research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of methyl (E)-4-[2-(8-hy­dr­oxy­quinolin-2-yl)vin­yl]benzoate

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and bXingZhi College, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 July 2016; accepted 26 July 2016; online 5 August 2016)

The title compound, C19H15NO3, was synthesized by a Perkin reaction of 2-methyl-8-hy­droxy­quinoline and 4-formyl-2-methyl­benzoate in acetic anhydride under a nitro­gen atmosphere. The mol­ecule has an E conformation about the C=C bond, and the quinoline ring system and the benzene ring are inclined to one another by 29.22 (7)°. There is an intra­molecular O—H⋯N hydrogen bond in the 8-hy­droxy­quinoline moiety. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R22(28) ring motif. The dimers are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming sheets parallel to plane (10-1).

1. Chemical context

In recent years, 8-hy­droxy­quinoline and its derivatives have played an important role in coordination chemistry (Albrecht et al., 2008[Albrecht, M., Fiege, M. & Osetska, O. (2008). Coord. Chem. Rev. 252, 812-824.]; Cacciatore et al., 2013[Cacciatore, I., Fornasari, E., Baldassare, L., Cornacchia, C., Fulle, S., DiFilippo, E. S., Pietrangelo, T. & Pinnen, F. (2013). Pharmaceuticals, 6, 54-69.]), shown to exhibit biological activity (du Moulinet d'Hardemare et al., 2012[Moulinet d'Hardemare, A. du, Gellon, G., Philouze, C. & Serratrice, G. (2012). Inorg. Chem. 51, 12142-12151.]) and have found various applications in the fields of synthetic chemistry (Song et al., 2006[Song, K.-C., Kim, J.-S., Park, S.-M., Chung, K.-C., Ahn, S. & Chang, S.-K. (2006). Org. Lett. 8, 3413-3416.]) and organic light-emitting diodes, which have been extensively exploited in the synthesis of luminescent metal complexes (Tang et al., 1987[Tang, C.-W. & VanSlyke, S. A. (1987). Appl. Phys. Lett. 51, 913-915.]). It is therefore highly desirable to develop new efficient 8-hy­droxy­quinoline derivatives for use in luminescent metal complexes. In the present work, we report on the synthesis and crystal structure of a new 8-hy­droxy­quinoline derivative, synthesized by the Perkin reaction of 2-methyl-8-hy­droxy­quinoline and 4-formyl-2-methyl­benzoate.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. It contains an 8-hy­droxy­quinoline moiety, with an intra­molecular O—H⋯N hydrogen bond (Fig. 1[link] and Table 1[link]), and a methyl­benzoate unit. They are linked by the C9=C10 bond [1.321 (2) Å] with an E conformation. The C11—C10 and C6—C9 bond lengths are 1.463 (2) and 1.466 (2) Å, respectively. These distances are shorter than the standard length of a C—C single bond (ca 1.5 Å) because of the conjugate system formed by the C9=C10 bond and the aromatic systems. The quinoline ring system and the benzene ring are inclined to one another by 29.22 (7)°.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of rings N1/C11–C14/C19, C3–C8 and C14–C19, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯N1 0.86 (2) 2.19 (3) 2.715 (2) 120 (2)
O3—H3O⋯O1i 0.86 (2) 2.23 (2) 2.901 (2) 136 (2)
C5—H5A⋯O3ii 0.93 2.57 3.437 (2) 155
C7—H7ACg3iii 0.93 2.99 3.605 (2) 125
C8—H8ACg1iii 0.93 2.93 3.559 (2) 126
C15—H15ACg2ii 0.93 2.83 3.639 (2) 146
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, showing the atom labelling and 40% probability displacement ellipsoids. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line (see Table 1[link]).

3. Supra­molecular features

In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R22(28) ring motif (Table 1[link] and Fig. 2[link]). The dimers are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming sheets parallel to (10[\overline{1}]); see Table 1[link] and Fig. 3[link].

[Figure 2]
Figure 2
A view along the a axis of the R22(28) ring motifs in the crystal of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link]), and for clarity only H atoms H3O and H5A are included.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, only H atoms H3O and H5A are included.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, last update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the substructure 2-styrylquinolin-8-ol gave 17 hits; however, certain of these involve bis­(8-hy­droxy­quinolines) or a (9-anthr­yl) moiety. Three compounds are similar to the title compound in the sense that they also have an E conformation about the C=C bond, and in the crystal they also form inversion dimers. They include 2-{2-[4-(tri­fluoro­meth­yl)phen­yl]vin­yl}quinolin-8-ol (HUKTOY; Huo et al., 2015[Huo, Y., Wang, C., Lu, J., Hu, S., Li, X. & Zhang, L. (2015). J. Mol. Struct. 1098, 311-317.]), 2-[2-(4-meth­oxy­phen­yl)vin­yl]quinolin-8-ol (MIMPOP; Yuan et al., 2013[Yuan, G.-Z., Rong, L.-L., Qiao, X.-L., Xia, Y.-P., Guo, T. & Wei, X.-W. (2013). Wuji Huaxue Xuebao, 29, 1769.]), and 2-[2-(2,4-di­nitro­phen­yl)vin­yl]quinolin-8-ol (WELKEF; Yuan et al., 2013[Yuan, G.-Z., Rong, L.-L., Qiao, X.-L., Xia, Y.-P., Guo, T. & Wei, X.-W. (2013). Wuji Huaxue Xuebao, 29, 1769.]). In these three compounds, the quinoline and benzene rings are inclined to one another by 36.72 (10) and 16.66 (10)° in HUKTOY (there are two independent mol­ecules in the asymmetric unit), 42.59 (7)° in MIMPOP and 5.63 (6)° in WELKEF, compared to 29.22 (7)° in the title compound.

