research communications
H-cyclohepta[b]pyridine-3-carbonitrile
of 1-amino-2-oxo-2,5,6,7,8,9-hexahydro-1aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, D-38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de
In the title compound, C11H13N3O, the seven-membered ring adopts a conformation such that the three atoms not involved in the aromatic plane lie on the same side of that plane. One hydrazinic H atom forms an intramolecular hydrogen bond to the O atom; the other forms a classical intermolecular hydrogen bond N—H⋯O, which combines with a `weak' Har⋯O interaction to build up double layers of molecules parallel to the bc plane.
Keywords: crystal structure; cyclohepta[b]pyridine; carbonitrile; N—NH2 group; tautomer; N—H⋯O hydrogen bonding.
CCDC reference: 1496294
1. Chemical context
We have recently described various novel approaches for the synthesis of a new class of N-substituted amino derivatives of pyridines and pyrimidines (Elgemeie, Salah et al., 2015; Elgemeie et al., 2016). These compounds are important as pyrimidine ring systems that are not nucleoside analogs, and are interesting as antimetabolic agents (Elgemeie & Hamed, 2014; Elgemeie & Abd Elaziz, 2015). They have a greater selectivity for a broader range of human tumors, hence our interest in this class of compounds (Elgemeie, Abou-Zeid et al., 2015; Elgemeie, Mohamed et al., 2015).
We report here a novel one-step synthesis of a cycloheptane-ring-fused N-amino-2-pyridone derivative by reaction of the sodium salt of 2-(hydroxymethylene)-1-cycloheptanone (1) with a cyanoacetohydrazide (2). Thus, (1) reacted with (2) in piperidine acetate to give a product of molecular formula C11H13N3O (M+ = 203), for which two isomeric structures, (3) and (4), seemed possible, corresponding to two possible modes of Spectroscopic data cannot differentiate between these structures, and therefore the was determined, confirming the exclusive presence of tautomer (3) in the solid state. The formation of (3) from the reaction of (1) and (2) is assumed to proceed via initial addition of the active methylene carbon atom of (2) to the formyl group of (1) to give the favoured, kinetically controlled product (3). The 1H NMR spectra of the product revealed the presence of an N—NH2 group at δ = 6.4 p.p.m. and a pyridine H-4 at 7.8 p.p.m. in solution.
2. Structural commentary
The structure of the title compound is shown in Fig. 1 and confirms the presence of tautomer (3) in the solid state. Molecular dimensions [e.g. the hydrazinic N1—N2 bond length of 1.4201 (15) Å] may be regarded as normal; an extensive structural investigation of alkyl-substituted 3-cyano-2-pyridones (with an unsubstituted NH function in the ring) was published by Fischer et al. (2004). The seven-membered ring adopts a conformation such that all three atoms C6, C7 and C8 lie to the same side of the plane formed by the pyridone ring together with C5 and C9; the respective deviations from this plane are 1.480 (2), 1.616 (3) and 1.470 (2) Å.
3. Supramolecular features
The classical hydrogen-bond donor N1—H01 is only involved in intramolecular hydrogen bonding (Fig. 1 and Table 1). The second such donor N1—H02 forms a classical hydrogen bond to the acceptor O1 of a neighbouring molecule related by the 21 screw axis. Additionally, the `weak' but quite short hydrogen bond C4—H4⋯O1 links molecules related by the c glide plane. The overall effect is to build up double layers of molecules (Fig. 2 and Table 1) parallel to the bc plane, in which the top and bottom molecules of the layer are related by inversion.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.37, last update May 2016; Groom et al., 2016) revealed four other examples of the cyclohepta[b]pyridin-2-one ring system: refcodes AHEQAF (Elgemeie et al., 2002), ATUYAP and IBATUB (Albov et al., 2004a,b) and QAHLOB (Fischer et al., 2004).
5. Synthesis and crystallization
A solution of the sodium salt of 2-(hydroxymethylene)-1-cycloheptanone [(1); 1.60 g, 0.01 mol], N-cyanoacetohydrazide [(2); 0.09 g, 0.01 mol] and piperidine acetate (1 ml) in water (30 ml) and ethanol (30 ml) was refluxed for 10 min. Acetic acid (1.5 ml) was added to the hot solution. The precipitated solid was collected by filtration and crystallized from ethanol, giving colourless plate-like crystals (yield 85%, m.p. 508 K).
6. Refinement
Crystal data, data collection and structure . The NH hydrogens were located in a difference Fourier map and freely refined. The C-bound H atoms were included using a riding model starting from calculated positions: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1496294
https://doi.org/10.1107/S2056989016012196/su5315sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016012196/su5315Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016012196/su5315Isup3.cml
Data collection: (CrysAlis PRO; Agilent, 2010); cell
(CrysAlis PRO; Agilent, 2010); data reduction: (CrysAlis PRO; Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C11H13N3O | F(000) = 432 |
Mr = 203.24 | Dx = 1.380 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ybc | Cell parameters from 6583 reflections |
a = 8.5680 (4) Å | θ = 3.9–76.1° |
b = 10.0475 (4) Å | µ = 0.74 mm−1 |
c = 11.6778 (5) Å | T = 100 K |
β = 103.272 (4)° | Plate, colourless |
V = 978.46 (7) Å3 | 0.10 × 0.10 × 0.05 mm |
Z = 4 |
Oxford Diffraction Xcalibur Atlas Nova diffractometer | 2046 independent reflections |
Radiation source: sealed X-ray tube, Nova (Cu) X-ray Source | 1674 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.062 |
Detector resolution: 10.3543 pixels mm-1 | θmax = 76.1°, θmin = 5.3° |
ω–scan | h = −10→10 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −12→12 |
Tmin = 0.795, Tmax = 1.000 | l = −14→14 |
19833 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0602P)2 + 0.2053P] where P = (Fo2 + 2Fc2)/3 |
2046 reflections | (Δ/σ)max < 0.001 |
144 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 8.5275 (0.0007) x + 0.7466 (0.0052) y - 3.3783 (0.0058) z = 0.3993 (0.0040) * -0.0117 (0.0008) N1 * 0.0031 (0.0009) C2 * 0.0072 (0.0009) C3 * -0.0090 (0.0009) C4 * 0.0007 (0.0009) C4A * 0.0097 (0.0009) C9A 1.4803 (0.0024) C6 1.6155 (0.0026) C7 1.4700 (0.0023) C8 Rms deviation of fitted atoms = 0.0079 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.14967 (13) | 0.49677 (10) | 0.37289 (9) | 0.0161 (3) | |
C2 | 0.13750 (15) | 0.63589 (13) | 0.36852 (11) | 0.0168 (3) | |
C3 | 0.17684 (15) | 0.69947 (13) | 0.48064 (12) | 0.0168 (3) | |
C4 | 0.22210 (15) | 0.62730 (13) | 0.58375 (11) | 0.0173 (3) | |
H4 | 0.2451 | 0.6727 | 0.6571 | 0.021* | |
C4A | 0.23457 (16) | 0.48899 (13) | 0.58178 (11) | 0.0169 (3) | |
C5 | 0.29860 (17) | 0.41294 (13) | 0.69430 (11) | 0.0197 (3) | |
H5A | 0.2243 | 0.3391 | 0.7000 | 0.024* | |
H5B | 0.3025 | 0.4729 | 0.7622 | 0.024* | |
C6 | 0.46697 (17) | 0.35590 (14) | 0.70100 (12) | 0.0218 (3) | |
H6A | 0.5315 | 0.4231 | 0.6703 | 0.026* | |
H6B | 0.5197 | 0.3395 | 0.7845 | 0.026* | |
C7 | 0.46682 (17) | 0.22636 (14) | 0.63197 (12) | 0.0212 (3) | |
H7A | 0.5787 | 0.1942 | 0.6447 | 0.025* | |
H7B | 0.4055 | 0.1587 | 0.6651 | 0.025* | |
C8 | 0.39649 (16) | 0.23537 (13) | 0.49953 (12) | 0.0199 (3) | |
H8A | 0.4085 | 0.1478 | 0.4637 | 0.024* | |
H8B | 0.4596 | 0.3008 | 0.4656 | 0.024* | |
C9 | 0.21817 (16) | 0.27618 (13) | 0.46552 (12) | 0.0186 (3) | |
H9A | 0.1708 | 0.2467 | 0.3841 | 0.022* | |
H9B | 0.1597 | 0.2312 | 0.5185 | 0.022* | |
C9A | 0.19855 (15) | 0.42414 (13) | 0.47385 (11) | 0.0159 (3) | |
C10 | 0.17377 (16) | 0.84204 (14) | 0.48160 (12) | 0.0200 (3) | |
N2 | 0.12201 (15) | 0.43233 (12) | 0.26182 (10) | 0.0207 (3) | |
H01 | 0.090 (2) | 0.500 (2) | 0.2110 (18) | 0.036 (5)* | |
H02 | 0.037 (2) | 0.376 (2) | 0.2551 (16) | 0.030 (5)* | |
N3 | 0.17469 (17) | 0.95620 (12) | 0.48127 (12) | 0.0298 (3) | |
O1 | 0.09637 (12) | 0.69230 (9) | 0.27097 (8) | 0.0208 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0174 (6) | 0.0137 (5) | 0.0162 (5) | −0.0004 (4) | 0.0016 (4) | −0.0012 (4) |
C2 | 0.0134 (6) | 0.0151 (6) | 0.0214 (7) | 0.0001 (4) | 0.0028 (5) | 0.0014 (5) |
C3 | 0.0150 (6) | 0.0129 (6) | 0.0223 (6) | −0.0009 (4) | 0.0037 (5) | −0.0012 (5) |
C4 | 0.0154 (6) | 0.0171 (6) | 0.0199 (6) | −0.0005 (5) | 0.0047 (5) | −0.0024 (5) |
C4A | 0.0153 (6) | 0.0162 (6) | 0.0192 (6) | 0.0000 (5) | 0.0036 (5) | 0.0012 (5) |
C5 | 0.0240 (7) | 0.0182 (6) | 0.0170 (6) | 0.0015 (5) | 0.0051 (5) | 0.0018 (5) |
C6 | 0.0212 (7) | 0.0241 (7) | 0.0182 (6) | 0.0018 (5) | 0.0006 (5) | 0.0020 (5) |
C7 | 0.0197 (7) | 0.0204 (7) | 0.0229 (7) | 0.0036 (5) | 0.0037 (5) | 0.0044 (5) |
C8 | 0.0199 (7) | 0.0182 (6) | 0.0215 (6) | 0.0026 (5) | 0.0048 (5) | 0.0005 (5) |
C9 | 0.0193 (7) | 0.0137 (6) | 0.0218 (6) | −0.0002 (5) | 0.0026 (5) | −0.0003 (5) |
C9A | 0.0133 (6) | 0.0145 (6) | 0.0195 (6) | −0.0006 (4) | 0.0030 (5) | 0.0008 (4) |
C10 | 0.0183 (6) | 0.0182 (7) | 0.0227 (6) | 0.0002 (5) | 0.0033 (5) | −0.0007 (5) |
N2 | 0.0272 (7) | 0.0176 (6) | 0.0154 (5) | −0.0018 (5) | 0.0006 (5) | −0.0033 (4) |
N3 | 0.0340 (8) | 0.0182 (6) | 0.0366 (7) | 0.0000 (5) | 0.0068 (6) | −0.0004 (5) |
O1 | 0.0237 (5) | 0.0170 (4) | 0.0199 (5) | 0.0012 (4) | 0.0012 (4) | 0.0039 (4) |
N1—C9A | 1.3680 (16) | C10—N3 | 1.1471 (19) |
N1—C2 | 1.4017 (16) | C4—H4 | 0.9500 |
N1—N2 | 1.4201 (15) | C5—H5A | 0.9900 |
C2—O1 | 1.2486 (16) | C5—H5B | 0.9900 |
C2—C3 | 1.4260 (18) | C6—H6A | 0.9900 |
C3—C4 | 1.3826 (18) | C6—H6B | 0.9900 |
C3—C10 | 1.4328 (18) | C7—H7A | 0.9900 |
C4—C4A | 1.3943 (18) | C7—H7B | 0.9900 |
C4A—C9A | 1.3892 (18) | C8—H8A | 0.9900 |
C4A—C5 | 1.5101 (17) | C8—H8B | 0.9900 |
C5—C6 | 1.5375 (19) | C9—H9A | 0.9900 |
C6—C7 | 1.5308 (19) | C9—H9B | 0.9900 |
C7—C8 | 1.5283 (18) | N2—H01 | 0.90 (2) |
C8—C9 | 1.5432 (18) | N2—H02 | 0.91 (2) |
C9—C9A | 1.5018 (17) | ||
C9A—N1—C2 | 124.66 (11) | C4A—C5—H5B | 109.1 |
C9A—N1—N2 | 119.86 (10) | C6—C5—H5B | 109.1 |
C2—N1—N2 | 115.22 (10) | H5A—C5—H5B | 107.8 |
O1—C2—N1 | 119.27 (11) | C7—C6—H6A | 108.8 |
O1—C2—C3 | 126.31 (12) | C5—C6—H6A | 108.8 |
N1—C2—C3 | 114.42 (11) | C7—C6—H6B | 108.8 |
C4—C3—C2 | 121.64 (12) | C5—C6—H6B | 108.8 |
C4—C3—C10 | 121.30 (12) | H6A—C6—H6B | 107.7 |
C2—C3—C10 | 117.01 (12) | C8—C7—H7A | 108.3 |
C3—C4—C4A | 121.04 (12) | C6—C7—H7A | 108.3 |
C9A—C4A—C4 | 118.72 (12) | C8—C7—H7B | 108.3 |
C9A—C4A—C5 | 120.85 (12) | C6—C7—H7B | 108.3 |
C4—C4A—C5 | 120.26 (12) | H7A—C7—H7B | 107.4 |
C4A—C5—C6 | 112.46 (11) | C7—C8—H8A | 108.7 |
C7—C6—C5 | 113.75 (11) | C9—C8—H8A | 108.7 |
C8—C7—C6 | 115.79 (11) | C7—C8—H8B | 108.7 |
C7—C8—C9 | 114.41 (11) | C9—C8—H8B | 108.7 |
C9A—C9—C8 | 111.42 (11) | H8A—C8—H8B | 107.6 |
N1—C9A—C4A | 119.48 (12) | C9A—C9—H9A | 109.3 |
N1—C9A—C9 | 119.26 (11) | C8—C9—H9A | 109.3 |
C4A—C9A—C9 | 121.22 (12) | C9A—C9—H9B | 109.3 |
N3—C10—C3 | 178.28 (16) | C8—C9—H9B | 109.3 |
C3—C4—H4 | 119.5 | H9A—C9—H9B | 108.0 |
C4A—C4—H4 | 119.5 | N1—N2—H01 | 102.6 (13) |
C4A—C5—H5A | 109.1 | N1—N2—H02 | 108.8 (12) |
C6—C5—H5A | 109.1 | H01—N2—H02 | 107.1 (17) |
C9A—N1—C2—O1 | 177.72 (12) | C4A—C5—C6—C7 | −80.60 (15) |
N2—N1—C2—O1 | 3.59 (17) | C5—C6—C7—C8 | 61.27 (16) |
C9A—N1—C2—C3 | −1.60 (18) | C6—C7—C8—C9 | −61.68 (16) |
N2—N1—C2—C3 | −175.73 (11) | C7—C8—C9—C9A | 80.91 (14) |
O1—C2—C3—C4 | −179.57 (13) | C2—N1—C9A—C4A | 2.30 (19) |
N1—C2—C3—C4 | −0.30 (18) | N2—N1—C9A—C4A | 176.17 (12) |
O1—C2—C3—C10 | −2.1 (2) | C2—N1—C9A—C9 | −175.43 (12) |
N1—C2—C3—C10 | 177.22 (11) | N2—N1—C9A—C9 | −1.55 (18) |
C2—C3—C4—C4A | 1.5 (2) | C4—C4A—C9A—N1 | −0.99 (18) |
C10—C3—C4—C4A | −175.93 (13) | C5—C4A—C9A—N1 | −176.19 (12) |
C3—C4—C4A—C9A | −0.82 (19) | C4—C4A—C9A—C9 | 176.68 (12) |
C3—C4—C4A—C5 | 174.41 (12) | C5—C4A—C9A—C9 | 1.48 (19) |
C9A—C4A—C5—C6 | 66.67 (16) | C8—C9—C9A—N1 | 109.73 (13) |
C4—C4A—C5—C6 | −108.45 (14) | C8—C9—C9A—C4A | −67.96 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H01···O1 | 0.90 (2) | 2.05 (2) | 2.6255 (15) | 120.4 (16) |
N2—H02···O1i | 0.91 (2) | 2.16 (2) | 3.0225 (15) | 158.2 (17) |
C4—H4···O1ii | 0.95 | 2.45 | 3.2105 (16) | 137 |
C9—H9A···O1i | 0.99 | 2.63 | 3.4903 (16) | 146 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, −y+3/2, z+1/2. |
References
Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England. Google Scholar
Albov, D. V., Mazina, O. S., Rybakov, V. B., Babaev, E. V., Chemyshev, V. V. & Aslanov, L. A. (2004a). Kristallografiya, 49, 208–218 [translated as Crystallogr. Rep. 49, 158–168]. Google Scholar
Albov, D. V., Rybakov, V. B., Babaev, E. V. & Aslanov, L. A. (2004b). Acta Cryst. E60, o894–o895. Web of Science CSD CrossRef IUCr Journals Google Scholar
Elgemeie, G. H. & Abd Elaziz, H. (2015). Curr. Microw. Chem. 2, 90–128. CrossRef CAS Google Scholar
Elgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 659–673. Web of Science CrossRef CAS PubMed Google Scholar
Elgemeie, G. H., Abu-Zaied, M. & Azzam, R. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 211–222. Web of Science CrossRef CAS PubMed Google Scholar
Elgemeie, G. H. & Hamed, M. (2014). Curr. Microw. Chem. 1, 155–176. CrossRef CAS Google Scholar
Elgemeie, G. H., Mahmoud, M. A. & Jones, P. G. (2002). Acta Cryst. E58, o1293–o1295. Web of Science CSD CrossRef IUCr Journals Google Scholar
Elgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015). Acta Cryst. E71, 1322–1324. Web of Science CSD CrossRef IUCr Journals Google Scholar
Elgemeie, G. H., Salah, A. M., Mohamed, R. A. & Jones, P. G. (2015). Acta Cryst. E71, 1319–1321. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fischer, C. B., Polborn, K., Steininger, H. & Zipse, H. (2004). Z. Naturforsch. Teil B, 59, 1121–1131. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.