research communications
trans-dichloridobis(propane-1,3-diamine-κ2N,N′)chromium(III)] dichromate from synchrotron data
of bis[aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr
The structure of the title compound, [CrCl2(tn)2]2[Cr2O7] (tn = propane-1,3-diamine; C3H10N2), has been determined from synchrotron data. The contains one CrIII complex cation and half a [Cr2O7]2− anion. In the complex cation, the CrIII ion is coordinated by the four N atoms of two propane-1,3-diamine (tn) ligands in the equatorial plane and by two Cl atoms in a trans configuration, displaying a distorted octahedral coordination sphere. The two six-membered rings in the complex cation have an anti chair–chair conformation with respect to each other. The mean Cr—N(tn) and Cr—Cl bond lengths are 2.09 (1) and 2.320 (2) Å, respectively. The slightly bent dichromate anion is disordered over two sets of sites (occupancy ratio = 0.7:0.3) and has a The is stabilized by intermolecular hydrogen bonds involving the NH2 groups of the tn ligands as donors and the O atoms of the [Cr2O7]2− anion and chlorido ligands as acceptors.
Keywords: crystal structure; propane-1,3-diamine; chloride ligand; trans–anti conformation; chromium(III) complex; dichromate anion; hydrogen bonding; synchrotron radiation.
CCDC reference: 1498083
1. Chemical context
Propane-1,3-diamine (tn) can act as a bidentate ligand to a central metal ion via its two nitrogen atoms, forming a six-membered ring. The [CrL2(tn)2]+ (L = monodentate ligand) cation can adopt either trans or cis geometric isomers. In addition, there are two possible conformations with respect to the six-membered rings in the trans-isomer. The carbon atoms of the two chelate rings of the tn ligands can be located on the same side (syn conformer) or on opposite side (anti conformer) of the equatorial plane (Choi et al., 2012). The preference for syn- or anti-conformation in the complex cation is an area of current interest because infrared or electronic absorption spectroscopic methods are not useful in determining the syn or anti conformations of the six-membered chelate rings in these transition metal complexes. The different arrangements of the two six-membered chelate rings of the tn ligands may be dependent on the packing forces and counter-anions in the crystal structure.
The shapes and sizes of counter-anions also play important roles in chemical, biological and environmental processes (Gadre et al., 1992; Fabbrizzi & Poggi, 2013; Santos-Figueroa et al., 2013). The dichromate ion is environmentally important due to its high toxicity and its use in industrial processes (Yusof & Malek, 2009; Goyal et al., 2003). Here, we report on the synthesis and structure of [CrCl2(tn)2]2(Cr2O7), (I), in order to determine the conformations of the two six-membered chelate rings of the tn ligands and of the [Cr2O7]2− anion.
2. Structural commentary
The structure of (I) shows another example of a trans-[CrCl2(tn)2]+ cation but with a different counter-anion (Kou et al., 2001; Choi & Clegg, 2011; Moon et al., 2012). The comprises one CrIII complex cation and half a [Cr2O7]2− anion, the other half being completed by inversion symmetry. In the complex cation, the four nitrogen atoms of the two tn ligands occupy the equatorial sites and two chlorine atoms coordinate to the Cr metal centre in a trans configuration. The CrIII complex cation and the anion in the title compound are depicted in Fig. 1. The two six-membered rings involving the tn ligands have stable chair conformations. The two chelate rings in the CrIII complex cation adopt the anti chair–chair conformation with respect to each other. The Cr—N(tn) bond lengths [range 2.0814 (19) to 2.1020 (19) Å] are in good agreement with the distances found in trans-[CrCl2(tn)2]ClO4 (Choi & Clegg, 2011) or trans-[CrCl2(tn)2]2ZnCl4 (Moon et al. 2012). As expected, the average Cr—Cl distance of 2.320 (2) Å is longer than that of Cr—F found in trans-[CrF2(tn)2]ClO4 (2.085 (4) Å; Vaughn & Rogers, 1985), and slightly shorter than of Cr—Br found in trans-[CrBr2(tn)2]ClO4 [2.4681 (4) Å; Choi et al., 2012]. The bond angles of the two six-membered chelate rings around the CrIII atom are 90.07 (8) and 91.25 (8)°. The other N—C and C—C bond lengths and Cr—N—C, N—C—C and C—C—C angles are also of usual values for tn ligands in chair conformations (Choi & Clegg, 2011; Moon et al., 2012). The [Cr2O7]2− counter-anion is positionally disordered and remains outside the coordination sphere of the CrIII cation. It is of interest to compare the conformation of the [Cr2O7]2− anion with that found in other ionic crystals. The [Cr2O7]2− anion in compound (I) is in a in contrast to that observed in K2Cr2O7. In the latter, two nearly tetrahedral CrO4 groups are in an almost eclipsed conformation (Brandon & Brown, 1968), when viewed along the backbone of the dichromate anion. In (I), the O—Cr2—O bond angles of the major disordered component range from 102.3 (2) to 122.2 (8), while the terminal Cr2—O bond lengths vary from 1.554 (3) to 1.639 (4) Å, with a mean terminal Cr2—O bond length of 1.60 (4) Å. The bridging Cr2—O1SA bond has a length of 1.729 (15) Å, with a Cr2—O2S—Cr2 bond angle of 160.1 (4) Å. These values are comparable to those reported for [Cr(urea)6](Cr2O7)Br·H2O (Moon et al., 2015). A further distortion of the anion is due to its involvement in hydrogen-bonding interactions.
3. Supramolecular features
The cations and anions in the ) between the NH2 donor groups of the tn ligand and Cl ligands and O atoms of the dichromate anion as acceptor groups. An extensive array of these contacts generate a three-dimensional network of molecules stacked along the a-axis direction (Fig. 2).
are held together by hydrogen bonds (Table 14. Database survey
A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016) indicates a total of 17 hits for CrIII complexes containing two bidentate propane-1,3-diamine ligands. The crystal structures of trans-[CrCl2(tn)2]ClO4 (Choi & Clegg, 2011), trans-[CrCl2(tn)2]2ZnCl4 (Moon et al., 2012) and trans-[CrCl2(tn)2]3[Fe(CN)6]·6H2O (Kou et al., 2001) have been reported previously. However, no structure of trans-[CrCl2(tn)2]+ with the [Cr2O7]2− anion has been deposited.
5. Synthesis and crystallization
The free ligand propane-1,3-diamine was obtained from Aldrich Chemical Co. and used as supplied. All other chemicals were reagent grade materials and used without further purification. As starting materials, trans-[CrCl2(tn)2]ClO4 was prepared as described in the literature (House, 1970; Choi & Clegg, 2011). The crude perchlorate salt (0.117 g) was dissolved in 10 mL of water at room temperature and added 5 mL of water containing 0.05 g of solid K2Cr2O7. The resulting solution was filtered and allowed to stand for two days to give green crystals of the dichromate salt suitable for X-ray structural analysis.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.97 Å, and N—H distances of 0.89 Å, and with Uiso(H) values of 1.2Ueq of the parent atoms. The dichromate anion is positionally disordered over two sets of sites. In a first step, the occupancies of respective pairs, O1SA/O1SB, O2SA/O2SB, O3SA/O3SB and O4SA/O4SB, were refined freely and subsequently fixed at a ratio of 0.7:0.3. The bridging atoms O1SA/O1SB sites were refined using EXYZ/EADP commands; for O3SA, O2SB, O3SB and O4SB atoms ISOR restraints were applied.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1498083
https://doi.org/10.1107/S2056989016012755/wm5308sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016012755/wm5308Isup2.hkl
Data collection: PAL BL2D-SMDC Program (Shin et al., 2016); cell
HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).[CrCl2(C3H10N2)2]2[Cr2O7] | F(000) = 776 |
Mr = 758.32 | Dx = 1.738 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.610 Å |
a = 6.5240 (13) Å | Cell parameters from 48108 reflections |
b = 17.350 (4) Å | θ = 0.4–33.7° |
c = 12.901 (3) Å | µ = 1.22 mm−1 |
β = 97.18 (3)° | T = 253 K |
V = 1448.8 (5) Å3 | Plate, green |
Z = 2 | 0.13 × 0.10 × 0.09 mm |
ADSC Q210 CCD area detector diffractometer | 3059 reflections with I > 2σ(I) |
Radiation source: PLSII 2D bending magnet | Rint = 0.019 |
ω scan | θmax = 24.0°, θmin = 1.7° |
Absorption correction: empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997) | h = −8→8 |
Tmin = 0.862, Tmax = 0.897 | k = −23→23 |
13070 measured reflections | l = −16→16 |
3438 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0617P)2 + 0.9892P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.105 | (Δ/σ)max = 0.001 |
S = 1.10 | Δρmax = 0.67 e Å−3 |
3438 reflections | Δρmin = −0.96 e Å−3 |
192 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
24 restraints | Extinction coefficient: 0.025 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cr1 | 0.49736 (4) | 0.22092 (2) | 0.64090 (2) | 0.01917 (12) | |
Cl1 | 0.74178 (8) | 0.17096 (3) | 0.54341 (5) | 0.03402 (16) | |
Cl2 | 0.26188 (9) | 0.27054 (4) | 0.74422 (5) | 0.04056 (18) | |
N1 | 0.4818 (3) | 0.11569 (11) | 0.71701 (16) | 0.0333 (4) | |
H1A | 0.6004 | 0.1094 | 0.7584 | 0.040* | |
H1B | 0.3827 | 0.1194 | 0.7583 | 0.040* | |
N2 | 0.2575 (3) | 0.18582 (11) | 0.52655 (15) | 0.0281 (4) | |
H2A | 0.1386 | 0.1968 | 0.5504 | 0.034* | |
H2B | 0.2639 | 0.2150 | 0.4704 | 0.034* | |
N3 | 0.5108 (4) | 0.32459 (11) | 0.56009 (17) | 0.0355 (4) | |
H3A | 0.5997 | 0.3180 | 0.5138 | 0.043* | |
H3B | 0.3871 | 0.3320 | 0.5238 | 0.043* | |
N4 | 0.7385 (3) | 0.25541 (12) | 0.75231 (14) | 0.0288 (4) | |
H4A | 0.7266 | 0.2293 | 0.8107 | 0.035* | |
H4B | 0.8559 | 0.2404 | 0.7301 | 0.035* | |
C1 | 0.4434 (4) | 0.04454 (13) | 0.6542 (2) | 0.0386 (5) | |
H1C | 0.4386 | 0.0009 | 0.7008 | 0.046* | |
H1D | 0.5571 | 0.0364 | 0.6137 | 0.046* | |
C2 | 0.2426 (4) | 0.04817 (15) | 0.5807 (2) | 0.0420 (6) | |
H2C | 0.2113 | −0.0029 | 0.5524 | 0.050* | |
H2D | 0.1319 | 0.0629 | 0.6204 | 0.050* | |
C3 | 0.2471 (4) | 0.10400 (14) | 0.4914 (2) | 0.0355 (5) | |
H3C | 0.3660 | 0.0928 | 0.4557 | 0.043* | |
H3D | 0.1241 | 0.0967 | 0.4418 | 0.043* | |
C4 | 0.5687 (5) | 0.39723 (14) | 0.6173 (2) | 0.0429 (6) | |
H4C | 0.4614 | 0.4110 | 0.6596 | 0.051* | |
H4D | 0.5799 | 0.4385 | 0.5676 | 0.051* | |
C5 | 0.7716 (4) | 0.38861 (15) | 0.6867 (2) | 0.0419 (6) | |
H5A | 0.8729 | 0.3674 | 0.6456 | 0.050* | |
H5B | 0.8194 | 0.4393 | 0.7104 | 0.050* | |
C6 | 0.7610 (4) | 0.33802 (15) | 0.78056 (19) | 0.0366 (5) | |
H6A | 0.8857 | 0.3449 | 0.8291 | 0.044* | |
H6B | 0.6446 | 0.3538 | 0.8156 | 0.044* | |
Cr2 | 1.00840 (7) | 0.57351 (2) | 0.59016 (4) | 0.03941 (15) | |
O1SA | 1.0285 (19) | 0.4915 (6) | 0.5165 (9) | 0.064 (2) | 0.35 |
O2SA | 0.7745 (6) | 0.5919 (3) | 0.6061 (3) | 0.0760 (12) | 0.7 |
O3SA | 1.1407 (11) | 0.6446 (3) | 0.5675 (4) | 0.099 (2) | 0.7 |
O4SA | 1.1024 (7) | 0.5391 (3) | 0.7046 (3) | 0.0930 (16) | 0.7 |
O1SB | 1.0285 (19) | 0.4915 (6) | 0.5165 (9) | 0.064 (2) | 0.15 |
O2SB | 0.937 (2) | 0.6545 (9) | 0.5161 (12) | 0.112 (4) | 0.3 |
O3SB | 0.932 (3) | 0.5716 (9) | 0.6899 (13) | 0.118 (4) | 0.3 |
O4SB | 1.239 (2) | 0.6098 (8) | 0.5919 (11) | 0.089 (4) | 0.3 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr1 | 0.01447 (17) | 0.02308 (18) | 0.0206 (2) | −0.00022 (10) | 0.00483 (11) | 0.00014 (11) |
Cl1 | 0.0215 (3) | 0.0465 (3) | 0.0364 (3) | −0.0014 (2) | 0.0128 (2) | −0.0111 (2) |
Cl2 | 0.0256 (3) | 0.0509 (4) | 0.0486 (4) | −0.0003 (2) | 0.0181 (2) | −0.0147 (3) |
N1 | 0.0381 (11) | 0.0329 (9) | 0.0292 (10) | −0.0018 (8) | 0.0055 (8) | 0.0069 (7) |
N2 | 0.0188 (8) | 0.0314 (9) | 0.0331 (10) | 0.0013 (7) | −0.0005 (7) | −0.0009 (7) |
N3 | 0.0473 (12) | 0.0274 (9) | 0.0316 (11) | −0.0024 (8) | 0.0036 (8) | 0.0026 (7) |
N4 | 0.0233 (8) | 0.0405 (10) | 0.0225 (9) | −0.0040 (7) | 0.0022 (6) | −0.0018 (7) |
C1 | 0.0441 (14) | 0.0248 (10) | 0.0466 (15) | 0.0000 (9) | 0.0042 (11) | 0.0077 (9) |
C2 | 0.0361 (13) | 0.0321 (12) | 0.0574 (17) | −0.0112 (10) | 0.0040 (11) | −0.0004 (11) |
C3 | 0.0301 (11) | 0.0350 (11) | 0.0392 (13) | −0.0029 (9) | −0.0040 (9) | −0.0075 (9) |
C4 | 0.0559 (16) | 0.0247 (11) | 0.0493 (16) | −0.0052 (10) | 0.0117 (12) | −0.0018 (10) |
C5 | 0.0447 (14) | 0.0348 (12) | 0.0488 (16) | −0.0144 (10) | 0.0165 (11) | −0.0086 (10) |
C6 | 0.0339 (12) | 0.0461 (13) | 0.0306 (13) | −0.0121 (10) | 0.0081 (9) | −0.0142 (10) |
Cr2 | 0.0402 (3) | 0.0366 (2) | 0.0431 (3) | −0.00926 (16) | 0.01182 (18) | −0.01372 (16) |
O1SA | 0.072 (7) | 0.044 (5) | 0.074 (7) | 0.000 (3) | 0.000 (4) | −0.029 (4) |
O2SA | 0.052 (2) | 0.108 (3) | 0.069 (3) | 0.031 (2) | 0.0139 (17) | −0.021 (2) |
O3SA | 0.173 (5) | 0.062 (2) | 0.076 (3) | −0.078 (3) | 0.074 (3) | −0.033 (2) |
O4SA | 0.077 (3) | 0.112 (4) | 0.078 (3) | −0.035 (3) | −0.039 (2) | 0.023 (3) |
O1SB | 0.072 (7) | 0.044 (5) | 0.074 (7) | 0.000 (3) | 0.000 (4) | −0.029 (4) |
O2SB | 0.112 (4) | 0.111 (4) | 0.112 (4) | 0.0009 (10) | 0.0136 (11) | 0.0006 (10) |
O3SB | 0.118 (4) | 0.118 (4) | 0.118 (4) | −0.0005 (10) | 0.0163 (12) | −0.0006 (10) |
O4SB | 0.088 (4) | 0.089 (4) | 0.089 (4) | −0.0013 (10) | 0.0110 (11) | −0.0013 (10) |
Cr1—N1 | 2.0814 (19) | C3—H3C | 0.9700 |
Cr1—N4 | 2.0816 (19) | C3—H3D | 0.9700 |
Cr1—N3 | 2.086 (2) | C4—C5 | 1.509 (4) |
Cr1—N2 | 2.1020 (19) | C4—H4C | 0.9700 |
Cr1—Cl1 | 2.3189 (8) | C4—H4D | 0.9700 |
Cr1—Cl2 | 2.3216 (8) | C5—C6 | 1.504 (4) |
N1—C1 | 1.481 (3) | C5—H5A | 0.9700 |
N1—H1A | 0.8900 | C5—H5B | 0.9700 |
N1—H1B | 0.8900 | C6—H6A | 0.9700 |
N2—C3 | 1.489 (3) | C6—H6B | 0.9700 |
N2—H2A | 0.8900 | Cr2—O3SB | 1.437 (16) |
N2—H2B | 0.8900 | Cr2—O3SA | 1.554 (3) |
N3—C4 | 1.486 (3) | Cr2—O2SA | 1.597 (4) |
N3—H3A | 0.8900 | Cr2—O4SB | 1.629 (14) |
N3—H3B | 0.8900 | Cr2—O4SA | 1.639 (4) |
N4—C6 | 1.482 (3) | Cr2—O1SB | 1.725 (12) |
N4—H4A | 0.8900 | Cr2—O1SA | 1.725 (12) |
N4—H4B | 0.8900 | Cr2—O2SB | 1.729 (15) |
C1—C2 | 1.519 (4) | Cr2—O1SBi | 1.772 (12) |
C1—H1C | 0.9700 | Cr2—O1SAi | 1.772 (12) |
C1—H1D | 0.9700 | O1SA—O1SAi | 0.607 (12) |
C2—C3 | 1.509 (4) | O1SA—Cr2i | 1.772 (12) |
C2—H2C | 0.9700 | O1SB—O1SBi | 0.607 (12) |
C2—H2D | 0.9700 | O1SB—Cr2i | 1.772 (12) |
N1—Cr1—N4 | 90.20 (8) | N2—C3—C2 | 112.6 (2) |
N1—Cr1—N3 | 178.19 (8) | N2—C3—H3C | 109.1 |
N4—Cr1—N3 | 91.25 (8) | C2—C3—H3C | 109.1 |
N1—Cr1—N2 | 90.07 (8) | N2—C3—H3D | 109.1 |
N4—Cr1—N2 | 179.02 (7) | C2—C3—H3D | 109.1 |
N3—Cr1—N2 | 88.46 (8) | H3C—C3—H3D | 107.8 |
N1—Cr1—Cl1 | 90.30 (6) | N3—C4—C5 | 111.1 (2) |
N4—Cr1—Cl1 | 88.31 (6) | N3—C4—H4C | 109.4 |
N3—Cr1—Cl1 | 88.66 (7) | C5—C4—H4C | 109.4 |
N2—Cr1—Cl1 | 90.75 (6) | N3—C4—H4D | 109.4 |
N1—Cr1—Cl2 | 88.84 (6) | C5—C4—H4D | 109.4 |
N4—Cr1—Cl2 | 89.66 (6) | H4C—C4—H4D | 108.0 |
N3—Cr1—Cl2 | 92.26 (7) | C6—C5—C4 | 114.2 (2) |
N2—Cr1—Cl2 | 91.29 (6) | C6—C5—H5A | 108.7 |
Cl1—Cr1—Cl2 | 177.79 (3) | C4—C5—H5A | 108.7 |
C1—N1—Cr1 | 119.21 (15) | C6—C5—H5B | 108.7 |
C1—N1—H1A | 107.5 | C4—C5—H5B | 108.7 |
Cr1—N1—H1A | 107.5 | H5A—C5—H5B | 107.6 |
C1—N1—H1B | 107.5 | N4—C6—C5 | 112.30 (19) |
Cr1—N1—H1B | 107.5 | N4—C6—H6A | 109.1 |
H1A—N1—H1B | 107.0 | C5—C6—H6A | 109.1 |
C3—N2—Cr1 | 119.45 (14) | N4—C6—H6B | 109.1 |
C3—N2—H2A | 107.5 | C5—C6—H6B | 109.1 |
Cr1—N2—H2A | 107.5 | H6A—C6—H6B | 107.9 |
C3—N2—H2B | 107.5 | O3SA—Cr2—O2SA | 115.3 (3) |
Cr1—N2—H2B | 107.5 | O3SB—Cr2—O4SB | 114.8 (8) |
H2A—N2—H2B | 107.0 | O3SA—Cr2—O4SA | 107.8 (3) |
C4—N3—Cr1 | 120.46 (17) | O2SA—Cr2—O4SA | 102.3 (2) |
C4—N3—H3A | 107.2 | O3SB—Cr2—O1SB | 122.2 (8) |
Cr1—N3—H3A | 107.2 | O4SB—Cr2—O1SB | 101.1 (7) |
C4—N3—H3B | 107.2 | O3SA—Cr2—O1SA | 118.0 (6) |
Cr1—N3—H3B | 107.2 | O2SA—Cr2—O1SA | 112.0 (5) |
H3A—N3—H3B | 106.8 | O4SA—Cr2—O1SA | 98.6 (3) |
C6—N4—Cr1 | 119.42 (15) | O3SB—Cr2—O2SB | 114.5 (8) |
C6—N4—H4A | 107.5 | O4SB—Cr2—O2SB | 82.9 (7) |
Cr1—N4—H4A | 107.5 | O1SB—Cr2—O2SB | 113.6 (6) |
C6—N4—H4B | 107.5 | O3SB—Cr2—O1SBi | 130.7 (8) |
Cr1—N4—H4B | 107.5 | O4SB—Cr2—O1SBi | 107.0 (7) |
H4A—N4—H4B | 107.0 | O1SB—Cr2—O1SBi | 19.9 (4) |
N1—C1—C2 | 112.4 (2) | O2SB—Cr2—O1SBi | 95.0 (6) |
N1—C1—H1C | 109.1 | O3SA—Cr2—O1SAi | 112.5 (5) |
C2—C1—H1C | 109.1 | O2SA—Cr2—O1SAi | 100.8 (5) |
N1—C1—H1D | 109.1 | O4SA—Cr2—O1SAi | 117.9 (3) |
C2—C1—H1D | 109.1 | O1SA—Cr2—O1SAi | 19.9 (4) |
H1C—C1—H1D | 107.9 | O1SAi—O1SA—Cr2 | 84 (2) |
C3—C2—C1 | 113.9 (2) | O1SAi—O1SA—Cr2i | 76 (2) |
C3—C2—H2C | 108.8 | Cr2—O1SA—Cr2i | 160.1 (4) |
C1—C2—H2C | 108.8 | O1SBi—O1SB—Cr2 | 84 (2) |
C3—C2—H2D | 108.8 | O1SBi—O1SB—Cr2i | 76 (2) |
C1—C2—H2D | 108.8 | Cr2—O1SB—Cr2i | 160.1 (4) |
H2C—C2—H2D | 107.7 | ||
Cr1—N1—C1—C2 | −58.0 (3) | O3SA—Cr2—O1SA—Cr2i | −79 (3) |
N1—C1—C2—C3 | 69.9 (3) | O2SA—Cr2—O1SA—Cr2i | 59 (3) |
Cr1—N2—C3—C2 | 55.6 (2) | O4SA—Cr2—O1SA—Cr2i | 166 (3) |
C1—C2—C3—N2 | −68.5 (3) | O1SAi—Cr2—O1SA—Cr2i | −0.002 (7) |
Cr1—N3—C4—C5 | 53.7 (3) | O3SB—Cr2—O1SB—O1SBi | 122 (3) |
N3—C4—C5—C6 | −71.0 (3) | O4SB—Cr2—O1SB—O1SBi | −109 (3) |
Cr1—N4—C6—C5 | −54.5 (2) | O2SB—Cr2—O1SB—O1SBi | −22 (3) |
C4—C5—C6—N4 | 72.2 (3) | O3SB—Cr2—O1SB—Cr2i | 122 (3) |
O3SA—Cr2—O1SA—O1SAi | −79 (3) | O4SB—Cr2—O1SB—Cr2i | −109 (3) |
O2SA—Cr2—O1SA—O1SAi | 59 (3) | O2SB—Cr2—O1SB—Cr2i | −22 (3) |
O4SA—Cr2—O1SA—O1SAi | 166 (3) | O1SBi—Cr2—O1SB—Cr2i | −0.002 (7) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4SAii | 0.89 | 2.29 | 3.076 (4) | 147 |
N1—H1A···O4SBii | 0.89 | 2.08 | 2.877 (14) | 149 |
N1—H1B···O2SAiii | 0.89 | 2.19 | 3.022 (4) | 156 |
N1—H1B···O3SBiii | 0.89 | 2.39 | 3.182 (16) | 149 |
N2—H2A···Cl1iv | 0.89 | 2.62 | 3.4085 (19) | 149 |
N2—H2B···O2SBv | 0.89 | 2.63 | 3.070 (15) | 111 |
N3—H3A···O3SAi | 0.89 | 2.20 | 3.017 (5) | 153 |
N3—H3A···O4SBi | 0.89 | 2.21 | 2.933 (14) | 138 |
N3—H3B···O2SAv | 0.89 | 2.28 | 3.027 (5) | 141 |
N3—H3B···O2SBv | 0.89 | 2.13 | 2.989 (16) | 162 |
N4—H4A···O3SAii | 0.89 | 2.25 | 3.044 (4) | 149 |
N4—H4A···O4SBii | 0.89 | 2.42 | 3.220 (14) | 150 |
N4—H4B···Cl2vi | 0.89 | 2.68 | 3.439 (2) | 143 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, y−1/2, −z+3/2; (iii) −x+1, y−1/2, −z+3/2; (iv) x−1, y, z; (v) −x+1, −y+1, −z+1; (vi) x+1, y, z. |
Acknowledgements
This work was supported by a grant from the 2016 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.
References
Brandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933–941. CrossRef CAS Google Scholar
Choi, J.-H. & Clegg, W. (2011). Acta Cryst. E67, m381. Web of Science CSD CrossRef IUCr Journals Google Scholar
Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012). Z. Anorg. Allg. Chem. 638, 433–437. Web of Science CSD CrossRef CAS Google Scholar
Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699. Web of Science CrossRef CAS PubMed Google Scholar
Gadre, S. R., Koelmel, C. & Shrivastava, I. H. (1992). Inorg. Chem. 31, 2279–2281. CrossRef CAS Web of Science Google Scholar
Goyal, N., Jain, S. C. & Banerjee, U. C. (2003). Adv. Environ. Res. 7, 311–319. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
House, D. A. (1970). Inorg. Nucl. Chem. Lett. 6, 741–746. CrossRef CAS Web of Science Google Scholar
Kou, H.-Z., Gao, D.-Z., Bu, W.-M., Fan, Y.-G., Liao, D.-Z., Cheng, P., Jiang, Z., Yan, S.-P., Wang, G.-L., Li, T.-J. & Tang, J.-K. (2001). Transition Met. Chem. 26, 457–460. Web of Science CSD CrossRef CAS Google Scholar
Moon, D., Subhan, M. A. & Choi, J.-H. (2012). Acta Cryst. E68, m832. CSD CrossRef IUCr Journals Google Scholar
Moon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015). Acta Cryst. E71, 1336–1339. Web of Science CSD CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press. Google Scholar
Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Santos-Figueroa, L. E., Moragues, M. E., Climent, E., Agostini, A., Martínez-Máñez, R. & Sancenón, F. (2013). Chem. Soc. Rev. 42, 3489–3613. Web of Science CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. Web of Science CrossRef IUCr Journals Google Scholar
Vaughn, J. W. & Rogers, R. D. (1985). J. Crystallogr. Spectrosc. Res. 15, 281–287. CSD CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019–1024. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.