research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[trans-di­chlorido­bis­(propane-1,3-di­amine-κ2N,N′)chromium(III)] dichromate from synchrotron data

CROSSMARK_Color_square_no_text.svg

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 July 2016; accepted 8 August 2016; online 12 August 2016)

The structure of the title compound, [CrCl2(tn)2]2[Cr2O7] (tn = propane-1,3-di­amine; C3H10N2), has been determined from synchrotron data. The asymmetric unit contains one CrIII complex cation and half a [Cr2O7]2− anion. In the complex cation, the CrIII ion is coordinated by the four N atoms of two propane-1,3-di­amine (tn) ligands in the equatorial plane and by two Cl atoms in a trans configuration, displaying a distorted octa­hedral coordination sphere. The two six-membered rings in the complex cation have an anti chair–chair conformation with respect to each other. The mean Cr—N(tn) and Cr—Cl bond lengths are 2.09 (1) and 2.320 (2) Å, respectively. The slightly bent dichromate anion is disordered over two sets of sites (occupancy ratio = 0.7:0.3) and has a staggered conformation. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the NH2 groups of the tn ligands as donors and the O atoms of the [Cr2O7]2− anion and chlorido ligands as acceptors.

1. Chemical context

Propane-1,3-di­amine (tn) can act as a bidentate ligand to a central metal ion via its two nitro­gen atoms, forming a six-membered ring. The [CrL2(tn)2]+ (L = monodentate ligand) cation can adopt either trans or cis geometric isomers. In addition, there are two possible conformations with respect to the six-membered rings in the trans-isomer. The carbon atoms of the two chelate rings of the tn ligands can be located on the same side (syn conformer) or on opposite side (anti conformer) of the equatorial plane (Choi et al., 2012[Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012). Z. Anorg. Allg. Chem. 638, 433-437.]). The preference for syn- or anti-conformation in the complex cation is an area of current inter­est because infrared or electronic absorption spectroscopic methods are not useful in determining the syn or anti conformations of the six-membered chelate rings in these transition metal complexes. The different arrangements of the two six-membered chelate rings of the tn ligands may be dependent on the packing forces and counter-anions in the crystal structure.

[Scheme 1]

The shapes and sizes of counter-anions also play important roles in chemical, biological and environmental processes (Gadre et al., 1992[Gadre, S. R., Koelmel, C. & Shrivastava, I. H. (1992). Inorg. Chem. 31, 2279-2281.]; Fabbrizzi & Poggi, 2013[Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681-1699.]; Santos-Figueroa et al., 2013[Santos-Figueroa, L. E., Moragues, M. E., Climent, E., Agostini, A., Martínez-Máñez, R. & Sancenón, F. (2013). Chem. Soc. Rev. 42, 3489-3613.]). The dichromate ion is environmentally important due to its high toxicity and its use in industrial processes (Yusof & Malek, 2009[Yusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019-1024.]; Goyal et al., 2003[Goyal, N., Jain, S. C. & Banerjee, U. C. (2003). Adv. Environ. Res. 7, 311-319.]). Here, we report on the synthesis and structure of [CrCl2(tn)2]2(Cr2O7), (I)[link], in order to determine the conformations of the two six-membered chelate rings of the tn ligands and of the [Cr2O7]2− anion.

2. Structural commentary

The structure of (I)[link] shows another example of a trans-[CrCl2(tn)2]+ cation but with a different counter-anion (Kou et al., 2001[Kou, H.-Z., Gao, D.-Z., Bu, W.-M., Fan, Y.-G., Liao, D.-Z., Cheng, P., Jiang, Z., Yan, S.-P., Wang, G.-L., Li, T.-J. & Tang, J.-K. (2001). Transition Met. Chem. 26, 457-460.]; Choi & Clegg, 2011[Choi, J.-H. & Clegg, W. (2011). Acta Cryst. E67, m381.]; Moon et al., 2012[Moon, D., Subhan, M. A. & Choi, J.-H. (2012). Acta Cryst. E68, m832.]). The asymmetric unit comprises one CrIII complex cation and half a [Cr2O7]2− anion, the other half being completed by inversion symmetry. In the complex cation, the four nitro­gen atoms of the two tn ligands occupy the equatorial sites and two chlorine atoms coordinate to the Cr metal centre in a trans configuration. The CrIII complex cation and the anion in the title compound are depicted in Fig. 1[link]. The two six-membered rings involving the tn ligands have stable chair conformations. The two chelate rings in the CrIII complex cation adopt the anti chair–chair conformation with respect to each other. The Cr—N(tn) bond lengths [range 2.0814 (19) to 2.1020 (19) Å] are in good agreement with the distances found in trans-[CrCl2(tn)2]ClO4 (Choi & Clegg, 2011[Choi, J.-H. & Clegg, W. (2011). Acta Cryst. E67, m381.]) or trans-[CrCl2(tn)2]2ZnCl4 (Moon et al. 2012[Moon, D., Subhan, M. A. & Choi, J.-H. (2012). Acta Cryst. E68, m832.]). As expected, the average Cr—Cl distance of 2.320 (2) Å is longer than that of Cr—F found in trans-[CrF2(tn)2]ClO4 (2.085 (4) Å; Vaughn & Rogers, 1985[Vaughn, J. W. & Rogers, R. D. (1985). J. Crystallogr. Spectrosc. Res. 15, 281-287.]), and slightly shorter than of Cr—Br found in trans-[CrBr2(tn)2]ClO4 [2.4681 (4) Å; Choi et al., 2012[Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012). Z. Anorg. Allg. Chem. 638, 433-437.]]. The bond angles of the two six-membered chelate rings around the CrIII atom are 90.07 (8) and 91.25 (8)°. The other N—C and C—C bond lengths and Cr—N—C, N—C—C and C—C—C angles are also of usual values for tn ligands in chair conformations (Choi & Clegg, 2011[Choi, J.-H. & Clegg, W. (2011). Acta Cryst. E67, m381.]; Moon et al., 2012[Moon, D., Subhan, M. A. & Choi, J.-H. (2012). Acta Cryst. E68, m832.]). The [Cr2O7]2− counter-anion is positionally disordered and remains outside the coordination sphere of the CrIII cation. It is of inter­est to compare the conformation of the [Cr2O7]2− anion with that found in other ionic crystals. The [Cr2O7]2− anion in compound (I)[link] is in a staggered conformation, in contrast to that observed in K2Cr2O7. In the latter, two nearly tetra­hedral CrO4 groups are in an almost eclipsed conformation (Brandon & Brown, 1968[Brandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933-941.]), when viewed along the backbone of the dichromate anion. In (I)[link], the O—Cr2—O bond angles of the major disordered component range from 102.3 (2) to 122.2 (8), while the terminal Cr2—O bond lengths vary from 1.554 (3) to 1.639 (4) Å, with a mean terminal Cr2—O bond length of 1.60 (4) Å. The bridging Cr2—O1SA bond has a length of 1.729 (15) Å, with a Cr2—O2S—Cr2 bond angle of 160.1 (4) Å. These values are comparable to those reported for [Cr(urea)6](Cr2O7)Br·H2O (Moon et al., 2015[Moon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015). Acta Cryst. E71, 1336-1339.]). A further distortion of the anion is due to its involvement in hydrogen-bonding inter­actions.

[Figure 1]
Figure 1
A perspective drawing of the complex cation and the anion with displacement ellipsoids at the 30% probability level. The primed atoms are related by symmetry code (−x + 2, −y + 1, −z + 1). Atoms of the minor disorder component have been omitted for clarity.

3. Supra­molecular features

The cations and anions in the crystal structure are held tog­ether by hydrogen bonds (Table 1[link]) between the NH2 donor groups of the tn ligand and Cl ligands and O atoms of the dichromate anion as acceptor groups. An extensive array of these contacts generate a three-dimensional network of mol­ecules stacked along the a-axis direction (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4SAi 0.89 2.29 3.076 (4) 147
N1—H1A⋯O4SBi 0.89 2.08 2.877 (14) 149
N1—H1B⋯O2SAii 0.89 2.19 3.022 (4) 156
N1—H1B⋯O3SBii 0.89 2.39 3.182 (16) 149
N2—H2A⋯Cl1iii 0.89 2.62 3.4085 (19) 149
N2—H2B⋯O2SBiv 0.89 2.63 3.070 (15) 111
N3—H3A⋯O3SAv 0.89 2.20 3.017 (5) 153
N3—H3A⋯O4SBv 0.89 2.21 2.933 (14) 138
N3—H3B⋯O2SAiv 0.89 2.28 3.027 (5) 141
N3—H3B⋯O2SBiv 0.89 2.13 2.989 (16) 162
N4—H4A⋯O3SAi 0.89 2.25 3.044 (4) 149
N4—H4A⋯O4SBi 0.89 2.42 3.220 (14) 150
N4—H4B⋯Cl2vi 0.89 2.68 3.439 (2) 143
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1; (v) -x+2, -y+1, -z+1; (vi) x+1, y, z.
[Figure 2]
Figure 2
The crystal packing of complex (I)[link], viewed along the a-axis direction. Dashed lines represent N—H⋯O (pink) and N—H⋯Cl (cyan) hydrogen-bonding inter­actions.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicates a total of 17 hits for CrIII complexes containing two bidentate propane-1,3-di­amine ligands. The crystal structures of trans-[CrCl2(tn)2]ClO4 (Choi & Clegg, 2011[Choi, J.-H. & Clegg, W. (2011). Acta Cryst. E67, m381.]), trans-[CrCl2(tn)2]2ZnCl4 (Moon et al., 2012[Moon, D., Subhan, M. A. & Choi, J.-H. (2012). Acta Cryst. E68, m832.]) and trans-[CrCl2(tn)2]3[Fe(CN)6]·6H2O (Kou et al., 2001[Kou, H.-Z., Gao, D.-Z., Bu, W.-M., Fan, Y.-G., Liao, D.-Z., Cheng, P., Jiang, Z., Yan, S.-P., Wang, G.-L., Li, T.-J. & Tang, J.-K. (2001). Transition Met. Chem. 26, 457-460.]) have been reported previously. However, no structure of trans-[CrCl2(tn)2]+ with the [Cr2O7]2− anion has been deposited.

5. Synthesis and crystallization

The free ligand propane-1,3-di­amine was obtained from Aldrich Chemical Co. and used as supplied. All other chemicals were reagent grade materials and used without further purification. As starting materials, trans-[CrCl2(tn)2]ClO4 was prepared as described in the literature (House, 1970[House, D. A. (1970). Inorg. Nucl. Chem. Lett. 6, 741-746.]; Choi & Clegg, 2011[Choi, J.-H. & Clegg, W. (2011). Acta Cryst. E67, m381.]). The crude perchlorate salt (0.117 g) was dissolved in 10 mL of water at room temperature and added 5 mL of water containing 0.05 g of solid K2Cr2O7. The resulting solution was filtered and allowed to stand for two days to give green crystals of the dichromate salt suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.97 Å, and N—H distances of 0.89 Å, and with Uiso(H) values of 1.2Ueq of the parent atoms. The dichromate anion is positionally disordered over two sets of sites. In a first step, the occupancies of respective pairs, O1SA/O1SB, O2SA/O2SB, O3SA/O3SB and O4SA/O4SB, were refined freely and subsequently fixed at a ratio of 0.7:0.3. The bridging atoms O1SA/O1SB sites were refined using EXYZ/EADP commands; for O3SA, O2SB, O3SB and O4SB atoms ISOR restraints were applied.

Table 2
Experimental details

Crystal data
Chemical formula [CrCl2(C3H10N2)2]2[Cr2O7]
Mr 758.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 253
a, b, c (Å) 6.5240 (13), 17.350 (4), 12.901 (3)
β (°) 97.18 (3)
V3) 1448.8 (5)
Z 2
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 1.22
Crystal size (mm) 0.13 × 0.10 × 0.09
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.862, 0.897
No. of measured, independent and observed [I > 2σ(I)] reflections 13070, 3438, 3059
Rint 0.019
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.10
No. of reflections 3438
No. of parameters 192
No. of restraints 24
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.67, −0.96
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND 4 (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC Program (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[trans-dichloridobis(propane-1,3-diamine-κ2N,N')chromium(III)]dichromate top
Crystal data top
[CrCl2(C3H10N2)2]2[Cr2O7]F(000) = 776
Mr = 758.32Dx = 1.738 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.610 Å
a = 6.5240 (13) ÅCell parameters from 48108 reflections
b = 17.350 (4) Åθ = 0.4–33.7°
c = 12.901 (3) ŵ = 1.22 mm1
β = 97.18 (3)°T = 253 K
V = 1448.8 (5) Å3Plate, green
Z = 20.13 × 0.10 × 0.09 mm
Data collection top
ADSC Q210 CCD area detector
diffractometer
3059 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.019
ω scanθmax = 24.0°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 88
Tmin = 0.862, Tmax = 0.897k = 2323
13070 measured reflectionsl = 1616
3438 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0617P)2 + 0.9892P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.67 e Å3
3438 reflectionsΔρmin = 0.96 e Å3
192 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
24 restraintsExtinction coefficient: 0.025 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.49736 (4)0.22092 (2)0.64090 (2)0.01917 (12)
Cl10.74178 (8)0.17096 (3)0.54341 (5)0.03402 (16)
Cl20.26188 (9)0.27054 (4)0.74422 (5)0.04056 (18)
N10.4818 (3)0.11569 (11)0.71701 (16)0.0333 (4)
H1A0.60040.10940.75840.040*
H1B0.38270.11940.75830.040*
N20.2575 (3)0.18582 (11)0.52655 (15)0.0281 (4)
H2A0.13860.19680.55040.034*
H2B0.26390.21500.47040.034*
N30.5108 (4)0.32459 (11)0.56009 (17)0.0355 (4)
H3A0.59970.31800.51380.043*
H3B0.38710.33200.52380.043*
N40.7385 (3)0.25541 (12)0.75231 (14)0.0288 (4)
H4A0.72660.22930.81070.035*
H4B0.85590.24040.73010.035*
C10.4434 (4)0.04454 (13)0.6542 (2)0.0386 (5)
H1C0.43860.00090.70080.046*
H1D0.55710.03640.61370.046*
C20.2426 (4)0.04817 (15)0.5807 (2)0.0420 (6)
H2C0.21130.00290.55240.050*
H2D0.13190.06290.62040.050*
C30.2471 (4)0.10400 (14)0.4914 (2)0.0355 (5)
H3C0.36600.09280.45570.043*
H3D0.12410.09670.44180.043*
C40.5687 (5)0.39723 (14)0.6173 (2)0.0429 (6)
H4C0.46140.41100.65960.051*
H4D0.57990.43850.56760.051*
C50.7716 (4)0.38861 (15)0.6867 (2)0.0419 (6)
H5A0.87290.36740.64560.050*
H5B0.81940.43930.71040.050*
C60.7610 (4)0.33802 (15)0.78056 (19)0.0366 (5)
H6A0.88570.34490.82910.044*
H6B0.64460.35380.81560.044*
Cr21.00840 (7)0.57351 (2)0.59016 (4)0.03941 (15)
O1SA1.0285 (19)0.4915 (6)0.5165 (9)0.064 (2)0.35
O2SA0.7745 (6)0.5919 (3)0.6061 (3)0.0760 (12)0.7
O3SA1.1407 (11)0.6446 (3)0.5675 (4)0.099 (2)0.7
O4SA1.1024 (7)0.5391 (3)0.7046 (3)0.0930 (16)0.7
O1SB1.0285 (19)0.4915 (6)0.5165 (9)0.064 (2)0.15
O2SB0.937 (2)0.6545 (9)0.5161 (12)0.112 (4)0.3
O3SB0.932 (3)0.5716 (9)0.6899 (13)0.118 (4)0.3
O4SB1.239 (2)0.6098 (8)0.5919 (11)0.089 (4)0.3
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.01447 (17)0.02308 (18)0.0206 (2)0.00022 (10)0.00483 (11)0.00014 (11)
Cl10.0215 (3)0.0465 (3)0.0364 (3)0.0014 (2)0.0128 (2)0.0111 (2)
Cl20.0256 (3)0.0509 (4)0.0486 (4)0.0003 (2)0.0181 (2)0.0147 (3)
N10.0381 (11)0.0329 (9)0.0292 (10)0.0018 (8)0.0055 (8)0.0069 (7)
N20.0188 (8)0.0314 (9)0.0331 (10)0.0013 (7)0.0005 (7)0.0009 (7)
N30.0473 (12)0.0274 (9)0.0316 (11)0.0024 (8)0.0036 (8)0.0026 (7)
N40.0233 (8)0.0405 (10)0.0225 (9)0.0040 (7)0.0022 (6)0.0018 (7)
C10.0441 (14)0.0248 (10)0.0466 (15)0.0000 (9)0.0042 (11)0.0077 (9)
C20.0361 (13)0.0321 (12)0.0574 (17)0.0112 (10)0.0040 (11)0.0004 (11)
C30.0301 (11)0.0350 (11)0.0392 (13)0.0029 (9)0.0040 (9)0.0075 (9)
C40.0559 (16)0.0247 (11)0.0493 (16)0.0052 (10)0.0117 (12)0.0018 (10)
C50.0447 (14)0.0348 (12)0.0488 (16)0.0144 (10)0.0165 (11)0.0086 (10)
C60.0339 (12)0.0461 (13)0.0306 (13)0.0121 (10)0.0081 (9)0.0142 (10)
Cr20.0402 (3)0.0366 (2)0.0431 (3)0.00926 (16)0.01182 (18)0.01372 (16)
O1SA0.072 (7)0.044 (5)0.074 (7)0.000 (3)0.000 (4)0.029 (4)
O2SA0.052 (2)0.108 (3)0.069 (3)0.031 (2)0.0139 (17)0.021 (2)
O3SA0.173 (5)0.062 (2)0.076 (3)0.078 (3)0.074 (3)0.033 (2)
O4SA0.077 (3)0.112 (4)0.078 (3)0.035 (3)0.039 (2)0.023 (3)
O1SB0.072 (7)0.044 (5)0.074 (7)0.000 (3)0.000 (4)0.029 (4)
O2SB0.112 (4)0.111 (4)0.112 (4)0.0009 (10)0.0136 (11)0.0006 (10)
O3SB0.118 (4)0.118 (4)0.118 (4)0.0005 (10)0.0163 (12)0.0006 (10)
O4SB0.088 (4)0.089 (4)0.089 (4)0.0013 (10)0.0110 (11)0.0013 (10)
Geometric parameters (Å, º) top
Cr1—N12.0814 (19)C3—H3C0.9700
Cr1—N42.0816 (19)C3—H3D0.9700
Cr1—N32.086 (2)C4—C51.509 (4)
Cr1—N22.1020 (19)C4—H4C0.9700
Cr1—Cl12.3189 (8)C4—H4D0.9700
Cr1—Cl22.3216 (8)C5—C61.504 (4)
N1—C11.481 (3)C5—H5A0.9700
N1—H1A0.8900C5—H5B0.9700
N1—H1B0.8900C6—H6A0.9700
N2—C31.489 (3)C6—H6B0.9700
N2—H2A0.8900Cr2—O3SB1.437 (16)
N2—H2B0.8900Cr2—O3SA1.554 (3)
N3—C41.486 (3)Cr2—O2SA1.597 (4)
N3—H3A0.8900Cr2—O4SB1.629 (14)
N3—H3B0.8900Cr2—O4SA1.639 (4)
N4—C61.482 (3)Cr2—O1SB1.725 (12)
N4—H4A0.8900Cr2—O1SA1.725 (12)
N4—H4B0.8900Cr2—O2SB1.729 (15)
C1—C21.519 (4)Cr2—O1SBi1.772 (12)
C1—H1C0.9700Cr2—O1SAi1.772 (12)
C1—H1D0.9700O1SA—O1SAi0.607 (12)
C2—C31.509 (4)O1SA—Cr2i1.772 (12)
C2—H2C0.9700O1SB—O1SBi0.607 (12)
C2—H2D0.9700O1SB—Cr2i1.772 (12)
N1—Cr1—N490.20 (8)N2—C3—C2112.6 (2)
N1—Cr1—N3178.19 (8)N2—C3—H3C109.1
N4—Cr1—N391.25 (8)C2—C3—H3C109.1
N1—Cr1—N290.07 (8)N2—C3—H3D109.1
N4—Cr1—N2179.02 (7)C2—C3—H3D109.1
N3—Cr1—N288.46 (8)H3C—C3—H3D107.8
N1—Cr1—Cl190.30 (6)N3—C4—C5111.1 (2)
N4—Cr1—Cl188.31 (6)N3—C4—H4C109.4
N3—Cr1—Cl188.66 (7)C5—C4—H4C109.4
N2—Cr1—Cl190.75 (6)N3—C4—H4D109.4
N1—Cr1—Cl288.84 (6)C5—C4—H4D109.4
N4—Cr1—Cl289.66 (6)H4C—C4—H4D108.0
N3—Cr1—Cl292.26 (7)C6—C5—C4114.2 (2)
N2—Cr1—Cl291.29 (6)C6—C5—H5A108.7
Cl1—Cr1—Cl2177.79 (3)C4—C5—H5A108.7
C1—N1—Cr1119.21 (15)C6—C5—H5B108.7
C1—N1—H1A107.5C4—C5—H5B108.7
Cr1—N1—H1A107.5H5A—C5—H5B107.6
C1—N1—H1B107.5N4—C6—C5112.30 (19)
Cr1—N1—H1B107.5N4—C6—H6A109.1
H1A—N1—H1B107.0C5—C6—H6A109.1
C3—N2—Cr1119.45 (14)N4—C6—H6B109.1
C3—N2—H2A107.5C5—C6—H6B109.1
Cr1—N2—H2A107.5H6A—C6—H6B107.9
C3—N2—H2B107.5O3SA—Cr2—O2SA115.3 (3)
Cr1—N2—H2B107.5O3SB—Cr2—O4SB114.8 (8)
H2A—N2—H2B107.0O3SA—Cr2—O4SA107.8 (3)
C4—N3—Cr1120.46 (17)O2SA—Cr2—O4SA102.3 (2)
C4—N3—H3A107.2O3SB—Cr2—O1SB122.2 (8)
Cr1—N3—H3A107.2O4SB—Cr2—O1SB101.1 (7)
C4—N3—H3B107.2O3SA—Cr2—O1SA118.0 (6)
Cr1—N3—H3B107.2O2SA—Cr2—O1SA112.0 (5)
H3A—N3—H3B106.8O4SA—Cr2—O1SA98.6 (3)
C6—N4—Cr1119.42 (15)O3SB—Cr2—O2SB114.5 (8)
C6—N4—H4A107.5O4SB—Cr2—O2SB82.9 (7)
Cr1—N4—H4A107.5O1SB—Cr2—O2SB113.6 (6)
C6—N4—H4B107.5O3SB—Cr2—O1SBi130.7 (8)
Cr1—N4—H4B107.5O4SB—Cr2—O1SBi107.0 (7)
H4A—N4—H4B107.0O1SB—Cr2—O1SBi19.9 (4)
N1—C1—C2112.4 (2)O2SB—Cr2—O1SBi95.0 (6)
N1—C1—H1C109.1O3SA—Cr2—O1SAi112.5 (5)
C2—C1—H1C109.1O2SA—Cr2—O1SAi100.8 (5)
N1—C1—H1D109.1O4SA—Cr2—O1SAi117.9 (3)
C2—C1—H1D109.1O1SA—Cr2—O1SAi19.9 (4)
H1C—C1—H1D107.9O1SAi—O1SA—Cr284 (2)
C3—C2—C1113.9 (2)O1SAi—O1SA—Cr2i76 (2)
C3—C2—H2C108.8Cr2—O1SA—Cr2i160.1 (4)
C1—C2—H2C108.8O1SBi—O1SB—Cr284 (2)
C3—C2—H2D108.8O1SBi—O1SB—Cr2i76 (2)
C1—C2—H2D108.8Cr2—O1SB—Cr2i160.1 (4)
H2C—C2—H2D107.7
Cr1—N1—C1—C258.0 (3)O3SA—Cr2—O1SA—Cr2i79 (3)
N1—C1—C2—C369.9 (3)O2SA—Cr2—O1SA—Cr2i59 (3)
Cr1—N2—C3—C255.6 (2)O4SA—Cr2—O1SA—Cr2i166 (3)
C1—C2—C3—N268.5 (3)O1SAi—Cr2—O1SA—Cr2i0.002 (7)
Cr1—N3—C4—C553.7 (3)O3SB—Cr2—O1SB—O1SBi122 (3)
N3—C4—C5—C671.0 (3)O4SB—Cr2—O1SB—O1SBi109 (3)
Cr1—N4—C6—C554.5 (2)O2SB—Cr2—O1SB—O1SBi22 (3)
C4—C5—C6—N472.2 (3)O3SB—Cr2—O1SB—Cr2i122 (3)
O3SA—Cr2—O1SA—O1SAi79 (3)O4SB—Cr2—O1SB—Cr2i109 (3)
O2SA—Cr2—O1SA—O1SAi59 (3)O2SB—Cr2—O1SB—Cr2i22 (3)
O4SA—Cr2—O1SA—O1SAi166 (3)O1SBi—Cr2—O1SB—Cr2i0.002 (7)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4SAii0.892.293.076 (4)147
N1—H1A···O4SBii0.892.082.877 (14)149
N1—H1B···O2SAiii0.892.193.022 (4)156
N1—H1B···O3SBiii0.892.393.182 (16)149
N2—H2A···Cl1iv0.892.623.4085 (19)149
N2—H2B···O2SBv0.892.633.070 (15)111
N3—H3A···O3SAi0.892.203.017 (5)153
N3—H3A···O4SBi0.892.212.933 (14)138
N3—H3B···O2SAv0.892.283.027 (5)141
N3—H3B···O2SBv0.892.132.989 (16)162
N4—H4A···O3SAii0.892.253.044 (4)149
N4—H4A···O4SBii0.892.423.220 (14)150
N4—H4B···Cl2vi0.892.683.439 (2)143
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y1/2, z+3/2; (iii) x+1, y1/2, z+3/2; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y, z.
 

Acknowledgements

This work was supported by a grant from the 2016 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

First citationBrandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933–941.  CrossRef CAS Google Scholar
First citationChoi, J.-H. & Clegg, W. (2011). Acta Cryst. E67, m381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, J.-H., Subhan, M. A. & Ng, S. W. (2012). Z. Anorg. Allg. Chem. 638, 433–437.  Web of Science CSD CrossRef CAS Google Scholar
First citationFabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGadre, S. R., Koelmel, C. & Shrivastava, I. H. (1992). Inorg. Chem. 31, 2279–2281.  CrossRef CAS Web of Science Google Scholar
First citationGoyal, N., Jain, S. C. & Banerjee, U. C. (2003). Adv. Environ. Res. 7, 311–319.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHouse, D. A. (1970). Inorg. Nucl. Chem. Lett. 6, 741–746.  CrossRef CAS Web of Science Google Scholar
First citationKou, H.-Z., Gao, D.-Z., Bu, W.-M., Fan, Y.-G., Liao, D.-Z., Cheng, P., Jiang, Z., Yan, S.-P., Wang, G.-L., Li, T.-J. & Tang, J.-K. (2001). Transition Met. Chem. 26, 457–460.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoon, D., Subhan, M. A. & Choi, J.-H. (2012). Acta Cryst. E68, m832.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015). Acta Cryst. E71, 1336–1339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSantos-Figueroa, L. E., Moragues, M. E., Climent, E., Agostini, A., Martínez-Máñez, R. & Sancenón, F. (2013). Chem. Soc. Rev. 42, 3489–3613.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVaughn, J. W. & Rogers, R. D. (1985). J. Crystallogr. Spectrosc. Res. 15, 281–287.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019–1024.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds