research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of ((E)-{2-[(E)-(4-hy­droxynaphthalen-1-yl)methyl­­idene]hydrazin-1-yl}(methyl­sulfan­yl)methyl­­idene)azanium hydrogen sulfate monohydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Inorganique et Environnement, Université de Tlemcen, BP 119, 13000 Tlemcen, Algeria, bLaboratoire de Chimie Inorganique et Environnement, Universite de Tlemcen, BP 119, 13000 Tlemcen, Algeria, and cCentre de Diffractometrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du General Leclerc, 35042 Rennes, France
*Correspondence e-mail: samhibi1@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 August 2016; accepted 17 August 2016; online 26 August 2016)

In the title hydrated mol­ecular salt, C13H14N3S+·HSO4·H2O, the protonation of the azomethine N atom in sulfuric acid medium involves the formation of the bis­ulfate anion. The mol­ecular structure of the cation is obtained from the thiol tautomer of thio­semicarbazone wherein the naphthalene moiety and the conjugation of the bonds contribute to the planarity of the mol­ecular skeleton. In the crystal, the cation, anion and water mol­ecule of crystallization are linked by a series of O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional network. Within this network, there are also C—H⋯π inter­actions present involving symmetry-related naphthalene rings.

1. Chemical context

Thio­semicarbazones and their metal complexes have been widely explored because of their pharmaceutical properties (Klayman et al., 1983[Klayman, D. L., Scovill, J. P., Bartosevich, J. F. & Bruce, J. J. (1983). J. Med. Chem. 26, 35-39.]). These compounds present a wide variety of biological activities, such as anti­tumoral, fungicidal and anti­viral (Tarasconi et al., 2000[Tarasconi, P., Capacchi, S., Pelosi, G., Cornia, M., Albertini, R., Bonati, A., Dall'Aglio, P. P., Lunghi, P. & Pinelli, S. (2000). Bioorg. Med. Chem. 8, 157-162.]), and bactericidal (Abram et al., 1998[Abram, S., Maichle-Mössmer, C. & Abram, U. (1998). Polyhedron, 17, 131-143.]). The ability of thio­semicarbazone mol­ecules to chelate with traces of metals in biological systems is believed to be a reason for their activity (Teoh et al., 1999[Teoh, S.-G., Ang, S.-H., Fun, H.-K. & Ong, C.-W. (1999). J. Organomet. Chem. 580, 17-21.]). The nature of the aldehyde and ketone from which the thio­semicarbazone is obtained and the nature of the substituents attached at the +NH2 N atom influence the biological activity (Beraldo & Gambinob, 2004[Beraldo, H. & Gambinob, D. (2004). Mini Rev. Med. Chem. 4, 159-165.]). Thio­semicarbazones can exist as E and Z isomers and they exhibit thione–thiol tautomerism, as illus­trated for the title compound in Fig. 1[link]. Complexation usually takes place via dissociation of the acidic proton, resulting in the formation of a five-membered chelate ring (Pal et al., 2002[Pal, I., Basuli, F. & Bhattacharya, S. (2002). J. Chem Sci 114, 255-268.]). The crystal structure of the title compound was determined in order to investigate the extent of electron delocal­ization, the ligand conformation and to explore its biological implications.

[Scheme 1]
[Figure 1]
Figure 1
Thio­semicarbazones can exist as E and Z isomers and they exhibit thione–thiol tautomerism.

2. Structural commentary

The mol­ecular structure of the title mol­ecular salt is illustrated in Fig. 2[link]. It is composed of three entities: a bis­ulfate anion, a thio­semicarbazone cation and a water mol­ecule of crystallization. The cationic entity shows an E conformation with respect to the C12=N13 bond and is approximately planar, the maximum deviation from the mean plane through the 18 non-hydrogen atoms being 0.118 (2) Å for atom C12. This planarity is due to electron delocalization along the cationic entity backbone. Bond lengths and angles are close to those observed for similar (methyl­idene)hydrazinecarbo­thio­amide derivatives (Gangadharan et al., 2015[Gangadharan, R., Haribabu, J., Karvembu, R. & Sethusankar, K. (2015). Acta Cryst. E71, 305-308.]; Joseph et al., 2004[Joseph, M., Suni, V., Nayar, C. R., Kurup, M. R. P. & Fun, H.-K. (2004). J. Mol. Struct. 705, 63-70.]; Houari et al., 2013[Houari, B., Louhibi, S., Boukli-Hacene, L., Roisnel, T. & Taleb, M. (2013). Acta Cryst. E69, o1469.].)

[Figure 2]
Figure 2
A view of the mol­ecular structure of the title mol­ecular salt, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, there is an extensive hydrogen-bonding network present. The cation, anion and water mol­ecule of crystallization are linked by a series of O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional network (Table 1[link] and Fig. 3[link]). Within this network there are also C—H⋯π inter­actions present involving symmetry-related naphthalene rings (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of rings C1–C3/C5/C10/C11 and C5–C10, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O13i 0.89 (3) 1.96 (3) 2.791 (4) 155 (5)
O1W—H1WB⋯O13ii 0.86 (2) 1.88 (3) 2.732 (3) 172 (5)
O4—H4O⋯O11iii 0.96 (6) 1.84 (6) 2.719 (3) 153 (6)
O12—H12O⋯O1W 0.94 (5) 1.61 (5) 2.543 (4) 168 (5)
N14—H14⋯O14 0.86 (2) 2.00 (2) 2.860 (3) 176 (4)
N16—H16A⋯O1Wiv 0.86 (2) 2.32 (3) 3.046 (4) 142 (4)
N16—H16B⋯O14v 0.84 (2) 2.20 (3) 2.937 (3) 147 (4)
C6—H6⋯Cg2vi 0.95 2.67 3.451 (3) 140
C7—H7⋯Cg1vi 0.95 2.94 3.622 (3) 130
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title mol­ecular salt. The hydrogen bonds are drawn as dashed lines (see Table 1[link]) and the C-bound H atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the S-methyl (methyl­idene)thio­semicarbazidium cation substructure gave two hits, viz. S-methyl-N′-(pyrrolyl-2′-methyl­ene)iso­thio­semicarbazidium iodide monohydrate (JIHZUV; Bourosh et al., 1990[Bourosh, P. N., Jampolskaia, M. A., Dvorkin, A. A., Gerbeleu, N. V., Simonov, Yu. A. & Malinovskii, T. I. (1990). Dokl. Akad. Nauk SSSR, 311, 1119-1122.]) and 8-quinoline­aldehyde S-methyl­thio­semicarbazone hydro­chloride dihydrate (RUJXOK; Botoshansky et al., 2009[Botoshansky, M., Bourosh, P. N., Revenco, M. D., Korja, I. D., Simonov, Yu. A. & Panfilie, T. (2009). Zh. Strukt. Khim. 50, 188-191.]). Only the coordinates for the latter structure were available. The cation in RUJXOK, is relatively planar and the bond lengths and angles in the S-methyl (methyl­idene)thio­semicarbazidium moiety are similar to those observed for the title compound.

5. Synthesis and crystallization

The synthesis of the title mol­ecular salt is illustrated in Fig. 4[link]. An equimolar amount of thio­semicarbazide 10 mmol (0.91 g) and 3-hy­droxy-2-naphthaldehyde 10 mmol (1.72 g) were dissolved in a mixture of methanol and water (30 ml, 50%) and refluxed for 5 h in the presence of a catalytic amount of glacial sulfuric acid. Brown crystals suitable for X-ray diffraction analysis were obtained after slow evaporation of the solution.

[Figure 4]
Figure 4
The synthesis of the title mol­ecular salt.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hy­droxy H atom was located in a difference Fourier map and freely refined. The water and N-bound H atoms were located in difference Fourier maps and refined with distance restraints O—H = 0.84 (2) Å and N—H = 0.88 (2) Å. The C-bound H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.95–0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.

Table 2
Experimental details

Crystal data
Chemical formula C13H14N3OS+·HO4S·H2O
Mr 375.41
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 6.3726 (5), 14.2549 (11), 18.2817 (12)
V3) 1660.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.42 × 0.33 × 0.19
 
Data collection
Diffractometer Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.752, 0.935
No. of measured, independent and observed [I > 2σ(I)] reflections 19123, 3786, 3586
Rint 0.073
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.07
No. of reflections 3786
No. of parameters 247
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.33
Absolute structure Flack x determined using 1477 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.03 (5)
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

((E)-{2-[(E)-(4-Hydroxynaphthalen-1-yl)methylidene]hydrazin-1-yl}(methylsulfanyl)methylidene)azanium hydrogen sulfate monohydrate top
Crystal data top
C13H14N3OS+·HO4S·H2ODx = 1.501 Mg m3
Mr = 375.41Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9907 reflections
a = 6.3726 (5) Åθ = 2.9–27.5°
b = 14.2549 (11) ŵ = 0.36 mm1
c = 18.2817 (12) ÅT = 150 K
V = 1660.7 (2) Å3Block, brown
Z = 40.42 × 0.33 × 0.19 mm
F(000) = 784
Data collection top
Bruker D8 VENTURE
diffractometer
3586 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.073
rotation images scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 88
Tmin = 0.752, Tmax = 0.935k = 1818
19123 measured reflectionsl = 2323
3786 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.4752P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.36 e Å3
3786 reflectionsΔρmin = 0.33 e Å3
247 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraintsExtinction coefficient: 0.027 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 1477 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33252 (11)0.30710 (5)0.35547 (4)0.0214 (2)
C10.6277 (5)0.5080 (2)0.06062 (17)0.0274 (6)
H10.52110.55450.06240.033*
C20.8011 (5)0.5215 (2)0.01485 (18)0.0302 (7)
H20.81250.57750.01300.036*
C30.9553 (5)0.4542 (2)0.00993 (16)0.0244 (6)
O41.1258 (4)0.46247 (17)0.03340 (14)0.0334 (6)
H4O1.141 (10)0.520 (5)0.059 (3)0.09 (2)*
C50.9393 (5)0.3697 (2)0.05103 (15)0.0210 (6)
C61.0925 (5)0.2980 (2)0.04354 (16)0.0256 (6)
H61.20850.30690.01170.031*
C71.0739 (5)0.2162 (2)0.08197 (17)0.0308 (7)
H71.17460.16780.07550.037*
C80.9071 (6)0.2033 (2)0.13084 (17)0.0299 (7)
H80.89770.14670.15810.036*
C90.7567 (5)0.2716 (2)0.13989 (16)0.0246 (6)
H90.64580.26200.17380.029*
C100.7656 (4)0.3566 (2)0.09897 (14)0.0192 (5)
C110.6085 (5)0.4279 (2)0.10353 (16)0.0215 (6)
C120.4268 (5)0.4151 (2)0.15100 (15)0.0220 (6)
H12A0.40660.35630.17440.026*
N130.2939 (4)0.48088 (17)0.16192 (12)0.0205 (5)
N140.1329 (4)0.45700 (16)0.20919 (13)0.0202 (5)
H140.144 (7)0.406 (2)0.234 (2)0.040 (11)*
C150.0120 (4)0.5212 (2)0.22410 (14)0.0182 (5)
N160.0075 (4)0.60276 (18)0.19085 (14)0.0249 (5)
H16B0.103 (5)0.641 (2)0.199 (2)0.032 (10)*
H16A0.084 (5)0.614 (3)0.1575 (18)0.036 (11)*
C170.3802 (5)0.5843 (2)0.28398 (18)0.0253 (6)
H17A0.43110.59110.23370.038*
H17B0.31010.64230.29920.038*
H17C0.49900.57180.31660.038*
S20.19735 (11)0.48825 (5)0.28856 (4)0.0245 (2)
O110.3992 (4)0.40352 (16)0.36112 (13)0.0348 (6)
O120.5287 (4)0.2471 (2)0.33653 (15)0.0442 (7)
H12O0.631 (8)0.246 (4)0.374 (3)0.059 (14)*
O130.2455 (5)0.2712 (2)0.42322 (13)0.0433 (7)
O140.1937 (4)0.29015 (14)0.29348 (11)0.0278 (5)
O1W0.8206 (4)0.2244 (2)0.42969 (13)0.0385 (6)
H1WA0.939 (6)0.256 (4)0.426 (3)0.060 (16)*
H1WB0.784 (8)0.225 (3)0.4750 (15)0.061 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0240 (3)0.0184 (3)0.0220 (3)0.0050 (3)0.0028 (3)0.0010 (2)
C10.0309 (15)0.0164 (14)0.0349 (15)0.0031 (12)0.0053 (12)0.0021 (11)
C20.0386 (17)0.0186 (13)0.0333 (15)0.0000 (14)0.0083 (14)0.0045 (12)
C30.0286 (15)0.0232 (14)0.0215 (13)0.0062 (11)0.0019 (12)0.0019 (11)
O40.0336 (13)0.0323 (13)0.0344 (12)0.0011 (10)0.0136 (10)0.0079 (10)
C50.0226 (14)0.0217 (14)0.0186 (12)0.0016 (11)0.0032 (11)0.0032 (10)
C60.0250 (14)0.0321 (17)0.0196 (13)0.0047 (13)0.0002 (11)0.0013 (12)
C70.0324 (17)0.0351 (18)0.0248 (14)0.0145 (14)0.0001 (13)0.0014 (13)
C80.0347 (16)0.0299 (16)0.0253 (14)0.0108 (14)0.0001 (13)0.0084 (12)
C90.0254 (14)0.0265 (14)0.0218 (13)0.0037 (11)0.0008 (11)0.0031 (11)
C100.0202 (13)0.0207 (13)0.0166 (12)0.0004 (10)0.0020 (10)0.0027 (10)
C110.0244 (14)0.0176 (13)0.0226 (13)0.0011 (11)0.0024 (11)0.0026 (10)
C120.0234 (14)0.0192 (13)0.0233 (13)0.0003 (11)0.0012 (11)0.0009 (11)
N130.0204 (11)0.0196 (11)0.0215 (11)0.0001 (10)0.0021 (9)0.0011 (9)
N140.0212 (11)0.0160 (11)0.0233 (11)0.0010 (8)0.0028 (10)0.0028 (9)
C150.0198 (12)0.0182 (12)0.0166 (11)0.0002 (10)0.0008 (9)0.0006 (10)
N160.0287 (13)0.0187 (12)0.0273 (12)0.0058 (10)0.0084 (11)0.0056 (10)
C170.0218 (13)0.0214 (13)0.0326 (15)0.0023 (11)0.0030 (12)0.0007 (12)
S20.0264 (4)0.0209 (3)0.0263 (3)0.0027 (3)0.0080 (3)0.0056 (3)
O110.0456 (14)0.0215 (11)0.0372 (12)0.0120 (10)0.0030 (11)0.0060 (10)
O120.0395 (14)0.0493 (17)0.0437 (14)0.0146 (13)0.0118 (12)0.0185 (13)
O130.0443 (15)0.0602 (17)0.0254 (11)0.0204 (13)0.0057 (10)0.0137 (11)
O140.0353 (12)0.0209 (10)0.0271 (10)0.0059 (9)0.0089 (10)0.0040 (8)
O1W0.0277 (12)0.0604 (17)0.0274 (11)0.0027 (12)0.0015 (10)0.0012 (11)
Geometric parameters (Å, º) top
S1—O111.442 (2)C9—C101.425 (4)
S1—O131.450 (2)C9—H90.9500
S1—O141.458 (2)C10—C111.429 (4)
S1—O121.554 (3)C11—C121.459 (4)
C1—C111.391 (4)C12—N131.279 (4)
C1—C21.399 (4)C12—H12A0.9500
C1—H10.9500N13—N141.384 (3)
C2—C31.375 (4)N14—C151.328 (4)
C2—H20.9500N14—H140.86 (2)
C3—O41.350 (4)C15—N161.313 (4)
C3—C51.424 (4)C15—S21.733 (3)
O4—H4O0.96 (6)N16—H16B0.84 (2)
C5—C61.420 (4)N16—H16A0.86 (2)
C5—C101.424 (4)C17—S21.800 (3)
C6—C71.366 (5)C17—H17A0.9800
C6—H60.9500C17—H17B0.9800
C7—C81.400 (5)C17—H17C0.9800
C7—H70.9500O12—H12O0.94 (5)
C8—C91.376 (4)O1W—H1WA0.89 (3)
C8—H80.9500O1W—H1WB0.86 (2)
O11—S1—O13112.83 (16)C10—C9—H9119.6
O11—S1—O14113.10 (14)C5—C10—C9117.7 (3)
O13—S1—O14111.92 (14)C5—C10—C11119.2 (3)
O11—S1—O12107.66 (17)C9—C10—C11123.1 (3)
O13—S1—O12107.67 (18)C1—C11—C10119.3 (3)
O14—S1—O12102.94 (13)C1—C11—C12120.5 (3)
C11—C1—C2121.3 (3)C10—C11—C12120.1 (3)
C11—C1—H1119.4N13—C12—C11121.8 (3)
C2—C1—H1119.4N13—C12—H12A119.1
C3—C2—C1120.5 (3)C11—C12—H12A119.1
C3—C2—H2119.7C12—N13—N14114.1 (2)
C1—C2—H2119.7C15—N14—N13118.3 (2)
O4—C3—C2123.5 (3)C15—N14—H14122 (3)
O4—C3—C5116.2 (3)N13—N14—H14118 (3)
C2—C3—C5120.3 (3)N16—C15—N14120.0 (3)
C3—O4—H4O117 (4)N16—C15—S2124.7 (2)
C6—C5—C10120.0 (3)N14—C15—S2115.3 (2)
C6—C5—C3120.6 (3)C15—N16—H16B119 (3)
C10—C5—C3119.4 (3)C15—N16—H16A120 (3)
C7—C6—C5120.3 (3)H16B—N16—H16A120 (4)
C7—C6—H6119.9S2—C17—H17A109.5
C5—C6—H6119.9S2—C17—H17B109.5
C6—C7—C8120.4 (3)H17A—C17—H17B109.5
C6—C7—H7119.8S2—C17—H17C109.5
C8—C7—H7119.8H17A—C17—H17C109.5
C9—C8—C7120.8 (3)H17B—C17—H17C109.5
C9—C8—H8119.6C15—S2—C17101.74 (14)
C7—C8—H8119.6S1—O12—H12O114 (3)
C8—C9—C10120.7 (3)H1WA—O1W—H1WB108 (5)
C8—C9—H9119.6
C11—C1—C2—C31.5 (5)C8—C9—C10—C52.5 (4)
C1—C2—C3—O4179.6 (3)C8—C9—C10—C11176.9 (3)
C1—C2—C3—C50.5 (5)C2—C1—C11—C102.0 (5)
O4—C3—C5—C62.3 (4)C2—C1—C11—C12179.9 (3)
C2—C3—C5—C6176.9 (3)C5—C10—C11—C10.6 (4)
O4—C3—C5—C10178.9 (3)C9—C10—C11—C1178.9 (3)
C2—C3—C5—C101.9 (4)C5—C10—C11—C12178.6 (3)
C10—C5—C6—C70.2 (4)C9—C10—C11—C120.8 (4)
C3—C5—C6—C7178.6 (3)C1—C11—C12—N138.9 (4)
C5—C6—C7—C82.0 (5)C10—C11—C12—N13173.1 (3)
C6—C7—C8—C91.5 (5)C11—C12—N13—N14179.2 (2)
C7—C8—C9—C100.9 (5)C12—N13—N14—C15179.6 (2)
C6—C5—C10—C92.0 (4)N13—N14—C15—N164.2 (4)
C3—C5—C10—C9179.2 (3)N13—N14—C15—S2175.70 (19)
C6—C5—C10—C11177.5 (3)N16—C15—S2—C177.7 (3)
C3—C5—C10—C111.4 (4)N14—C15—S2—C17172.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C1–C3/C5/C10/C11 and C5–C10, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O13i0.89 (3)1.96 (3)2.791 (4)155 (5)
O1W—H1WB···O13ii0.86 (2)1.88 (3)2.732 (3)172 (5)
O4—H4O···O11iii0.96 (6)1.84 (6)2.719 (3)153 (6)
O12—H12O···O1W0.94 (5)1.61 (5)2.543 (4)168 (5)
N14—H14···O140.86 (2)2.00 (2)2.860 (3)176 (4)
N16—H16A···O1Wiv0.86 (2)2.32 (3)3.046 (4)142 (4)
N16—H16B···O14v0.84 (2)2.20 (3)2.937 (3)147 (4)
C6—H6···Cg2vi0.952.673.451 (3)140
C7—H7···Cg1vi0.952.943.622 (3)130
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1; (iii) x+3/2, y+1, z1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful for the support provided by the Algerian Ministry for Education and Research.

References

First citationAbram, S., Maichle-Mössmer, C. & Abram, U. (1998). Polyhedron, 17, 131–143.  CSD CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeraldo, H. & Gambinob, D. (2004). Mini Rev. Med. Chem. 4, 159–165.  Google Scholar
First citationBotoshansky, M., Bourosh, P. N., Revenco, M. D., Korja, I. D., Simonov, Yu. A. & Panfilie, T. (2009). Zh. Strukt. Khim. 50, 188–191.  Google Scholar
First citationBourosh, P. N., Jampolskaia, M. A., Dvorkin, A. A., Gerbeleu, N. V., Simonov, Yu. A. & Malinovskii, T. I. (1990). Dokl. Akad. Nauk SSSR, 311, 1119–1122.  Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGangadharan, R., Haribabu, J., Karvembu, R. & Sethusankar, K. (2015). Acta Cryst. E71, 305–308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHouari, B., Louhibi, S., Boukli-Hacene, L., Roisnel, T. & Taleb, M. (2013). Acta Cryst. E69, o1469.  CSD CrossRef IUCr Journals Google Scholar
First citationJoseph, M., Suni, V., Nayar, C. R., Kurup, M. R. P. & Fun, H.-K. (2004). J. Mol. Struct. 705, 63–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlayman, D. L., Scovill, J. P., Bartosevich, J. F. & Bruce, J. J. (1983). J. Med. Chem. 26, 35–39.  CrossRef CAS PubMed Google Scholar
First citationPal, I., Basuli, F. & Bhattacharya, S. (2002). J. Chem Sci 114, 255–268.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarasconi, P., Capacchi, S., Pelosi, G., Cornia, M., Albertini, R., Bonati, A., Dall'Aglio, P. P., Lunghi, P. & Pinelli, S. (2000). Bioorg. Med. Chem. 8, 157–162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTeoh, S.-G., Ang, S.-H., Fun, H.-K. & Ong, C.-W. (1999). J. Organomet. Chem. 580, 17–21.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds