 2016) uncovered a number of metal mer-tris(THT-κS)metal complexes (THT= tetrahydrothiophene), including one iridium structure deposited as a private communication (CCDC 1438699; Rheingold & Donovan-Merkert, 2015). The deposited structure (CCDC 1438699) packs with very different unit-cell parameters but the overall molecular structure is substantially the same. The results of the different packing, however, are slightly different conformations of two of the three THT ligands, as shown in Fig. 2, a structure overlay calculated in Mercury (Macrae et al., 2008). On the other hand, the rhodium(III) complex is isotypic with the title complex with similar unit-cell parameters (CCDC refcode GEZHUO; Clark et al., 1988). Fig. 3 shows an overlay calculated with Mercury (Macrae et al., 2008) of the title complex with the rhodium compound, showing the nearly perfect atomic overlay. Ruthenium(III) (VIJYAO; Yapp et al., 1990) and molybdenum(III) (REDXIH; Boorman et al., 1996) complexes were also found in the database, with all showing the same meridional arrangement of ligands with the exception that the ruthenium complex displays disorder from overlapping conformations of one of the THT ligands.
5. Theoretical calculations
We were interested in determining if the bulk material synthesized by this process is of a single polymorph or if both of the iridium structures reported (CCDC 1495966, this report, and CCDC 1438699, Rheingold & Donovan-Merkert, 2015) were present. Fig. 4 shows an overlay of the powder X-ray diffraction pattern for the complex reported here with the powder pattern predicted by Mercury (Macrae et al., 2008). The match is very good and quite distinct from the pattern predicted for CCDC 1438699, indicating that the bulk material formed in this process is a single polymorph matching the structure reported here.
One feature that stands out in all cases is that the MCl3(THT)3 compounds found in the database adopt the mer configuration. Calculations were performed using density functional theory with Gaussian 09 (Frisch et al., 2009). Full geometry optimization of both the mer and fac isomers was carried out via density functional theory (DFT) with the Becke-3-parameter exchange functional (Becke, 1993) and the Lee–Yang–Parr correlation functional (Lee et al., 1988). Because iridium is not covered in the cc-PVDZ basis set used, computations involving Ir employed Stuttgart/Dresden quasi-relativistic pseudopotentials (Andrae et al., 1990). The difference between the two isomers was quite large with the mer isomer being more stable than the fac by 50.1 kJ mol−1, suggesting the occurrence of only the mer isomer for the small set of compounds surveyed may be due to thermodynamic stability.
6. Synthesis and crystallization
The title compound was synthesized using a slight modification of a literature procedure (John et al., 2014). IrCl3·3H2O (1.00 g, 2.84 mmol) and 2-methoxyethanol (50 mL) were added to a 250 mL round-bottomed flask fitted with a magnetic stir bar and a reflux condenser. Tetrahydrothiophene (1.25 mL, 14.2 mmol) was added all at once with stirring. The resulting suspension was refluxed for 18 h, providing a clear orange solution that gave a yellow precipitate upon cooling to room temperature. Deionized water (75 mL) was added and the suspension was cooled overnight (273 K) before collection on a fine-porosity sintered glass frit. The resulting yellow powder was washed with deionized water (3 x 15 mL) then cold ethanol (3 x 15 mL). After vacuum drying overnight the yellow powder (1.40 g, 88%) was characterized by 1H and 13C NMR spectroscopy. As the NMR spectra were in agreement with previously reported data, no further purification was necessary. Single crystals for X-ray diffraction were grown by slow diffusion of n-pentane into a dichloromethane solution of mer-IrCl3(THT)3.
7. Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Supporting information
CCDC reference: 1495966
https://doi.org/10.1107/S2056989016012883/pk2588sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016012883/pk2588Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016012883/pk2588Isup3.mol
Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell
CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).[IrCl3(C4H8S)3] | F(000) = 1088 |
Mr = 563.04 | Dx = 2.144 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.9160 (3) Å | Cell parameters from 9679 reflections |
b = 10.2528 (2) Å | θ = 4.1–32.2° |
c = 14.9434 (4) Å | µ = 8.46 mm−1 |
β = 107.202 (3)° | T = 100 K |
V = 1744.00 (7) Å3 | Cube, yellow |
Z = 4 | 0.51 × 0.43 × 0.32 mm |
Rigaku OD Xcalibur Eos Gemini ultra diffractometer | 5773 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 5062 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 8.0061 pixels mm-1 | θmax = 32.2°, θmin = 3.6° |
ω scans | h = −13→17 |
Absorption correction: analytical [CrysAlis PRO (Rigaku Oxford Diffraction, 2015) based on expressions derived by Clark & Reid (1995)] | k = −13→15 |
Tmin = 0.064, Tmax = 0.155 | l = −22→21 |
19537 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.063 | w = 1/[σ2(Fo2) + (0.0223P)2 + 0.8135P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.002 |
5773 reflections | Δρmax = 1.54 e Å−3 |
172 parameters | Δρmin = −1.46 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ir1 | 0.45092 (2) | 0.70407 (2) | 0.73222 (2) | 0.01133 (4) | |
Cl1 | 0.59718 (7) | 0.70422 (8) | 0.65431 (6) | 0.01922 (17) | |
Cl2 | 0.59716 (8) | 0.73216 (8) | 0.87865 (6) | 0.01887 (16) | |
Cl3 | 0.30344 (7) | 0.71455 (8) | 0.80946 (6) | 0.01688 (16) | |
S1 | 0.46678 (7) | 0.47667 (8) | 0.74921 (6) | 0.01509 (16) | |
S2 | 0.30373 (7) | 0.68096 (8) | 0.59053 (6) | 0.01540 (16) | |
S3 | 0.44035 (7) | 0.93361 (9) | 0.72529 (6) | 0.01636 (16) | |
C1 | 0.6230 (3) | 0.4314 (4) | 0.7907 (3) | 0.0236 (8) | |
H1A | 0.6388 | 0.3570 | 0.7540 | 0.028* | |
H1B | 0.6727 | 0.5059 | 0.7837 | 0.028* | |
C2 | 0.6496 (3) | 0.3940 (4) | 0.8934 (3) | 0.0281 (9) | |
H2A | 0.7157 | 0.3314 | 0.9114 | 0.034* | |
H2B | 0.6710 | 0.4722 | 0.9337 | 0.034* | |
C3 | 0.5384 (4) | 0.3321 (4) | 0.9044 (3) | 0.0257 (8) | |
H3A | 0.5449 | 0.3203 | 0.9715 | 0.031* | |
H3B | 0.5246 | 0.2459 | 0.8732 | 0.031* | |
C4 | 0.4380 (3) | 0.4262 (4) | 0.8582 (3) | 0.0216 (7) | |
H4A | 0.4387 | 0.5024 | 0.8991 | 0.026* | |
H4B | 0.3610 | 0.3820 | 0.8448 | 0.026* | |
C5 | 0.3455 (3) | 0.5674 (4) | 0.5104 (3) | 0.0277 (9) | |
H5A | 0.3271 | 0.6057 | 0.4469 | 0.033* | |
H5B | 0.4308 | 0.5488 | 0.5331 | 0.033* | |
C6 | 0.2749 (3) | 0.4419 (4) | 0.5082 (3) | 0.0261 (8) | |
H6A | 0.2620 | 0.3969 | 0.4474 | 0.031* | |
H6B | 0.3179 | 0.3822 | 0.5588 | 0.031* | |
C7 | 0.1582 (3) | 0.4802 (4) | 0.5219 (3) | 0.0225 (8) | |
H7A | 0.1078 | 0.5244 | 0.4654 | 0.027* | |
H7B | 0.1163 | 0.4024 | 0.5348 | 0.027* | |
C8 | 0.1883 (3) | 0.5720 (4) | 0.6051 (3) | 0.0192 (7) | |
H8A | 0.2167 | 0.5224 | 0.6643 | 0.023* | |
H8B | 0.1182 | 0.6229 | 0.6065 | 0.023* | |
C9 | 0.3843 (3) | 0.9968 (4) | 0.6060 (2) | 0.0188 (7) | |
H9A | 0.3912 | 0.9305 | 0.5597 | 0.023* | |
H9B | 0.3010 | 1.0232 | 0.5920 | 0.023* | |
C10 | 0.4624 (3) | 1.1147 (4) | 0.6047 (3) | 0.0213 (7) | |
H10A | 0.4527 | 1.1433 | 0.5396 | 0.026* | |
H10B | 0.4424 | 1.1883 | 0.6400 | 0.026* | |
C11 | 0.5875 (3) | 1.0686 (4) | 0.6510 (3) | 0.0228 (8) | |
H11A | 0.6424 | 1.1434 | 0.6631 | 0.027* | |
H11B | 0.6119 | 1.0058 | 0.6099 | 0.027* | |
C12 | 0.5882 (3) | 1.0027 (4) | 0.7436 (3) | 0.0209 (7) | |
H12A | 0.6061 | 1.0674 | 0.7951 | 0.025* | |
H12B | 0.6483 | 0.9330 | 0.7598 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir1 | 0.01159 (6) | 0.01222 (7) | 0.01049 (6) | 0.00034 (4) | 0.00376 (5) | −0.00076 (4) |
Cl1 | 0.0165 (4) | 0.0225 (4) | 0.0222 (4) | −0.0003 (3) | 0.0112 (3) | −0.0008 (3) |
Cl2 | 0.0199 (4) | 0.0171 (4) | 0.0157 (4) | −0.0013 (3) | −0.0007 (3) | −0.0021 (3) |
Cl3 | 0.0183 (4) | 0.0179 (4) | 0.0177 (4) | 0.0004 (3) | 0.0102 (3) | −0.0020 (3) |
S1 | 0.0158 (4) | 0.0132 (4) | 0.0156 (4) | 0.0007 (3) | 0.0035 (3) | −0.0012 (3) |
S2 | 0.0151 (4) | 0.0170 (4) | 0.0130 (4) | 0.0001 (3) | 0.0024 (3) | 0.0001 (3) |
S3 | 0.0202 (4) | 0.0152 (4) | 0.0157 (4) | 0.0008 (3) | 0.0084 (3) | −0.0004 (3) |
C1 | 0.0173 (17) | 0.0225 (18) | 0.032 (2) | 0.0057 (14) | 0.0092 (16) | 0.0040 (16) |
C2 | 0.0209 (18) | 0.025 (2) | 0.030 (2) | 0.0032 (15) | −0.0046 (17) | 0.0039 (17) |
C3 | 0.031 (2) | 0.0182 (18) | 0.026 (2) | 0.0064 (15) | 0.0056 (17) | 0.0081 (16) |
C4 | 0.0242 (18) | 0.0193 (18) | 0.0240 (18) | 0.0017 (14) | 0.0113 (16) | 0.0053 (15) |
C5 | 0.0195 (18) | 0.046 (3) | 0.0179 (18) | 0.0012 (17) | 0.0059 (15) | −0.0126 (17) |
C6 | 0.032 (2) | 0.0249 (19) | 0.0184 (18) | 0.0067 (16) | 0.0027 (16) | −0.0076 (16) |
C7 | 0.0290 (19) | 0.0168 (17) | 0.0180 (17) | −0.0032 (14) | 0.0015 (16) | −0.0019 (14) |
C8 | 0.0143 (15) | 0.0214 (17) | 0.0238 (18) | −0.0031 (13) | 0.0082 (14) | −0.0051 (15) |
C9 | 0.0191 (17) | 0.0207 (17) | 0.0149 (16) | 0.0011 (13) | 0.0023 (14) | 0.0031 (13) |
C10 | 0.0262 (18) | 0.0181 (17) | 0.0212 (18) | 0.0021 (14) | 0.0097 (16) | 0.0024 (15) |
C11 | 0.0222 (18) | 0.0221 (18) | 0.0260 (19) | −0.0030 (14) | 0.0100 (16) | 0.0021 (15) |
C12 | 0.0189 (17) | 0.0199 (18) | 0.0209 (18) | −0.0037 (13) | 0.0013 (15) | −0.0008 (14) |
Ir1—Cl1 | 2.3648 (8) | C5—H5A | 0.9900 |
Ir1—Cl2 | 2.3774 (9) | C5—H5B | 0.9900 |
Ir1—Cl3 | 2.3732 (8) | C5—C6 | 1.533 (6) |
Ir1—S1 | 2.3469 (9) | C6—H6A | 0.9900 |
Ir1—S2 | 2.3279 (9) | C6—H6B | 0.9900 |
Ir1—S3 | 2.3575 (9) | C6—C7 | 1.516 (5) |
S1—C1 | 1.839 (4) | C7—H7A | 0.9900 |
S1—C4 | 1.835 (4) | C7—H7B | 0.9900 |
S2—C5 | 1.841 (4) | C7—C8 | 1.515 (5) |
S2—C8 | 1.834 (3) | C8—H8A | 0.9900 |
S3—C9 | 1.827 (4) | C8—H8B | 0.9900 |
S3—C12 | 1.843 (4) | C9—H9A | 0.9900 |
C1—H1A | 0.9900 | C9—H9B | 0.9900 |
C1—H1B | 0.9900 | C9—C10 | 1.529 (5) |
C1—C2 | 1.522 (6) | C10—H10A | 0.9900 |
C2—H2A | 0.9900 | C10—H10B | 0.9900 |
C2—H2B | 0.9900 | C10—C11 | 1.521 (5) |
C2—C3 | 1.521 (6) | C11—H11A | 0.9900 |
C3—H3A | 0.9900 | C11—H11B | 0.9900 |
C3—H3B | 0.9900 | C11—C12 | 1.537 (5) |
C3—C4 | 1.533 (5) | C12—H12A | 0.9900 |
C4—H4A | 0.9900 | C12—H12B | 0.9900 |
C4—H4B | 0.9900 | ||
Cl1—Ir1—Cl2 | 90.39 (3) | S2—C5—H5A | 110.3 |
Cl1—Ir1—Cl3 | 177.35 (3) | S2—C5—H5B | 110.3 |
Cl3—Ir1—Cl2 | 89.63 (3) | H5A—C5—H5B | 108.6 |
S1—Ir1—Cl1 | 90.37 (3) | C6—C5—S2 | 107.0 (2) |
S1—Ir1—Cl2 | 90.41 (3) | C6—C5—H5A | 110.3 |
S1—Ir1—Cl3 | 92.28 (3) | C6—C5—H5B | 110.3 |
S1—Ir1—S3 | 176.44 (3) | C5—C6—H6A | 110.2 |
S2—Ir1—Cl1 | 91.09 (3) | C5—C6—H6B | 110.2 |
S2—Ir1—Cl2 | 178.15 (3) | H6A—C6—H6B | 108.5 |
S2—Ir1—Cl3 | 88.85 (3) | C7—C6—C5 | 107.4 (3) |
S2—Ir1—S1 | 90.70 (3) | C7—C6—H6A | 110.2 |
S2—Ir1—S3 | 92.61 (3) | C7—C6—H6B | 110.2 |
S3—Ir1—Cl1 | 90.88 (3) | C6—C7—H7A | 110.6 |
S3—Ir1—Cl2 | 86.25 (3) | C6—C7—H7B | 110.6 |
S3—Ir1—Cl3 | 86.47 (3) | H7A—C7—H7B | 108.8 |
C1—S1—Ir1 | 109.15 (13) | C8—C7—C6 | 105.5 (3) |
C4—S1—Ir1 | 110.23 (12) | C8—C7—H7A | 110.6 |
C4—S1—C1 | 93.79 (17) | C8—C7—H7B | 110.6 |
C5—S2—Ir1 | 112.32 (13) | S2—C8—H8A | 110.4 |
C8—S2—Ir1 | 110.12 (13) | S2—C8—H8B | 110.4 |
C8—S2—C5 | 92.79 (17) | C7—C8—S2 | 106.6 (2) |
C9—S3—Ir1 | 113.33 (12) | C7—C8—H8A | 110.4 |
C9—S3—C12 | 93.79 (16) | C7—C8—H8B | 110.4 |
C12—S3—Ir1 | 109.93 (12) | H8A—C8—H8B | 108.6 |
S1—C1—H1A | 110.3 | S3—C9—H9A | 110.9 |
S1—C1—H1B | 110.3 | S3—C9—H9B | 110.9 |
H1A—C1—H1B | 108.6 | H9A—C9—H9B | 108.9 |
C2—C1—S1 | 106.9 (3) | C10—C9—S3 | 104.2 (2) |
C2—C1—H1A | 110.3 | C10—C9—H9A | 110.9 |
C2—C1—H1B | 110.3 | C10—C9—H9B | 110.9 |
C1—C2—H2A | 110.4 | C9—C10—H10A | 110.7 |
C1—C2—H2B | 110.4 | C9—C10—H10B | 110.7 |
H2A—C2—H2B | 108.6 | H10A—C10—H10B | 108.8 |
C3—C2—C1 | 106.7 (3) | C11—C10—C9 | 105.5 (3) |
C3—C2—H2A | 110.4 | C11—C10—H10A | 110.7 |
C3—C2—H2B | 110.4 | C11—C10—H10B | 110.7 |
C2—C3—H3A | 110.5 | C10—C11—H11A | 110.4 |
C2—C3—H3B | 110.5 | C10—C11—H11B | 110.4 |
C2—C3—C4 | 106.1 (3) | C10—C11—C12 | 106.8 (3) |
H3A—C3—H3B | 108.7 | H11A—C11—H11B | 108.6 |
C4—C3—H3A | 110.5 | C12—C11—H11A | 110.4 |
C4—C3—H3B | 110.5 | C12—C11—H11B | 110.4 |
S1—C4—H4A | 110.8 | S3—C12—H12A | 110.4 |
S1—C4—H4B | 110.8 | S3—C12—H12B | 110.4 |
C3—C4—S1 | 104.6 (2) | C11—C12—S3 | 106.5 (2) |
C3—C4—H4A | 110.8 | C11—C12—H12A | 110.4 |
C3—C4—H4B | 110.8 | C11—C12—H12B | 110.4 |
H4A—C4—H4B | 108.9 | H12A—C12—H12B | 108.6 |
Ir1—S1—C1—C2 | 106.1 (3) | C2—C3—C4—S1 | 43.0 (4) |
Ir1—S1—C4—C3 | −132.6 (2) | C4—S1—C1—C2 | −6.9 (3) |
Ir1—S2—C5—C6 | 106.8 (2) | C5—S2—C8—C7 | −20.6 (3) |
Ir1—S2—C8—C7 | −135.6 (2) | C5—C6—C7—C8 | −48.0 (4) |
Ir1—S3—C9—C10 | −138.6 (2) | C6—C7—C8—S2 | 42.1 (3) |
Ir1—S3—C12—C11 | 114.0 (2) | C8—S2—C5—C6 | −6.3 (3) |
S1—C1—C2—C3 | 33.0 (4) | C9—S3—C12—C11 | −2.5 (3) |
S2—C5—C6—C7 | 31.9 (4) | C9—C10—C11—C12 | −49.9 (4) |
S3—C9—C10—C11 | 46.4 (3) | C10—C11—C12—S3 | 29.9 (4) |
C1—S1—C4—C3 | −20.5 (3) | C12—S3—C9—C10 | −25.0 (3) |
C1—C2—C3—C4 | −49.8 (4) |
References
Allen, E. A. & Wilkinson, W. (1972). J. Chem. Soc. Dalton Trans. pp. 613–617. CrossRef Web of Science Google Scholar
Andrae, D., Häussermann, U., Dolg, M., Stoll, H. & Preuss, H. (1990). Theor. Chim. Acta, 77, 123–141. CrossRef CAS Web of Science Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Boorman, P. M., Wang, M. & Parvez, M. (1996). J. Chem. Soc. Dalton Trans. pp. 4533–4542. CSD CrossRef Web of Science Google Scholar
Chang, C.-F., Cheng, Y.-M., Chi, Y., Chiu, Y.-C., Lin, C.-C., Lee, G.-H., Chou, P.-T., Chen, C.-C., Chang, C.-H. & Wu, C.-C. (2008). Angew. Chem. Int. Ed. 47, 4542–4545. Web of Science CSD CrossRef CAS Google Scholar
Chang, C.-H., Ho, C.-L., Chang, Y.-S., Lien, I. C., Lin, C.-H., Yang, Y.-W., Liao, J.-L. & Chi, Y. (2013). J. Mater. Chem. C. 1, 2639–2647. Web of Science CrossRef CAS Google Scholar
Chang, Y.-Y., Hung, J.-Y., Chi, Y., Chyn, J.-P., Chung, M.-W., Lin, C.-L., Chou, P.-T., Lee, G.-H., Chang, C.-H. & Lin, W.-C. (2011). Inorg. Chem. 50, 5075–5084. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chiu, Y.-C., Hung, J.-Y., Chi, Y., Chen, C.-C., Chang, C.-H., Wu, C.-C., Cheng, Y.-M., Yu, Y.-C., Lee, G.-H. & Chou, P.-T. (2009). Adv. Mater. 21, 2221–2225. Web of Science CSD CrossRef CAS Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Clark, P. D., Machin, J. H., Richardson, J. F., Dowling, N. I. & Hyne, J. B. (1988). Inorg. Chem. 27, 3526–3529. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09, Revision A. 1. Gaussian Inc., Pittsburgh, Pennsylvania, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hay-Motherwell, R. S., Wilkinson, G., Hussain, B. & Hursthouse, M. B. (1989). J. Chem. Soc. Chem. Commun. pp. 1436–1437. Google Scholar
Hay-Motherwell, R. S., Wilkinson, G., Hussain-Bates, B. & Hursthouse, M. B. (1990). Polyhedron, 9, 2071–2080. CAS Google Scholar
Hay-Motherwell, R. S., Wilkinson, G., Hussain-Bates, B. & Hursthouse, M. B. (1992). J. Chem. Soc. Dalton Trans. pp. 3477–3482. Google Scholar
Hung, J.-Y., Lin, C.-H., Chi, Y., Chung, M.-W., Chen, Y.-J., Lee, G.-H., Chou, P.-T., Chen, C.-C. & Wu, C.-C. (2010). J. Mater. Chem. 20, 7682–7693. Web of Science CSD CrossRef CAS Google Scholar
John, K. D., Eglin, J. L., Salazar, K. V., Baker, R. T., Sattelberger, A. P., Serra, D. & White, L. M. (2014). Inorg. Synth. 36, 165–171. CAS Google Scholar
John, K. D., Salazar, K. V., Scott, B. L., Baker, R. T. & Sattelberger, A. P. (2001). Organometallics, 20, 296–304. Web of Science CSD CrossRef CAS Google Scholar
John, K. D., Scott, B. L., Baker, R. T., Sattelberger, A. P. & Salazar, K. V. (2000). Chem. Commun. pp. 581–582. Web of Science CSD CrossRef Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. CrossRef CAS Web of Science Google Scholar
Lin, C.-H., Chang, Y.-Y., Hung, J.-Y., Lin, C.-Y., Chi, Y., Chung, M.-W., Lin, C.-L., Chou, P.-T., Lee, G.-H., Chang, C.-H. & Lin, W.-C. (2011). Angew. Chem. Int. Ed. 50, 3182–3186. Web of Science CSD CrossRef CAS Google Scholar
Lin, C.-H., Chi, Y., Chung, M.-W., Chen, Y.-J., Wang, K.-W., Lee, G.-H., Chou, P.-T., Hung, W.-Y. & Chiu, H.-C. (2011). Dalton Trans. 40, 1132–1143. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lin, C.-H., Chiu, Y.-C., Chi, Y., Tao, Y.-T., Liao, L.-S., Tseng, M.-R. & Lee, G.-H. (2012). Organometallics, 31, 4349–4355. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Merola, J. S. (1997). Curr. Org. Chem. 1, 235–248. CAS Google Scholar
Merola, J. S. & Franks, M. A. (2015). Acta Cryst. E71, 226–230. Web of Science CSD CrossRef IUCr Journals Google Scholar
Merola, J. S., Franks, M. A. & Frazier, J. F. (2013). Polyhedron, 54, 67–73. Web of Science CSD CrossRef CAS Google Scholar
Rheingold, A. L. & Donovan-Merkert, B. (2015). Private communication (refcode 1438699). CCDC, Cambridge, England. Google Scholar
Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Yapp, D. T. T., Jaswal, J., Rettig, S. J., James, B. R. & Skov, K. A. (1990). Inorg. Chim. Acta, 177, 199–208. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.