5. Synthesis and crystallization

The title compound was prepared following reported procedures (Jing et al., 2006[Jing, H.-L., Zeng, H.-P., Zhou, Y.-D., Wang, T.-T., Yuan, G.-Z. & Ouyang, X.-H. (2006). Chin. J. Chem. 24, 966-972.]; Yuan et al., 2012[Yuan, G.-Z., Huo, Y.-P., Rong, L.-L., Nie, X.-L. & Fang, X.-M. (2012). Inorg. Chem. Commun. 23, 90-94.]). A mixture of 2-methy-8-hy­droxy­quinoline (1.59 g, 10 mmol), 4-formyl-2-methyl­benzoate (1.64 g, 10 mmol) and acetic anhydride (20 ml) was stirred for 12 h at 423 K under a nitro­gen atmosphere. After cooling it was poured into ice–water (150 ml) and stirred for 1–2 h. Then, the puce solid obtained was filtered and together with tri­ethyl­amine (1 g, 10 mmol) was dissolved in DMF (30 ml) and the mixture stirred for 3 h at 408 K. After cooling, the reaction mixture was concentrated and purified by chromatography on silica gel (petroleum ether/EtOAc = 3/1). The product obtained was dissolved in ethanol, and on slow evaporation of the solvent yellow crystals were obtained within 2 weeks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hy­droxy-H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C19H15NO3
Mr 305.32
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 12.0236 (4), 9.7045 (4), 13.2607 (4)
β (°) 96.260 (2)
V3) 1538.07 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.08 × 0.06 × 0.05
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.993, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 13068, 3511, 2049
Rint 0.041
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.137, 1.02
No. of reflections 3511
No. of parameters 217
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.18
Computer programs: SMART and SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Methyl (E)-4-[2-(8-hydroxyquinolin-2-yl)vinyl]benzoate top
Crystal data top
C19H15NO3F(000) = 640
Mr = 305.32Dx = 1.319 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1747 reflections
a = 12.0236 (4) Åθ = 2.2–27.6°
b = 9.7045 (4) ŵ = 0.09 mm1
c = 13.2607 (4) ÅT = 296 K
β = 96.260 (2)°Block, yellow
V = 1538.07 (9) Å30.08 × 0.06 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3511 independent reflections
Radiation source: fine-focus sealed tube2049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
phi and ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1514
Tmin = 0.993, Tmax = 0.996k = 1212
13068 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.1091P]
where P = (Fo2 + 2Fc2)/3
3511 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.87623 (11)0.22440 (15)0.17162 (11)0.0507 (4)
O31.04463 (12)0.41136 (15)0.20030 (12)0.0678 (4)
C190.97735 (12)0.17971 (18)0.21670 (12)0.0465 (4)
C30.26628 (13)0.27214 (18)0.01100 (13)0.0496 (4)
C140.99928 (13)0.04272 (18)0.24806 (12)0.0481 (4)
C110.79264 (13)0.13449 (18)0.15909 (12)0.0491 (4)
O20.07181 (10)0.24711 (14)0.02756 (10)0.0691 (4)
C60.47912 (13)0.17659 (19)0.06283 (12)0.0508 (4)
C130.90819 (14)0.04932 (19)0.23276 (13)0.0544 (5)
H13A0.91780.14120.25170.065*
C181.06399 (13)0.27912 (19)0.23164 (13)0.0521 (4)
C120.80665 (14)0.0046 (2)0.19061 (13)0.0549 (5)
H12A0.74640.06510.18240.066*
C20.15483 (14)0.3263 (2)0.05173 (14)0.0574 (5)
O10.14069 (11)0.42886 (17)0.10263 (13)0.0939 (5)
C100.68606 (13)0.18748 (19)0.11050 (13)0.0550 (5)
H10A0.68730.27330.07950.066*
C90.58827 (13)0.1246 (2)0.10668 (13)0.0550 (5)
H9A0.58870.03700.13520.066*
C80.36132 (14)0.3354 (2)0.03918 (13)0.0587 (5)
H8A0.35410.41070.08280.070*
C151.10686 (14)0.0073 (2)0.29359 (13)0.0581 (5)
H15A1.12260.08310.31360.070*
C171.16678 (14)0.2423 (2)0.27826 (15)0.0611 (5)
H17A1.22290.30810.29010.073*
C70.46638 (14)0.2885 (2)0.00345 (14)0.0587 (5)
H7A0.52930.33180.02370.070*
C40.27801 (14)0.15980 (19)0.05325 (14)0.0564 (5)
H4A0.21480.11560.07210.068*
C161.18752 (15)0.1057 (2)0.30817 (14)0.0641 (5)
H16A1.25810.08160.33870.077*
C50.38325 (14)0.11293 (19)0.08960 (14)0.0589 (5)
H5A0.39000.03720.13290.071*
C10.04060 (15)0.2875 (3)0.06672 (17)0.0812 (7)
H1B0.09320.22280.04450.122*
H1C0.04700.28860.13950.122*
H1D0.05610.37770.04210.122*
H3O0.9748 (17)0.414 (3)0.178 (2)0.101 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0405 (7)0.0524 (9)0.0578 (9)0.0016 (7)0.0003 (6)0.0028 (7)
O30.0509 (8)0.0541 (8)0.0935 (10)0.0052 (7)0.0140 (8)0.0047 (7)
C190.0397 (9)0.0523 (10)0.0470 (9)0.0023 (8)0.0028 (7)0.0005 (8)
C30.0447 (9)0.0557 (11)0.0471 (9)0.0034 (8)0.0015 (7)0.0011 (8)
C140.0422 (9)0.0528 (11)0.0495 (9)0.0062 (8)0.0057 (7)0.0010 (8)
C110.0412 (9)0.0503 (10)0.0549 (10)0.0016 (8)0.0005 (7)0.0059 (8)
O20.0414 (7)0.0864 (10)0.0774 (9)0.0056 (7)0.0034 (6)0.0080 (7)
C60.0445 (9)0.0530 (10)0.0529 (10)0.0011 (8)0.0034 (7)0.0051 (8)
C130.0527 (10)0.0471 (10)0.0631 (11)0.0035 (8)0.0056 (8)0.0009 (8)
C180.0430 (9)0.0531 (11)0.0590 (10)0.0007 (8)0.0007 (8)0.0001 (9)
C120.0457 (9)0.0515 (11)0.0663 (11)0.0036 (8)0.0013 (8)0.0061 (9)
C20.0447 (10)0.0687 (13)0.0575 (11)0.0050 (10)0.0003 (8)0.0010 (10)
O10.0597 (9)0.0984 (12)0.1208 (13)0.0137 (8)0.0033 (8)0.0450 (11)
C100.0468 (10)0.0530 (11)0.0637 (11)0.0046 (8)0.0011 (8)0.0015 (9)
C90.0446 (9)0.0549 (11)0.0635 (11)0.0026 (8)0.0032 (8)0.0027 (9)
C80.0521 (10)0.0638 (12)0.0586 (11)0.0015 (9)0.0004 (8)0.0133 (9)
C150.0456 (10)0.0620 (12)0.0661 (11)0.0115 (9)0.0034 (8)0.0087 (9)
C170.0424 (10)0.0680 (13)0.0713 (12)0.0049 (9)0.0011 (8)0.0012 (10)
C70.0427 (9)0.0703 (13)0.0624 (11)0.0039 (9)0.0027 (8)0.0070 (10)
C40.0436 (9)0.0584 (11)0.0657 (11)0.0046 (8)0.0005 (8)0.0035 (9)
C160.0404 (9)0.0767 (15)0.0731 (12)0.0064 (9)0.0044 (8)0.0075 (11)
C50.0495 (10)0.0554 (11)0.0691 (12)0.0004 (8)0.0054 (8)0.0110 (9)
C10.0402 (10)0.1128 (19)0.0881 (15)0.0112 (11)0.0039 (9)0.0050 (13)
H3O0.039 (13)0.12 (2)0.14 (2)0.025 (14)0.010 (13)0.009 (16)
Geometric parameters (Å, º) top
N1—C111.328 (2)C18—C171.368 (2)
N1—C191.3657 (19)C12—H12A0.9300
O3—C181.361 (2)C2—O11.204 (2)
O3—H3O0.86 (2)C10—C91.321 (2)
C19—C141.409 (2)C10—H10A0.9300
C19—C181.418 (2)C9—H9A0.9300
C3—C41.381 (2)C8—C71.377 (2)
C3—C81.384 (2)C8—H8A0.9300
C3—C21.485 (2)C15—C161.360 (3)
C14—C151.409 (2)C15—H15A0.9300
C14—C131.411 (2)C17—C161.398 (3)
C11—C121.417 (3)C17—H17A0.9300
C11—C101.463 (2)C7—H7A0.9300
O2—C21.326 (2)C4—C51.381 (2)
O2—C11.448 (2)C4—H4A0.9300
C6—C51.388 (2)C16—H16A0.9300
C6—C71.395 (3)C5—H5A0.9300
C6—C91.466 (2)C1—H1B0.9600
C13—C121.357 (2)C1—H1C0.9600
C13—H13A0.9300C1—H1D0.9600
C11—N1—C19118.15 (15)C11—C10—H10A117.0
C18—O3—H3O105.2 (17)C10—C9—C6127.66 (18)
N1—C19—C14123.90 (15)C10—C9—H9A116.2
N1—C19—C18116.78 (16)C6—C9—H9A116.2
C14—C19—C18119.32 (14)C7—C8—C3120.90 (17)
C4—C3—C8119.02 (15)C7—C8—H8A119.5
C4—C3—C2122.07 (17)C3—C8—H8A119.5
C8—C3—C2118.91 (17)C16—C15—C14119.79 (18)
C15—C14—C19119.34 (16)C16—C15—H15A120.1
C15—C14—C13124.70 (17)C14—C15—H15A120.1
C19—C14—C13115.94 (14)C18—C17—C16120.02 (17)
N1—C11—C12121.65 (14)C18—C17—H17A120.0
N1—C11—C10116.03 (16)C16—C17—H17A120.0
C12—C11—C10122.32 (15)C8—C7—C6120.51 (17)
C2—O2—C1117.01 (16)C8—C7—H7A119.7
C5—C6—C7118.07 (15)C6—C7—H7A119.7
C5—C6—C9118.56 (17)C5—C4—C3120.21 (17)
C7—C6—C9123.36 (17)C5—C4—H4A119.9
C12—C13—C14120.40 (17)C3—C4—H4A119.9
C12—C13—H13A119.8C15—C16—C17121.54 (16)
C14—C13—H13A119.8C15—C16—H16A119.2
O3—C18—C17120.02 (17)C17—C16—H16A119.2
O3—C18—C19120.01 (14)C4—C5—C6121.28 (17)
C17—C18—C19119.96 (17)C4—C5—H5A119.4
C13—C12—C11119.92 (16)C6—C5—H5A119.4
C13—C12—H12A120.0O2—C1—H1B109.5
C11—C12—H12A120.0O2—C1—H1C109.5
O1—C2—O2123.39 (16)H1B—C1—H1C109.5
O1—C2—C3124.26 (18)O2—C1—H1D109.5
O2—C2—C3112.33 (17)H1B—C1—H1D109.5
C9—C10—C11126.00 (18)H1C—C1—H1D109.5
C9—C10—H10A117.0
C11—N1—C19—C142.0 (2)C8—C3—C2—O2173.08 (16)
C11—N1—C19—C18178.23 (15)N1—C11—C10—C9167.28 (17)
N1—C19—C14—C15179.78 (15)C12—C11—C10—C913.1 (3)
C18—C19—C14—C150.0 (2)C11—C10—C9—C6177.07 (16)
N1—C19—C14—C131.6 (2)C5—C6—C9—C10162.92 (18)
C18—C19—C14—C13178.58 (15)C7—C6—C9—C1016.0 (3)
C19—N1—C11—C120.4 (2)C4—C3—C8—C70.5 (3)
C19—N1—C11—C10179.96 (14)C2—C3—C8—C7179.86 (16)
C15—C14—C13—C12178.19 (17)C19—C14—C15—C161.0 (3)
C19—C14—C13—C120.3 (2)C13—C14—C15—C16177.45 (18)
N1—C19—C18—O30.9 (2)O3—C18—C17—C16178.39 (18)
C14—C19—C18—O3178.95 (16)C19—C18—C17—C162.1 (3)
N1—C19—C18—C17178.64 (16)C3—C8—C7—C60.6 (3)
C14—C19—C18—C171.6 (2)C5—C6—C7—C81.3 (3)
C14—C13—C12—C111.8 (3)C9—C6—C7—C8177.65 (17)
N1—C11—C12—C131.5 (3)C8—C3—C4—C50.8 (3)
C10—C11—C12—C13178.16 (16)C2—C3—C4—C5179.85 (16)
C1—O2—C2—O10.9 (3)C14—C15—C16—C170.5 (3)
C1—O2—C2—C3177.71 (15)C18—C17—C16—C151.1 (3)
C4—C3—C2—O1175.11 (19)C3—C4—C5—C60.1 (3)
C8—C3—C2—O15.6 (3)C7—C6—C5—C41.0 (3)
C4—C3—C2—O26.3 (3)C9—C6—C5—C4178.01 (16)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of rings N1/C11–C14/C19, C3–C8 and C14–C19, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3O···N10.86 (2)2.19 (3)2.715 (2)120 (2)
O3—H3O···O1i0.86 (2)2.23 (2)2.901 (2)136 (2)
C5—H5A···O3ii0.932.573.437 (2)155
C7—H7A···Cg3iii0.932.993.605 (2)125
C8—H8A···Cg1iii0.932.933.559 (2)126
C15—H15A···Cg2ii0.932.833.639 (2)146
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

We gratefully acknowledge the support of the Natural Science Foundation of Zhejiang Province (LY12B01003).

References

First citationAlbrecht, M., Fiege, M. & Osetska, O. (2008). Coord. Chem. Rev. 252, 812–824.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCacciatore, I., Fornasari, E., Baldassare, L., Cornacchia, C., Fulle, S., DiFilippo, E. S., Pietrangelo, T. & Pinnen, F. (2013). Pharmaceuticals, 6, 54–69.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuo, Y., Wang, C., Lu, J., Hu, S., Li, X. & Zhang, L. (2015). J. Mol. Struct. 1098, 311–317.  Web of Science CSD CrossRef CAS Google Scholar
First citationJing, H.-L., Zeng, H.-P., Zhou, Y.-D., Wang, T.-T., Yuan, G.-Z. & Ouyang, X.-H. (2006). Chin. J. Chem. 24, 966–972.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoulinet d'Hardemare, A. du, Gellon, G., Philouze, C. & Serratrice, G. (2012). Inorg. Chem. 51, 12142–12151.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, K.-C., Kim, J.-S., Park, S.-M., Chung, K.-C., Ahn, S. & Chang, S.-K. (2006). Org. Lett. 8, 3413–3416.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, C.-W. & VanSlyke, S. A. (1987). Appl. Phys. Lett. 51, 913–915.  CrossRef CAS Web of Science Google Scholar
First citationYuan, G.-Z., Huo, Y.-P., Rong, L.-L., Nie, X.-L. & Fang, X.-M. (2012). Inorg. Chem. Commun. 23, 90–94.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuan, G.-Z., Rong, L.-L., Qiao, X.-L., Xia, Y.-P., Guo, T. & Wei, X.-W. (2013). Wuji Huaxue Xuebao, 29, 1769.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds