research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A two-dimensional CdII coordination polymer: poly[di­aqua­[μ3-5,6-bis­­(pyridin-2-yl)pyrazine-2,3-di­carboxyl­ato-κ5O2:O3:O3,N4,N5]cadmium]

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, University of Neuchâtel, Av Bellevaux 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by S. Parkin, University of Kentucky, USA (Received 31 July 2016; accepted 9 August 2016; online 16 August 2016)

The reaction of 5,6-bis­(pyridin-2-yl)pyrazine-2,3-di­carb­oxy­lic acid with cadmium dichloride leads to the formation of the title two-dimensional coordination polymer, [Cd(C16H8N4O4)(H2O)2]n. The metal atom is sevenfold coordinated by one pyrazine and one pyridine N atom, two water O atoms, and by two carboxyl­ate O atoms, one of which bridges two CdII atoms to form a Cd2O2 unit situated about a centre of inversion. Hence, the ligand coordinates to the cadmium atom in an N,N′,O-tridentate and an O-monodentate manner. Within the polymer network, there are a number of O—H⋯O hydrogen bonds present, involving the water mol­ecules and the carboxyl­ate O atoms. There are also C—H⋯N and C—H⋯O hydrogen bonds present. In the crystal, the polymer networks lie parallel to the bc plane. They are aligned back-to-back along the a axis with the non-coordinating pyridine rings directed into the space between the networks.

1. Chemical context

The crystal structure of the ligand 5,6-bis­(pyridin-2-yl)pyrazine-2,3-di­carb­oxy­lic acid (H2L) and the chloride, perchlorate and hexa­fluoro­phosphate salts, have been reported on previously (Alfonso et al., 2001[Alfonso, M., Wang, Y. & Stoeckli-Evans, H. (2001). Acta Cryst. C57, 1184-1188.]). Inter­estingly, the ligand crystallizes as a zwitterion in all four compounds. The reaction of H2L with CuBr2 (ratio 1:2) leads to the formation of a one-dimensional coordination polymer. On exposure to air, the compound loses the solvent of crystallization and four water mol­ecules, transforming into a two-dimensional coordination polymer (Neels et al., 2003[Neels, A., Alfonso, M., Mantero, D. G. & Stoeckli-Evans, H. (2003). Chimia, 57, 619-622.]). In both cases, there are two crystallographically independent fivefold-coordinated copper atoms present and they all have almost perfect square-pyramidal geometry. Recently, we have reported on the crystal structures of the dimethyl and diethyl ester of the H2L ligand (Alfonso & Stoeckli-Evans, 2016a[Alfonso, M. & Stoeckli-Evans, H. (2016a). Acta Cryst. E72, 233-237.]). The reaction of the dimethyl ester of H2L with CdCl2 and HgCl2 leads to the formation of isotypic one-dimensional coordination polymers (Alfonso & Stoeckli-Evans, 2016b[Alfonso, M. & Stoeckli-Evans, H. (2016b). Acta Cryst. E72, 1214-1218.]). There the ligand coordin­ates to the metal atom via the pyridine N atoms, and they have MN2Cl2 fourfold bis­phenoidal coordination geometry.

2. Structural commentary

The reaction of 5,6-bis­(pyridin-2-yl)pyrazine-2,3-di­carb­oxy­lic acid with cadmium dichloride leads to the formation of the title two-dimensional coordination polymer (Fig. 1[link]). Here the metal atom is sevenfold coordinated by one pyrazine N atom (N1), one pyridine N atom (N3) and two water O atoms (O1W and O2W), and by two carboxyl­ate O atoms (O1 and O3). Atom O1 bridges two cadmium atoms to form a Cd2O2 unit situated about a centre of inversion; the Cd1⋯Cd1ii distance is 3.8753 (8) Å, while the Cd—O1 and Cd—O1ii bonds are, respectively, 2.371 (4) and 2.427 (4) Å, and the Cd1—O1⋯Cd1ii and O1—Cd⋯O1ii bond angles are 107.74 (13) and 72.26 (13)°, respectively. As can be seen in Fig. 1[link], the ligand coordinates to the cadmium atom in a tridentate (N,N,O) and a monodentate manner (O). It can be seen from the carboxyl­ate C—O bond lengths [C15—O1 and C15—O2 are 1.255 (6) and 1.253 (6) Å, respectively, while C16—O3 and C16—O4 are 1.258 (6) and 1.227 (6) Å, respectively] that the negative charge is distributed over the O–C–O group for the first, but located on atom O3 for the second.

[Scheme 1]
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title coordination polymer, showing the atom labelling [symmetry codes: (i) x, −y + [{1\over 2}], z − [{1\over 2}]; (ii) −x + 1, −y + 1, −z + 1; (iii) x, −y + [{1\over 2}], z + [{1\over 2}]]. Displacement ellipsoids are drawn at the 50% probability level.

Selected bond lengths and angles involving atom Cd1 are given in Table 1[link]. The Cd—Npyrazine (Cd1—N1) and the Cd—Npyridine (Cd1—N3) bond lengths are the same within 3 s.u.s. [2.418 (4) cf. 2.430 (4) Å]. The Cd—Owater bond lengths [2.301 (4) and 2.317 (3) Å] are shorter than the Cd—Ocarboxyl­ate bond lengths [2.371 (4) and 2.377 (4) Å], while the bridging Cd1⋯O1ii distance is the longest at 2.427 (4) Å. The geometry of the sevenfold-coordinated cadmium atom can best be described as a distorted penta­gonal bipyramid, with atoms O1,N1,N3,O2W,O1ii in the basal plane and atoms O1W,O3i in the apical positions with an O1W—Cd1—O3i bond angle of 157.41 (15)° (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

Cd1—O1 2.371 (4) Cd1—N3 2.430 (4)
Cd1—O3i 2.377 (4) Cd1—O1W 2.301 (4)
Cd1—N1 2.418 (4) Cd1—O2W 2.317 (3)
Cd1—O1ii 2.427 (4)    
       
Cd1—O1—Cd1ii 107.74 (13) O1W—Cd1—N1 91.62 (16)
O1W—Cd1—O3i 157.41 (15) O1W—Cd1—N3 87.87 (15)
O1—Cd1—O1ii 72.26 (13) O1W—Cd1—O1ii 76.59 (15)
O1—Cd1—N1 67.98 (13) O2W—Cd1—O3i 87.05 (13)
N1—Cd1—N3 65.40 (14) O1—Cd1—O3i 80.38 (12)
O2W—Cd1—N3 78.01 (13) O3i—Cd1—N1 91.67 (13)
O2W—Cd1—O1ii 80.65 (13) O3i—Cd1—O1ii 86.60 (12)
O1W—Cd1—O2W 104.67 (16) O3i—Cd1—N3 113.74 (13)
O1W—Cd1—O1 80.18 (15)    
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

The coordinated pyridine ring (N3/C5-C9) and the carboxyl­ate group (O1/O2/C15) are inclined to the pyrazine ring (r.m.s. deviation = 0.03 Å) by 16.9 (2) and 1.9 (6)°, respectively. The non-coordinating pyridine ring (N4/C10–C14) and the second coordinating carboxyl­ate group (O3/O4/C16) are inclined to the pyrazine ring by 60.2 (3) and 89.1 (11)°, respectively. The two pyridine rings are inclined to one another by 75.4 (3) °.

3. Supra­molecular features

In the crystal, the two-dimensional polymer networks lie parallel to the bc plane, as illustrated in Figs. 2[link] and 3[link]. The networks are aligned back-to-back along the a axis, with the non-coordinating pyridine rings directed into the space between the networks (Fig. 4[link]). Within the networks there are a number of O—H⋯O hydrogen bonds present, involving the water mol­ecules and the carboxyl­ate O atoms (Table 2[link] and Fig. 5[link]). There are also C—H⋯O and C—H⋯N hydrogen bonds present within the network (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3iii 0.82 (2) 2.22 (3) 2.974 (6) 152 (5)
O1W—H1WB⋯O2iv 0.84 (2) 2.05 (4) 2.805 (6) 150 (7)
O2W—H2WA⋯O4i 0.85 (2) 1.88 (3) 2.630 (6) 146 (5)
O2W—H2WB⋯O2ii 0.85 (2) 1.88 (2) 2.692 (5) 159 (5)
C9—H9⋯O3v 0.94 2.52 3.245 (6) 134
C14—H14⋯N4vi 0.94 2.62 3.372 (8) 137
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y+1, z; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) -x, -y+1, -z+1.
[Figure 2]
Figure 2
A view along the a axis of the title two-dimensional coordination polymer. The C-bound H atoms have been omitted for clarity.
[Figure 3]
Figure 3
A view along the c axis of the title two-dimensional coordination polymer. The C-bound H atoms have been omitted for clarity.
[Figure 4]
Figure 4
A view in projection down the c axis of the crystal packing of the title two-dimensional coordination polymer. The C-bound H atoms have been omitted for clarity.
[Figure 5]
Figure 5
A view normal to plane (1[\overline{1}]0) of the O—H⋯O hydrogen bonds (dashed lines; see Table 2[link]) within the polymer network, involving the carboxyl­ate O atoms (red balls) and the coordinating water mol­ecules. The C atoms and C-bound H atoms of the ligand have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, last update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the ligand H2L gave eight hits. All of these structures have been mentioned in the Chemical context above. A search for cadmium complexes with the Cd atom coordinated by two N atoms, two water mol­ecules and three O atoms, two of which are carboxyl­ate O atoms, gave seven hits. One of these compounds, catena-[(μ2-1,1′-(butane-1,4-di­yl)bis­(5,6-dimethyl-1H-benzimidazole)]bis­(μ2-pyridine-2,6-di­carboxyl­ato)tetra­aqua­dicadmium dihydrate) [CSD refcode: FAVHIV; Jiao et al., 2012[Jiao, C., Geng, J., He, C. & Cui, G. (2012). J. Mol. Struct. 1020, 134-141.]] has a Cd2O2 unit formed about an inversion centre as in the title compound. In FAVHIV, the Cd⋯Cd distance and the angles Cd—O⋯Cd and O—Cd⋯O are, respectively, 4.0408 (5) Å, and 111.05 (8) and 68.95 (7)°, compared to 3.8753 (8) Å, and 107.74 (13) and 72.26 (13) °, respectively, in the title compound. However, such an arrangement is extremely common for cadmium(II) complexes (over 600 hits in the CSD) and the bond lengths and angles vary enormously; for example the Cd⋯Cd distance varies from ca 3.0 to 4.3 Å, the Cd—O⋯Cd angle varies from ca 82 to 119° and the O—Cd⋯O angle from ca 60 to 90°.

5. Synthesis and crystallization

The synthesis of the ligand 5,6-bis­(pyridin-2-yl)pyrazine-2,3-di­carb­oxy­lic acid (H2L) has been reported previously (Alfonso et al., 2001[Alfonso, M., Wang, Y. & Stoeckli-Evans, H. (2001). Acta Cryst. C57, 1184-1188.]).

Synthesis of the title coordination polymer: H2L (32 mg, 0.10 mmol) was added to an aqueous solution (25 ml) of CdCl2·2H2O (22 mg, 0.10 mmol). The colourless solution immediately obtained was stirred for 1 h at room temperature. The reaction mixture was then filtered and the filtrate allowed to evaporate slowly at room temperature. After two weeks, small colourless plate-like crystals of the title compound were obtained, separated by filtration and dried in air (yield: 40 mg, 42.5%). Selected IR bands (KBr pellet, cm−1): ν 1630(m), 1598(vs), 1533(m), 1469(m), 1442(m), 1414(m), 1362(s), 1301(m), 1273(m), 1176(m), 1165(m), 1119(m), 1043(w), 992(w), 829(m), 789(m), 759(m), 675(m), 562(m), 513(m). Analysis for C16H12N4O6Cd (468.71): calculated: C 41.00, H 2.58, N 11.95%; found: C 40.70, H 2.43, N 11.80%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The water H atoms were located in a difference Fourier map and refined with distance restraints: O—H = 0.84 (2) and H⋯H = 1.35 (2) Å, with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.94 Å with Uiso(H) = 1.2Ueq(C). The best crystal available was extremely thin (0.01 mm) and as the shape of the crystal was irregular it was not possible to carry out a numerical absorption correction. The displacement ellipsoids for two carboxyl­ate O atoms (O2 and O4) and a water O atom (OW1) are large but attempts to split these atoms were not successful.

Table 3
Experimental details

Crystal data
Chemical formula [Cd(C16H8N4O4)(H2O)2]
Mr 468.70
Crystal system, space group Monoclinic, P21/c
Temperature (K) 223
a, b, c (Å) 16.6854 (12), 7.0799 (6), 13.4537 (10)
β (°) 96.236 (9)
V3) 1579.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.43
Crystal size (mm) 0.30 × 0.20 × 0.01
 
Data collection
Diffractometer Stoe IPDS 1 image plate
Absorption correction Multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])
Tmin, Tmax 0.900, 1.00
No. of measured, independent and observed [I > 2σ(I)] reflections 11782, 3056, 1781
Rint 0.129
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.063, 0.75
No. of reflections 3056
No. of parameters 257
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.59
Computer programs: EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 2004[Stoe & Cie (2004). IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2004); cell refinement: CELL in IPDS-I (Stoe & Cie, 2004); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Poly[diaqua[µ3-5,6-bis(pyridin-2-yl)pyrazine-2,3-dicarboxylato-κ5O2:O3:O3,N4,N5]cadmium] top
Crystal data top
[Cd(C16H8N4O4)(H2O)2]F(000) = 928
Mr = 468.70Dx = 1.970 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.6854 (12) ÅCell parameters from 5000 reflections
b = 7.0799 (6) Åθ = 1.7–26.1°
c = 13.4537 (10) ŵ = 1.43 mm1
β = 96.236 (9)°T = 223 K
V = 1579.9 (2) Å3Plate, colourless
Z = 40.30 × 0.20 × 0.01 mm
Data collection top
Stoe IPDS 1 image plate
diffractometer
3056 independent reflections
Radiation source: fine-focus sealed tube1781 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.129
φ rotation scansθmax = 25.9°, θmin = 2.5°
Absorption correction: multi-scan
(MULABS; Spek, 2009)
h = 2020
Tmin = 0.900, Tmax = 1.00k = 88
11782 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0062P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.75(Δ/σ)max = 0.001
3056 reflectionsΔρmax = 0.53 e Å3
257 parametersΔρmin = 0.59 e Å3
6 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00055 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.39911 (3)0.63678 (6)0.47689 (3)0.01231 (13)
O10.4663 (2)0.3932 (6)0.5741 (2)0.0160 (9)
O20.4579 (2)0.1638 (6)0.6875 (3)0.0266 (10)
O30.3636 (2)0.1259 (6)0.8712 (2)0.0207 (9)
O40.3010 (3)0.0413 (6)0.7454 (3)0.0436 (14)
O1W0.4770 (3)0.8162 (6)0.5928 (3)0.0412 (13)
H1WA0.520 (2)0.780 (9)0.623 (4)0.062*
H1WB0.457 (3)0.898 (7)0.628 (4)0.062*
O2W0.3837 (2)0.8219 (5)0.3341 (2)0.0189 (10)
H2WA0.355 (2)0.766 (7)0.287 (3)0.028*
H2WB0.4295 (16)0.833 (8)0.312 (3)0.028*
N10.3193 (3)0.5188 (6)0.6031 (3)0.0130 (10)
N20.2284 (3)0.3495 (7)0.7347 (3)0.0156 (10)
N30.2853 (2)0.8351 (6)0.5067 (3)0.0131 (10)
N40.0603 (3)0.5341 (6)0.6152 (3)0.0222 (12)
C10.2472 (3)0.5920 (7)0.6161 (3)0.0096 (12)
C20.2003 (3)0.4982 (7)0.6816 (4)0.0128 (13)
C30.3478 (3)0.3673 (9)0.6546 (3)0.0100 (10)
C40.3025 (3)0.2842 (7)0.7250 (4)0.0102 (13)
C50.2290 (3)0.7774 (7)0.5650 (4)0.0122 (13)
C60.1657 (3)0.8955 (8)0.5818 (3)0.0186 (14)
H60.12600.85360.62110.022*
C70.1608 (4)1.0747 (7)0.5410 (4)0.0196 (14)
H70.11741.15440.55160.024*
C80.2194 (3)1.1351 (9)0.4850 (3)0.0166 (11)
H80.21751.25730.45760.020*
C90.2815 (3)1.0138 (7)0.4696 (4)0.0156 (13)
H90.32241.05600.43220.019*
C100.1146 (4)0.5462 (7)0.6958 (4)0.0179 (14)
C110.0946 (4)0.5917 (8)0.7907 (4)0.0249 (15)
H110.13470.60180.84530.030*
C120.0141 (4)0.6216 (10)0.8025 (4)0.0285 (14)
H120.00160.64920.86600.034*
C130.0426 (4)0.6106 (9)0.7204 (5)0.0333 (16)
H130.09740.63280.72630.040*
C140.0169 (4)0.5661 (8)0.6298 (5)0.0294 (17)
H140.05600.55740.57410.035*
C150.4309 (3)0.3025 (7)0.6364 (4)0.0140 (14)
C160.3259 (3)0.1061 (8)0.7857 (4)0.0146 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0136 (2)0.01131 (19)0.01235 (19)0.0013 (3)0.00290 (13)0.0012 (2)
O10.015 (2)0.019 (2)0.0148 (18)0.001 (2)0.0050 (16)0.0052 (18)
O20.023 (2)0.026 (3)0.034 (2)0.013 (2)0.0159 (18)0.021 (2)
O30.032 (2)0.019 (2)0.0108 (18)0.011 (2)0.0008 (17)0.002 (2)
O40.064 (4)0.015 (2)0.042 (3)0.011 (2)0.039 (3)0.003 (2)
O1W0.029 (3)0.032 (3)0.057 (3)0.010 (2)0.018 (2)0.031 (2)
O2W0.017 (2)0.023 (3)0.017 (2)0.003 (2)0.0011 (17)0.0062 (17)
N10.012 (3)0.017 (3)0.010 (2)0.003 (2)0.003 (2)0.0037 (19)
N20.018 (3)0.015 (2)0.014 (2)0.005 (3)0.0004 (19)0.002 (2)
N30.014 (3)0.007 (3)0.018 (2)0.002 (2)0.0006 (19)0.0031 (19)
N40.012 (3)0.027 (3)0.028 (3)0.004 (2)0.004 (2)0.002 (2)
C10.005 (3)0.017 (3)0.008 (2)0.001 (2)0.004 (2)0.002 (2)
C20.010 (3)0.014 (3)0.014 (3)0.007 (3)0.002 (2)0.002 (2)
C30.013 (3)0.010 (2)0.007 (2)0.004 (3)0.001 (2)0.001 (3)
C40.012 (3)0.010 (3)0.009 (3)0.005 (3)0.002 (2)0.003 (2)
C50.008 (3)0.017 (3)0.013 (3)0.000 (3)0.004 (2)0.001 (2)
C60.019 (3)0.021 (4)0.016 (3)0.004 (3)0.007 (2)0.003 (3)
C70.023 (4)0.015 (3)0.021 (3)0.011 (3)0.003 (3)0.004 (2)
C80.027 (3)0.007 (2)0.016 (3)0.004 (3)0.003 (2)0.001 (3)
C90.020 (4)0.017 (3)0.011 (3)0.002 (3)0.006 (3)0.001 (2)
C100.020 (4)0.014 (3)0.020 (3)0.002 (3)0.003 (3)0.006 (2)
C110.025 (4)0.024 (4)0.026 (3)0.002 (3)0.009 (3)0.004 (3)
C120.032 (4)0.021 (3)0.037 (3)0.003 (4)0.021 (3)0.004 (3)
C130.021 (4)0.022 (4)0.060 (4)0.003 (4)0.017 (3)0.002 (4)
C140.013 (4)0.028 (4)0.045 (4)0.003 (3)0.004 (3)0.006 (3)
C150.015 (4)0.015 (3)0.012 (3)0.003 (3)0.002 (3)0.006 (2)
C160.016 (3)0.012 (3)0.017 (3)0.005 (3)0.005 (2)0.002 (3)
Geometric parameters (Å, º) top
Cd1—O12.371 (4)N4—C141.344 (7)
Cd1—O3i2.377 (4)C1—C21.407 (7)
Cd1—N12.418 (4)C1—C51.498 (7)
Cd1—O1ii2.427 (4)C2—C101.502 (8)
Cd1—N32.430 (4)C3—C41.403 (7)
Cd1—O1W2.301 (4)C3—C151.506 (7)
Cd1—O2W2.317 (3)C4—C161.530 (7)
O1—C151.255 (6)C5—C61.384 (7)
O1—Cd1ii2.427 (3)C6—C71.381 (7)
O2—C151.253 (6)C6—H60.9400
O3—C161.258 (6)C7—C81.366 (7)
O3—Cd1iii2.377 (4)C7—H70.9400
O4—C161.227 (6)C8—C91.378 (7)
O1W—H1WA0.82 (2)C8—H80.9400
O1W—H1WB0.837 (19)C9—H90.9400
O2W—H2WA0.847 (19)C10—C111.392 (7)
O2W—H2WB0.852 (19)C11—C121.386 (8)
N1—C31.335 (7)C11—H110.9400
N1—C11.339 (6)C12—C131.376 (8)
N2—C21.328 (7)C12—H120.9400
N2—C41.341 (7)C13—C141.373 (8)
N3—C51.351 (6)C13—H130.9400
N3—C91.359 (6)C14—H140.9400
N4—C101.338 (7)
Cd1—O1—Cd1ii107.74 (13)C1—C2—C10125.1 (5)
O1W—Cd1—O3i157.41 (15)N1—C3—C4120.0 (5)
O1—Cd1—O1ii72.26 (13)N1—C3—C15116.3 (4)
O1—Cd1—N167.98 (13)C4—C3—C15123.6 (5)
N1—Cd1—N365.40 (14)N2—C4—C3119.4 (5)
O2W—Cd1—N378.01 (13)N2—C4—C16114.6 (4)
O2W—Cd1—O1ii80.65 (13)C3—C4—C16125.6 (5)
O1W—Cd1—O2W104.67 (16)N3—C5—C6120.2 (5)
O1W—Cd1—O180.18 (15)N3—C5—C1114.3 (5)
O1W—Cd1—N191.62 (16)C6—C5—C1125.1 (5)
O1W—Cd1—N387.87 (15)C7—C6—C5120.3 (5)
O1W—Cd1—O1ii76.59 (15)C7—C6—H6119.9
O2W—Cd1—O3i87.05 (13)C5—C6—H6119.9
O1—Cd1—O3i80.38 (12)C8—C7—C6119.4 (5)
O3i—Cd1—N191.67 (13)C8—C7—H7120.3
O3i—Cd1—O1ii86.60 (12)C6—C7—H7120.3
O3i—Cd1—N3113.74 (13)C7—C8—C9118.9 (5)
O2W—Cd1—N1139.31 (15)C7—C8—H8120.6
O2W—Cd1—O1150.65 (13)C9—C8—H8120.6
N1—Cd1—O1ii139.91 (14)N3—C9—C8122.1 (5)
O1—Cd1—N3131.34 (12)N3—C9—H9119.0
O1ii—Cd1—N3149.40 (14)C8—C9—H9119.0
C15—O1—Cd1120.8 (3)N4—C10—C11123.3 (5)
C15—O1—Cd1ii131.4 (4)N4—C10—C2116.9 (5)
C16—O3—Cd1iii121.8 (4)C11—C10—C2119.7 (5)
Cd1—O1W—H1WA124 (4)C12—C11—C10118.2 (6)
Cd1—O1W—H1WB122 (4)C12—C11—H11120.9
H1WA—O1W—H1WB109 (3)C10—C11—H11120.9
Cd1—O2W—H2WA111 (4)C13—C12—C11119.3 (5)
Cd1—O2W—H2WB109 (4)C13—C12—H12120.4
H2WA—O2W—H2WB104 (3)C11—C12—H12120.4
C3—N1—C1121.2 (4)C14—C13—C12118.2 (6)
C3—N1—Cd1116.7 (3)C14—C13—H13120.9
C1—N1—Cd1121.9 (3)C12—C13—H13120.9
C2—N2—C4119.7 (4)N4—C14—C13124.4 (6)
C5—N3—C9119.1 (4)N4—C14—H14117.8
C5—N3—Cd1121.8 (3)C13—C14—H14117.8
C9—N3—Cd1118.9 (3)O2—C15—O1126.9 (5)
C10—N4—C14116.5 (5)O2—C15—C3115.6 (5)
N1—C1—C2117.9 (5)O1—C15—C3117.5 (5)
N1—C1—C5114.8 (4)O4—C16—O3127.6 (5)
C2—C1—C5127.0 (5)O4—C16—C4114.3 (5)
N2—C2—C1121.6 (5)O3—C16—C4118.0 (5)
N2—C2—C10113.3 (4)
C3—N1—C1—C23.4 (7)C6—C7—C8—C91.0 (8)
Cd1—N1—C1—C2171.5 (3)C5—N3—C9—C83.6 (7)
C3—N1—C1—C5171.2 (4)Cd1—N3—C9—C8178.9 (4)
Cd1—N1—C1—C513.9 (6)C7—C8—C9—N31.2 (8)
C4—N2—C2—C11.1 (8)C14—N4—C10—C110.9 (8)
C4—N2—C2—C10176.2 (5)C14—N4—C10—C2176.1 (5)
N1—C1—C2—N24.7 (7)N2—C2—C10—N4117.2 (5)
C5—C1—C2—N2169.2 (5)C1—C2—C10—N460.0 (7)
N1—C1—C2—C10172.3 (5)N2—C2—C10—C1159.9 (7)
C5—C1—C2—C1013.8 (8)C1—C2—C10—C11122.9 (6)
C1—N1—C3—C41.2 (7)N4—C10—C11—C121.5 (8)
Cd1—N1—C3—C4176.3 (4)C2—C10—C11—C12175.3 (5)
C1—N1—C3—C15177.7 (4)C10—C11—C12—C131.7 (9)
Cd1—N1—C3—C157.1 (5)C11—C12—C13—C141.3 (10)
C2—N2—C4—C33.6 (7)C10—N4—C14—C130.4 (9)
C2—N2—C4—C16176.7 (5)C12—C13—C14—N40.7 (10)
N1—C3—C4—N24.8 (8)Cd1—O1—C15—O2175.2 (4)
C15—C3—C4—N2178.9 (5)Cd1ii—O1—C15—O22.5 (8)
N1—C3—C4—C16177.2 (5)Cd1—O1—C15—C36.1 (6)
C15—C3—C4—C166.5 (8)Cd1ii—O1—C15—C3176.2 (3)
C9—N3—C5—C63.7 (7)N1—C3—C15—O2177.9 (4)
Cd1—N3—C5—C6178.9 (4)C4—C3—C15—O21.5 (8)
C9—N3—C5—C1169.7 (4)N1—C3—C15—O10.9 (7)
Cd1—N3—C5—C15.5 (6)C4—C3—C15—O1177.3 (5)
N1—C1—C5—N35.2 (6)Cd1iii—O3—C16—O41.6 (8)
C2—C1—C5—N3179.3 (5)Cd1iii—O3—C16—C4177.4 (3)
N1—C1—C5—C6167.8 (5)N2—C4—C16—O482.7 (6)
C2—C1—C5—C66.3 (9)C3—C4—C16—O490.0 (7)
N3—C5—C6—C71.5 (8)N2—C4—C16—O393.7 (6)
C1—C5—C6—C7171.1 (5)C3—C4—C16—O393.6 (6)
C5—C6—C7—C80.8 (8)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3iv0.82 (2)2.22 (3)2.974 (6)152 (5)
O1W—H1WB···O2v0.84 (2)2.05 (4)2.805 (6)150 (7)
O2W—H2WA···O4i0.85 (2)1.88 (3)2.630 (6)146 (5)
O2W—H2WB···O2ii0.85 (2)1.88 (2)2.692 (5)159 (5)
C9—H9···O3vi0.942.523.245 (6)134
C14—H14···N4vii0.942.623.372 (8)137
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+3/2; (v) x, y+1, z; (vi) x, y+3/2, z1/2; (vii) x, y+1, z+1.
 

Acknowledgements

We are grateful to the Swiss National Science Foundation and the University of Neuchâtel for financial support.

References

First citationAlfonso, M. & Stoeckli-Evans, H. (2016a). Acta Cryst. E72, 233–237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlfonso, M. & Stoeckli-Evans, H. (2016b). Acta Cryst. E72, 1214–1218.  CSD CrossRef IUCr Journals Google Scholar
First citationAlfonso, M., Wang, Y. & Stoeckli-Evans, H. (2001). Acta Cryst. C57, 1184–1188.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiao, C., Geng, J., He, C. & Cui, G. (2012). J. Mol. Struct. 1020, 134–141.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNeels, A., Alfonso, M., Mantero, D. G. & Stoeckli-Evans, H. (2003). Chimia, 57, 619–622.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2004). IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds