research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

mer-Tri­chlorido­tris­­(tetra­hydro­thio­phene-κS)iridium(III): preparation and comparison with other mer-tri­chlorido­tris­­(tetra­hydro­thio­phene-κS)metal complexes

aDepartment of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
*Correspondence e-mail: jmerola@vt.edu

Edited by S. Parkin, University of Kentucky, USA (Received 27 July 2016; accepted 9 August 2016; online 16 August 2016)

The title complex, [IrCl3(C4H8S)3], was prepared according to a literature method. A suitable crystal was obtained by diffusion of pentane into a di­chloro­methane solution and analyzed by single-crystal X-ray diffraction at 100 K. The title complex is isotypic with mer-tri­chlorido­tris­(tetra­hydro­thio­phene-κS)rhodium(III). However, the orientation of the tetra­hydro­thio­phene rings is different from an earlier report of mer-tri­chlorido­tris­(tetra­hydro­thio­phene-κS)iridium(III) deposited in the Cambridge Structural Database. The IrS3Cl3 core shows a nearly octa­hedral structure with various bond angles within 1–2° of the perfect 90 or 180° expected for an octa­hedron. The structure of the title compound is compared with the previous iridium complex as well as the rhodium and other octa­hedral metal tris-tetra­hydro­thio­phene compounds previously structurally characterized. DFT calculations were performed, which indicate the mer isomer is significantly lower in energy than the fac isomer by 50.1 kJ mol−1, thereby accounting for all compounds in the CSD being of the mer geometry. Powder X-ray diffraction of the bulk material showed that the preparation method yielded only the isomorph reported in this communication.

1. Chemical context

We have been engaged in various studies of iridium chemistry for many years (Merola, 1997[Merola, J. S. (1997). Curr. Org. Chem. 1, 235-248.]; Merola & Franks, 2015[Merola, J. S. & Franks, M. A. (2015). Acta Cryst. E71, 226-230.]; Merola et al., 2013[Merola, J. S., Franks, M. A. & Frazier, J. F. (2013). Polyhedron, 54, 67-73.]) and recently had need to find alternate routes to some iridium(III) complexes for our research. An examination of the literature led to the title compound as a possible anhydrous source of iridium(III) that we could use as a starting material (Allen & Wilkinson, 1972[Allen, E. A. & Wilkinson, W. (1972). J. Chem. Soc. Dalton Trans. pp. 613-617.]). mer-Tri­chlorido­tris­(tetra­hydro­thio­phene-κS)iridium(III) has been mentioned in the literature as a starting material for other organometallic iridium complexes (Hay-Motherwell et al., 1989[Hay-Motherwell, R. S., Wilkinson, G., Hussain, B. & Hursthouse, M. B. (1989). J. Chem. Soc. Chem. Commun. pp. 1436-1437.], 1992[Hay-Motherwell, R. S., Wilkinson, G., Hussain-Bates, B. & Hursthouse, M. B. (1992). J. Chem. Soc. Dalton Trans. pp. 3477-3482.], 1990[Hay-Motherwell, R. S., Wilkinson, G., Hussain-Bates, B. & Hursthouse, M. B. (1990). Polyhedron, 9, 2071-2080.]; John et al., 2000[John, K. D., Scott, B. L., Baker, R. T., Sattelberger, A. P. & Salazar, K. V. (2000). Chem. Commun. pp. 581-582.], 2001[John, K. D., Salazar, K. V., Scott, B. L., Baker, R. T. & Sattelberger, A. P. (2001). Organometallics, 20, 296-304.], 2014[John, K. D., Eglin, J. L., Salazar, K. V., Baker, R. T., Sattelberger, A. P., Serra, D. & White, L. M. (2014). Inorg. Synth. 36, 165-171.]), and most recently has been the starting material of choice for new emissive materials (Chang et al., 2008[Chang, C.-F., Cheng, Y.-M., Chi, Y., Chiu, Y.-C., Lin, C.-C., Lee, G.-H., Chou, P.-T., Chen, C.-C., Chang, C.-H. & Wu, C.-C. (2008). Angew. Chem. Int. Ed. 47, 4542-4545.], 2011[Chang, Y.-Y., Hung, J.-Y., Chi, Y., Chyn, J.-P., Chung, M.-W., Lin, C.-L., Chou, P.-T., Lee, G.-H., Chang, C.-H. & Lin, W.-C. (2011). Inorg. Chem. 50, 5075-5084.], 2013[Chang, C.-H., Ho, C.-L., Chang, Y.-S., Lien, I. C., Lin, C.-H., Yang, Y.-W., Liao, J.-L. & Chi, Y. (2013). J. Mater. Chem. C. 1, 2639-2647.]; Chiu et al., 2009[Chiu, Y.-C., Hung, J.-Y., Chi, Y., Chen, C.-C., Chang, C.-H., Wu, C.-C., Cheng, Y.-M., Yu, Y.-C., Lee, G.-H. & Chou, P.-T. (2009). Adv. Mater. 21, 2221-2225.]; Hung et al., 2010[Hung, J.-Y., Lin, C.-H., Chi, Y., Chung, M.-W., Chen, Y.-J., Lee, G.-H., Chou, P.-T., Chen, C.-C. & Wu, C.-C. (2010). J. Mater. Chem. 20, 7682-7693.]; Lin, Chang et al., 2011[Lin, C.-H., Chang, Y.-Y., Hung, J.-Y., Lin, C.-Y., Chi, Y., Chung, M.-W., Lin, C.-L., Chou, P.-T., Lee, G.-H., Chang, C.-H. & Lin, W.-C. (2011). Angew. Chem. Int. Ed. 50, 3182-3186.]; Lin, Chi et al., 2011[Lin, C.-H., Chi, Y., Chung, M.-W., Chen, Y.-J., Wang, K.-W., Lee, G.-H., Chou, P.-T., Hung, W.-Y. & Chiu, H.-C. (2011). Dalton Trans. 40, 1132-1143.]; Lin et al., 2012[Lin, C.-H., Chiu, Y.-C., Chi, Y., Tao, Y.-T., Liao, L.-S., Tseng, M.-R. & Lee, G.-H. (2012). Organometallics, 31, 4349-4355.]). However, no crystallographic studies had been published on this compound. Given its increasing importance, we decided that a single crystal structure determination of the title compound would be worthwhile.

2. Structural commentary

mer-Tri­chlorido­tris­(tetra­hydro­thio­phene-κS)iridium(III) (CCDC refcode 1495966) crystallizes in the P21/n space group with one mol­ecule in the asymmetric unit (Fig. 1[link]). The core structure (heavy atoms around the iridium) is very close to rigorous octa­hedral geometry with the largest angular variation [Cl1—Ir1—Cl33, 177.35 (3)°] being less than 2.7° from ideal linearity.

[Scheme 1]
[Figure 1]
Figure 1
Displacement ellipsoid plot (50% probability) of mer-tri­chlorido­tris(tetra­hydro­thio­phene-κS)iridium(III) (CCDC 1495966).

The Ir—Cl bond lengths [range 2.3648 (8)–2.3774 (9) Å] are somewhat longer than the Ir—S bonds [range 2.3279 (9)–2.3575 (9) Å], as expected from the slightly larger radius of Cl. A search for Ir—S bonds in the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and analyzed with Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) found 2566 instances with distances ranging from 2.134 to 2.633 Å and a mean value of 2.358 Å. That places the bond lengths for the title compound slightly above the mean value. Similarly, a Mercury data analysis of the CSD for Ir—Cl bond lengths found 3965 instances with distances ranging from 2.121 to 2.816 Å and a mean value of 2.413 Å, which places the Ir—Cl distances for the title compound lower than the mean. This comparison should not be considered as too significant since it was not possible to compare bond lengths only for iridium(III) compounds and the analysis includes quite a few iridium(I) complexes. The tetra­hydro­thio­phene rings are well ordered in the title structure, adopting a puckered conformation consistent with trying to minimize ring strain. Two of the rings are positioned with the center of the ring aligned over a chlorine atom in the structure, while the third is aligned over a sulfur atom of another ring. More will be said about the ring conformations in the Database survey section.

3. Supra­molecular features

An examination of the packing diagrams for the title compound shows no unusual inter­molecular features other than van der Waals inter­actions.

4. Database survey

A survey of the CCDC database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) uncovered a number of metal mer-tris­(THT-κS)metal complexes (THT= tetra­hydro­thio­phene), including one iridium structure deposited as a private communication (CCDC 1438699; Rheingold & Donovan-Merkert, 2015[Rheingold, A. L. & Donovan-Merkert, B. (2015). Private communication (refcode 1438699). CCDC, Cambridge, England.]). The deposited structure (CCDC 1438699) packs with very different unit-cell parameters but the overall mol­ecular structure is substanti­ally the same. The results of the different packing, however, are slightly different conformations of two of the three THT ligands, as shown in Fig. 2[link], a structure overlay calculated in Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). On the other hand, the rhodium(III) complex is isotypic with the title complex with similar unit-cell parameters (CCDC refcode GEZHUO; Clark et al., 1988[Clark, P. D., Machin, J. H., Richardson, J. F., Dowling, N. I. & Hyne, J. B. (1988). Inorg. Chem. 27, 3526-3529.]). Fig. 3[link] shows an overlay calculated with Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) of the title complex with the rhodium compound, showing the nearly perfect atomic overlay. Ruthenium(III) (VIJYAO; Yapp et al., 1990[Yapp, D. T. T., Jaswal, J., Rettig, S. J., James, B. R. & Skov, K. A. (1990). Inorg. Chim. Acta, 177, 199-208.]) and molybdenum(III) (REDXIH; Boorman et al., 1996[Boorman, P. M., Wang, M. & Parvez, M. (1996). J. Chem. Soc. Dalton Trans. pp. 4533-4542.]) complexes were also found in the database, with all showing the same meridional arrangement of ligands with the exception that the ruthenium complex displays disorder from overlapping conformations of one of the THT ligands.

[Figure 2]
Figure 2
Calculated overlay of two polymorphs of mer-tri­chlorido­tris­(tetra­hydro­thio­phene-κS)iridium(III) (CCDC 1438699 and CCDC 1495966). Structure from this paper shown in yellow.
[Figure 3]
Figure 3
Calculated overlay of mer-tri­chlorido­tris­(tetra­hydro­thio­phene-κS)iridium(III) (CCDC 1495966) in yellow with the isotypical rhodium complex (CCDC GEZHUO) in blue.

5. Theoretical calculations

We were inter­ested in determining if the bulk material synthesized by this process is of a single polymorph or if both of the iridium structures reported (CCDC 1495966, this report, and CCDC 1438699, Rheingold & Donovan-Merkert, 2015[Rheingold, A. L. & Donovan-Merkert, B. (2015). Private communication (refcode 1438699). CCDC, Cambridge, England.]) were present. Fig. 4[link] shows an overlay of the powder X-ray diffraction pattern for the complex reported here with the powder pattern predicted by Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). The match is very good and quite distinct from the pattern predicted for CCDC 1438699, indicating that the bulk material formed in this process is a single polymorph matching the structure reported here.

[Figure 4]
Figure 4
Powder X-ray diffraction pattern of title compound collected on a Rigaku Miniflex 600 Powder X-ray diffractometer compared with pattern simulated by Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). Experimental and simulated patterns scaled to highest intensity peak in each.

One feature that stands out in all cases is that the MCl3(THT)3 compounds found in the database adopt the mer configuration. Calculations were performed using density functional theory with Gaussian 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09, Revision A. 1. Gaussian Inc., Pittsburgh, Pennsylvania, USA.]). Full geometry optimization of both the mer and fac isomers was carried out via density functional theory (DFT) with the Becke-3-parameter exchange functional (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) and the Lee–Yang–Parr correlation functional (Lee et al., 1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]). Because iridium is not covered in the cc-PVDZ basis set used, computations involving Ir employed Stuttgart/Dresden quasi-relativistic pseudopotentials (Andrae et al., 1990[Andrae, D., Häussermann, U., Dolg, M., Stoll, H. & Preuss, H. (1990). Theor. Chim. Acta, 77, 123-141.]). The difference between the two isomers was quite large with the mer isomer being more stable than the fac by 50.1 kJ mol−1, suggesting the occurrence of only the mer isomer for the small set of compounds surveyed may be due to thermodynamic stability.

6. Synthesis and crystallization

The title compound was synthesized using a slight modification of a literature procedure (John et al., 2014[John, K. D., Eglin, J. L., Salazar, K. V., Baker, R. T., Sattelberger, A. P., Serra, D. & White, L. M. (2014). Inorg. Synth. 36, 165-171.]). IrCl3·3H2O (1.00 g, 2.84 mmol) and 2-meth­oxy­ethanol (50 mL) were added to a 250 mL round-bottomed flask fitted with a magnetic stir bar and a reflux condenser. Tetra­hydro­thio­phene (1.25 mL, 14.2 mmol) was added all at once with stirring. The resulting suspension was refluxed for 18 h, providing a clear orange solution that gave a yellow precipitate upon cooling to room temperature. Deionized water (75 mL) was added and the suspension was cooled overnight (273 K) before collection on a fine-porosity sintered glass frit. The resulting yellow powder was washed with deionized water (3 x 15 mL) then cold ethanol (3 x 15 mL). After vacuum drying overnight the yellow powder (1.40 g, 88%) was characterized by 1H and 13C NMR spectroscopy. As the NMR spectra were in agreement with previously reported data, no further purification was necessary. Single crystals for X-ray diffraction were grown by slow diffusion of n-pentane into a di­chloro­methane solution of mer-IrCl3(THT)3.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [IrCl3(C4H8S)3]
Mr 563.04
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 11.9160 (3), 10.2528 (2), 14.9434 (4)
β (°) 107.202 (3)
V3) 1744.00 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.46
Crystal size (mm) 0.51 × 0.43 × 0.32
 
Data collection
Diffractometer Rigaku OD Xcalibur Eos Gemini ultra
Absorption correction Analytical [CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Clark, P. D., Machin, J. H., Richardson, J. F., Dowling, N. I. & Hyne, J. B. (1988). Inorg. Chem. 27, 3526-3529.]) based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.064, 0.155
No. of measured, independent and observed [I > 2σ(I)] reflections 19537, 5773, 5062
Rint 0.042
(sin θ/λ)max−1) 0.751
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.063, 1.05
No. of reflections 5773
No. of parameters 172
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.54, −1.46
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).

mer-Trichloridotris(tetrahydrothiophene-κS)iridium(III) top
Crystal data top
[IrCl3(C4H8S)3]F(000) = 1088
Mr = 563.04Dx = 2.144 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.9160 (3) ÅCell parameters from 9679 reflections
b = 10.2528 (2) Åθ = 4.1–32.2°
c = 14.9434 (4) ŵ = 8.46 mm1
β = 107.202 (3)°T = 100 K
V = 1744.00 (7) Å3Cube, yellow
Z = 40.51 × 0.43 × 0.32 mm
Data collection top
Rigaku OD Xcalibur Eos Gemini ultra
diffractometer
5773 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source5062 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 8.0061 pixels mm-1θmax = 32.2°, θmin = 3.6°
ω scansh = 1317
Absorption correction: analytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015) based on expressions derived by Clark & Reid (1995)]
k = 1315
Tmin = 0.064, Tmax = 0.155l = 2221
19537 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0223P)2 + 0.8135P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
5773 reflectionsΔρmax = 1.54 e Å3
172 parametersΔρmin = 1.46 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.45092 (2)0.70407 (2)0.73222 (2)0.01133 (4)
Cl10.59718 (7)0.70422 (8)0.65431 (6)0.01922 (17)
Cl20.59716 (8)0.73216 (8)0.87865 (6)0.01887 (16)
Cl30.30344 (7)0.71455 (8)0.80946 (6)0.01688 (16)
S10.46678 (7)0.47667 (8)0.74921 (6)0.01509 (16)
S20.30373 (7)0.68096 (8)0.59053 (6)0.01540 (16)
S30.44035 (7)0.93361 (9)0.72529 (6)0.01636 (16)
C10.6230 (3)0.4314 (4)0.7907 (3)0.0236 (8)
H1A0.63880.35700.75400.028*
H1B0.67270.50590.78370.028*
C20.6496 (3)0.3940 (4)0.8934 (3)0.0281 (9)
H2A0.71570.33140.91140.034*
H2B0.67100.47220.93370.034*
C30.5384 (4)0.3321 (4)0.9044 (3)0.0257 (8)
H3A0.54490.32030.97150.031*
H3B0.52460.24590.87320.031*
C40.4380 (3)0.4262 (4)0.8582 (3)0.0216 (7)
H4A0.43870.50240.89910.026*
H4B0.36100.38200.84480.026*
C50.3455 (3)0.5674 (4)0.5104 (3)0.0277 (9)
H5A0.32710.60570.44690.033*
H5B0.43080.54880.53310.033*
C60.2749 (3)0.4419 (4)0.5082 (3)0.0261 (8)
H6A0.26200.39690.44740.031*
H6B0.31790.38220.55880.031*
C70.1582 (3)0.4802 (4)0.5219 (3)0.0225 (8)
H7A0.10780.52440.46540.027*
H7B0.11630.40240.53480.027*
C80.1883 (3)0.5720 (4)0.6051 (3)0.0192 (7)
H8A0.21670.52240.66430.023*
H8B0.11820.62290.60650.023*
C90.3843 (3)0.9968 (4)0.6060 (2)0.0188 (7)
H9A0.39120.93050.55970.023*
H9B0.30101.02320.59200.023*
C100.4624 (3)1.1147 (4)0.6047 (3)0.0213 (7)
H10A0.45271.14330.53960.026*
H10B0.44241.18830.64000.026*
C110.5875 (3)1.0686 (4)0.6510 (3)0.0228 (8)
H11A0.64241.14340.66310.027*
H11B0.61191.00580.60990.027*
C120.5882 (3)1.0027 (4)0.7436 (3)0.0209 (7)
H12A0.60611.06740.79510.025*
H12B0.64830.93300.75980.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01159 (6)0.01222 (7)0.01049 (6)0.00034 (4)0.00376 (5)0.00076 (4)
Cl10.0165 (4)0.0225 (4)0.0222 (4)0.0003 (3)0.0112 (3)0.0008 (3)
Cl20.0199 (4)0.0171 (4)0.0157 (4)0.0013 (3)0.0007 (3)0.0021 (3)
Cl30.0183 (4)0.0179 (4)0.0177 (4)0.0004 (3)0.0102 (3)0.0020 (3)
S10.0158 (4)0.0132 (4)0.0156 (4)0.0007 (3)0.0035 (3)0.0012 (3)
S20.0151 (4)0.0170 (4)0.0130 (4)0.0001 (3)0.0024 (3)0.0001 (3)
S30.0202 (4)0.0152 (4)0.0157 (4)0.0008 (3)0.0084 (3)0.0004 (3)
C10.0173 (17)0.0225 (18)0.032 (2)0.0057 (14)0.0092 (16)0.0040 (16)
C20.0209 (18)0.025 (2)0.030 (2)0.0032 (15)0.0046 (17)0.0039 (17)
C30.031 (2)0.0182 (18)0.026 (2)0.0064 (15)0.0056 (17)0.0081 (16)
C40.0242 (18)0.0193 (18)0.0240 (18)0.0017 (14)0.0113 (16)0.0053 (15)
C50.0195 (18)0.046 (3)0.0179 (18)0.0012 (17)0.0059 (15)0.0126 (17)
C60.032 (2)0.0249 (19)0.0184 (18)0.0067 (16)0.0027 (16)0.0076 (16)
C70.0290 (19)0.0168 (17)0.0180 (17)0.0032 (14)0.0015 (16)0.0019 (14)
C80.0143 (15)0.0214 (17)0.0238 (18)0.0031 (13)0.0082 (14)0.0051 (15)
C90.0191 (17)0.0207 (17)0.0149 (16)0.0011 (13)0.0023 (14)0.0031 (13)
C100.0262 (18)0.0181 (17)0.0212 (18)0.0021 (14)0.0097 (16)0.0024 (15)
C110.0222 (18)0.0221 (18)0.0260 (19)0.0030 (14)0.0100 (16)0.0021 (15)
C120.0189 (17)0.0199 (18)0.0209 (18)0.0037 (13)0.0013 (15)0.0008 (14)
Geometric parameters (Å, º) top
Ir1—Cl12.3648 (8)C5—H5A0.9900
Ir1—Cl22.3774 (9)C5—H5B0.9900
Ir1—Cl32.3732 (8)C5—C61.533 (6)
Ir1—S12.3469 (9)C6—H6A0.9900
Ir1—S22.3279 (9)C6—H6B0.9900
Ir1—S32.3575 (9)C6—C71.516 (5)
S1—C11.839 (4)C7—H7A0.9900
S1—C41.835 (4)C7—H7B0.9900
S2—C51.841 (4)C7—C81.515 (5)
S2—C81.834 (3)C8—H8A0.9900
S3—C91.827 (4)C8—H8B0.9900
S3—C121.843 (4)C9—H9A0.9900
C1—H1A0.9900C9—H9B0.9900
C1—H1B0.9900C9—C101.529 (5)
C1—C21.522 (6)C10—H10A0.9900
C2—H2A0.9900C10—H10B0.9900
C2—H2B0.9900C10—C111.521 (5)
C2—C31.521 (6)C11—H11A0.9900
C3—H3A0.9900C11—H11B0.9900
C3—H3B0.9900C11—C121.537 (5)
C3—C41.533 (5)C12—H12A0.9900
C4—H4A0.9900C12—H12B0.9900
C4—H4B0.9900
Cl1—Ir1—Cl290.39 (3)S2—C5—H5A110.3
Cl1—Ir1—Cl3177.35 (3)S2—C5—H5B110.3
Cl3—Ir1—Cl289.63 (3)H5A—C5—H5B108.6
S1—Ir1—Cl190.37 (3)C6—C5—S2107.0 (2)
S1—Ir1—Cl290.41 (3)C6—C5—H5A110.3
S1—Ir1—Cl392.28 (3)C6—C5—H5B110.3
S1—Ir1—S3176.44 (3)C5—C6—H6A110.2
S2—Ir1—Cl191.09 (3)C5—C6—H6B110.2
S2—Ir1—Cl2178.15 (3)H6A—C6—H6B108.5
S2—Ir1—Cl388.85 (3)C7—C6—C5107.4 (3)
S2—Ir1—S190.70 (3)C7—C6—H6A110.2
S2—Ir1—S392.61 (3)C7—C6—H6B110.2
S3—Ir1—Cl190.88 (3)C6—C7—H7A110.6
S3—Ir1—Cl286.25 (3)C6—C7—H7B110.6
S3—Ir1—Cl386.47 (3)H7A—C7—H7B108.8
C1—S1—Ir1109.15 (13)C8—C7—C6105.5 (3)
C4—S1—Ir1110.23 (12)C8—C7—H7A110.6
C4—S1—C193.79 (17)C8—C7—H7B110.6
C5—S2—Ir1112.32 (13)S2—C8—H8A110.4
C8—S2—Ir1110.12 (13)S2—C8—H8B110.4
C8—S2—C592.79 (17)C7—C8—S2106.6 (2)
C9—S3—Ir1113.33 (12)C7—C8—H8A110.4
C9—S3—C1293.79 (16)C7—C8—H8B110.4
C12—S3—Ir1109.93 (12)H8A—C8—H8B108.6
S1—C1—H1A110.3S3—C9—H9A110.9
S1—C1—H1B110.3S3—C9—H9B110.9
H1A—C1—H1B108.6H9A—C9—H9B108.9
C2—C1—S1106.9 (3)C10—C9—S3104.2 (2)
C2—C1—H1A110.3C10—C9—H9A110.9
C2—C1—H1B110.3C10—C9—H9B110.9
C1—C2—H2A110.4C9—C10—H10A110.7
C1—C2—H2B110.4C9—C10—H10B110.7
H2A—C2—H2B108.6H10A—C10—H10B108.8
C3—C2—C1106.7 (3)C11—C10—C9105.5 (3)
C3—C2—H2A110.4C11—C10—H10A110.7
C3—C2—H2B110.4C11—C10—H10B110.7
C2—C3—H3A110.5C10—C11—H11A110.4
C2—C3—H3B110.5C10—C11—H11B110.4
C2—C3—C4106.1 (3)C10—C11—C12106.8 (3)
H3A—C3—H3B108.7H11A—C11—H11B108.6
C4—C3—H3A110.5C12—C11—H11A110.4
C4—C3—H3B110.5C12—C11—H11B110.4
S1—C4—H4A110.8S3—C12—H12A110.4
S1—C4—H4B110.8S3—C12—H12B110.4
C3—C4—S1104.6 (2)C11—C12—S3106.5 (2)
C3—C4—H4A110.8C11—C12—H12A110.4
C3—C4—H4B110.8C11—C12—H12B110.4
H4A—C4—H4B108.9H12A—C12—H12B108.6
Ir1—S1—C1—C2106.1 (3)C2—C3—C4—S143.0 (4)
Ir1—S1—C4—C3132.6 (2)C4—S1—C1—C26.9 (3)
Ir1—S2—C5—C6106.8 (2)C5—S2—C8—C720.6 (3)
Ir1—S2—C8—C7135.6 (2)C5—C6—C7—C848.0 (4)
Ir1—S3—C9—C10138.6 (2)C6—C7—C8—S242.1 (3)
Ir1—S3—C12—C11114.0 (2)C8—S2—C5—C66.3 (3)
S1—C1—C2—C333.0 (4)C9—S3—C12—C112.5 (3)
S2—C5—C6—C731.9 (4)C9—C10—C11—C1249.9 (4)
S3—C9—C10—C1146.4 (3)C10—C11—C12—S329.9 (4)
C1—S1—C4—C320.5 (3)C12—S3—C9—C1025.0 (3)
C1—C2—C3—C449.8 (4)
 

References

First citationAllen, E. A. & Wilkinson, W. (1972). J. Chem. Soc. Dalton Trans. pp. 613–617.  CrossRef Web of Science Google Scholar
First citationAndrae, D., Häussermann, U., Dolg, M., Stoll, H. & Preuss, H. (1990). Theor. Chim. Acta, 77, 123–141.  CrossRef CAS Web of Science Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBoorman, P. M., Wang, M. & Parvez, M. (1996). J. Chem. Soc. Dalton Trans. pp. 4533–4542.  CSD CrossRef Web of Science Google Scholar
First citationChang, C.-F., Cheng, Y.-M., Chi, Y., Chiu, Y.-C., Lin, C.-C., Lee, G.-H., Chou, P.-T., Chen, C.-C., Chang, C.-H. & Wu, C.-C. (2008). Angew. Chem. Int. Ed. 47, 4542–4545.  Web of Science CSD CrossRef CAS Google Scholar
First citationChang, C.-H., Ho, C.-L., Chang, Y.-S., Lien, I. C., Lin, C.-H., Yang, Y.-W., Liao, J.-L. & Chi, Y. (2013). J. Mater. Chem. C. 1, 2639–2647.  Web of Science CrossRef CAS Google Scholar
First citationChang, Y.-Y., Hung, J.-Y., Chi, Y., Chyn, J.-P., Chung, M.-W., Lin, C.-L., Chou, P.-T., Lee, G.-H., Chang, C.-H. & Lin, W.-C. (2011). Inorg. Chem. 50, 5075–5084.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChiu, Y.-C., Hung, J.-Y., Chi, Y., Chen, C.-C., Chang, C.-H., Wu, C.-C., Cheng, Y.-M., Yu, Y.-C., Lee, G.-H. & Chou, P.-T. (2009). Adv. Mater. 21, 2221–2225.  Web of Science CSD CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClark, P. D., Machin, J. H., Richardson, J. F., Dowling, N. I. & Hyne, J. B. (1988). Inorg. Chem. 27, 3526–3529.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09, Revision A. 1. Gaussian Inc., Pittsburgh, Pennsylvania, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHay-Motherwell, R. S., Wilkinson, G., Hussain, B. & Hursthouse, M. B. (1989). J. Chem. Soc. Chem. Commun. pp. 1436–1437.  Google Scholar
First citationHay-Motherwell, R. S., Wilkinson, G., Hussain-Bates, B. & Hursthouse, M. B. (1990). Polyhedron, 9, 2071–2080.  CAS Google Scholar
First citationHay-Motherwell, R. S., Wilkinson, G., Hussain-Bates, B. & Hursthouse, M. B. (1992). J. Chem. Soc. Dalton Trans. pp. 3477–3482.  Google Scholar
First citationHung, J.-Y., Lin, C.-H., Chi, Y., Chung, M.-W., Chen, Y.-J., Lee, G.-H., Chou, P.-T., Chen, C.-C. & Wu, C.-C. (2010). J. Mater. Chem. 20, 7682–7693.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohn, K. D., Eglin, J. L., Salazar, K. V., Baker, R. T., Sattelberger, A. P., Serra, D. & White, L. M. (2014). Inorg. Synth. 36, 165–171.  CAS Google Scholar
First citationJohn, K. D., Salazar, K. V., Scott, B. L., Baker, R. T. & Sattelberger, A. P. (2001). Organometallics, 20, 296–304.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohn, K. D., Scott, B. L., Baker, R. T., Sattelberger, A. P. & Salazar, K. V. (2000). Chem. Commun. pp. 581–582.  Web of Science CSD CrossRef Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationLin, C.-H., Chang, Y.-Y., Hung, J.-Y., Lin, C.-Y., Chi, Y., Chung, M.-W., Lin, C.-L., Chou, P.-T., Lee, G.-H., Chang, C.-H. & Lin, W.-C. (2011). Angew. Chem. Int. Ed. 50, 3182–3186.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, C.-H., Chi, Y., Chung, M.-W., Chen, Y.-J., Wang, K.-W., Lee, G.-H., Chou, P.-T., Hung, W.-Y. & Chiu, H.-C. (2011). Dalton Trans. 40, 1132–1143.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLin, C.-H., Chiu, Y.-C., Chi, Y., Tao, Y.-T., Liao, L.-S., Tseng, M.-R. & Lee, G.-H. (2012). Organometallics, 31, 4349–4355.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMerola, J. S. (1997). Curr. Org. Chem. 1, 235–248.  CAS Google Scholar
First citationMerola, J. S. & Franks, M. A. (2015). Acta Cryst. E71, 226–230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMerola, J. S., Franks, M. A. & Frazier, J. F. (2013). Polyhedron, 54, 67–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationRheingold, A. L. & Donovan-Merkert, B. (2015). Private communication (refcode 1438699). CCDC, Cambridge, England.  Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYapp, D. T. T., Jaswal, J., Rettig, S. J., James, B. R. & Skov, K. A. (1990). Inorg. Chim. Acta, 177, 199–208.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds