research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of tri­carbonyl­chlorido­{1-[(pyridin-2-yl­methyl­­idene)amino]­adamantane}rhenium(I)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of California Santa Cruz, CA 95064, USA
*Correspondence e-mail: pradip@ucsc.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 July 2016; accepted 3 August 2016; online 9 August 2016)

The title compound, [ReCl(pyAm)(CO)3], where pyAm is 1-[(pyridin-2-yl­methyl­idene)amino]­adamantane (C16H20N2), was synthesized from the reaction of [ReCl(CO)5] and pyAm in an equimolar ratio. The ReI atom resides in an octa­hedral C3ClN2 coordination sphere. The Re—C bond trans to the chloride ligand is noticeably longer compared to the other two Re—C distances. Weak C—H⋯Cl hydrogen-bonding inter­actions consoldiate the packing of the mol­ecules. In this design, the pyAm ligand was employed due to its well-known pharmacokinetic properties.

1. Chemical context

The diverse photophysical and photochemical properties of tri­carbonyl­rhenium(I) complexes make them invaluable for a range of applications, such as light-emitting devices, nonlinear optical materials, radiopharmaceuticals, reagents for CO-reduction chemistry and photopolymerization (Kumar et al., 2010[Kumar, A., Sun, S.-S. & Lees, A. J. (2010). Top. Organomet. Chem. 29, 1-35.]). As a consequence, among organometallic complexes, tri­carbonyl­rhenium(I) compounds have received considerable attention. Facile synthesis and previously available knowledge of their photophysics (Stufkens & Vlcek, 1998[Stufkens, D. J. & Vlcek, A. Jr (1998). Coord. Chem. Rev. 177, 127-179.]) encouraged us to design new photo-active carbonyl­rhenium complexes as CO-donating mol­ecules. Photo-active metal–carbonyl complexes (photoCORMs) have been utilized as more controllable CO donors to exploit various salutary effects in mammalian pathophysiology when administered in moderate concentrations (Gonzalez & Mascharak, 2014[Gonzalez, M. A. & Mascharak, P. K. (2014). J. Inorg. Biochem. 133, 127-135.]; Romao et al., 2012[Romao, C. C., Blatter, W. A., Seixas, J. D. & Bernardes, G. D. L. (2012). Chem. Soc. Rev. 41, 3571-3583.]; Schatzschneider, 2015[Schatzschneider, U. (2015). Br. J. Pharmacol. 172, 1638-1650.]). We (Carrington et al., 2016[Carrington, S. J., Chakraborty, I., Bernard, J. M. L. & Mascharak, P. K. (2016). Inorg. Chem. doi:10.1021/acsinorgchem.6b00511.]) and others (Zobi et al., 2012[Zobi, F., Blacque, O., Jacobs, R. A., Schaub, M. C. & Bogdonova, A. Y. (2012). Dalton Trans. 41, 370-378.]) have shown applications of rhenium carbonyl-based photoCORMs towards the eradication of aggressive malignant cells, as well as oxidatively damaged cell restoration through light-induced CO delivery. Along the line of developing metal–carbonyl complex-based photoCORMs (Chakraborty et al., 2014[Chakraborty, I., Carrington, S. J. & Mascharak, P. K. (2014). Acc. Chem. Res. 47, 2603-2611.]), we report herein the synthesis and structural characterization of a carbonyl­rhenium complex, [ReCl(pyAm)(CO)3], where pyAm is 1-[(pyridin-2-yl­methyl­idene)amino]­adamantane. In this design of pyAm ligand, the adamantyl moiety has been included beacuse of its well-known pharmacokinetic properties (Wanka et al., 2013[Wanka, L., Iqbal, K. & Schreiner, P. R. (2013). Chem. Rev. 113, 3516-3604.]).

2. Structural commentary

The mol­ecular structure of the title complex is shown in Fig. 1[link]. The coordination geometry of ReI in the complex is distorted octa­hedral (Table 1[link]). The pyAm ligand binds the metal in a bidenate fashion, while the three CO ligands reside in a facial disposition. The distortion from ideal values is reflected by the N1—Re1—N2 bite angle of 75.41 (9)°. The sixth site is occupied by a chloride ligand. The equatorial plane composed of atoms N1, N2, C2 and C3 is satisfactorily planar, with a mean deviation of 0.034 Å. In this complex, the chelate ring composed of atoms Re1, N1, C8, C9 and N2 is almost planar, with a mean deviation of 0.007 Å. The Re—Cl bond is considerably longer [1.963 (4) Å] compared to the other two Re—C bonds [1.918 (4) and 1.920 (3) Å], which can be attributed to the trans-labilizing effect arising from the chloride ligand across this bond.

[Scheme 1]

Table 1
Selected geometric parameters (Å, °)

Re1—C2 1.918 (4) Re1—N1 2.175 (3)
Re1—C3 1.920 (3) Re1—N2 2.213 (2)
Re1—C1 1.963 (4) Re1—Cl1 2.4700 (8)
       
C2—Re1—C3 86.46 (14) C1—Re1—N2 92.65 (11)
C2—Re1—C1 88.36 (14) N1—Re1—N2 75.41 (9)
C3—Re1—C1 92.35 (14) C2—Re1—Cl1 96.08 (9)
C2—Re1—N1 176.25 (11) C3—Re1—Cl1 90.98 (11)
C3—Re1—N1 97.12 (13) C1—Re1—Cl1 174.61 (10)
C1—Re1—N1 92.59 (12) N1—Re1—Cl1 82.78 (7)
C2—Re1—N2 100.93 (11) N2—Re1—Cl1 83.53 (6)
C3—Re1—N2 171.19 (12)    
[Figure 1]
Figure 1
The mol­ecular structure of the title complex. Displacement ellipsoids correspond to 50% probability levels.

3. Supra­molecular features

The crystal packing of the title complex reveals few nonclassical hydrogen-bonding inter­actions of the C—H⋯Cl type (Table 2[link] and Fig. 2[link]), leading to a three-dimensional network structure. The arrangement of mol­ecules along the c axis is shown in Fig. 3[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cl1i 0.93 2.76 3.523 (3) 140
C7—H7⋯Cl1i 0.93 2.92 3.662 (4) 137
C18—H18A⋯Cl1ii 0.97 2.74 3.701 (3) 170
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Packing pattern of the title complex, showing the C—H⋯Cl inter­actions.
[Figure 3]
Figure 3
Packing diagram of the title complex along the c axis.

4. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed only a few structurally similar complexes, with a general formula of [ReCl(pyR)(CO)3], where R represents substituted or unsubstituted aromatic amines. The complex [ReCl(2-PP)(CO)3] [where 2-PP = N-(pyridin-2-yl­methyl­idene)aniline] has space-group symmetry P21/n (Dominey et al., 1991[Dominey, R. N., Hauser, B., Hubbard, J. & Dunham, J. (1991). Inorg. Chem. 30, 4754-4758.]) and exhibits comparable metric parameters as the title complex. However, careful scrunity reveals that in this case the trans-influence of the chloride ligand is not reflected as in the title complex. Later, the same complex was found to adopt also triclinic symmetry in the P[\overline{1}] space group (Hasheminasab et al., 2014[Hasheminasab, A., Engle, J. T., Bass, J., Herrick, R. S. & Ziegler, C. J. (2014). Eur. J. Inorg. Chem. pp. 2643-2652.]). Another complex, [ReCl(L1)(CO)3] {where L1 = 4-[(pyridin-2-yl­methyl­idene)amino]­phenol} has P21/n space-group symmetry, with unit-cell dimensions close to those of [ReCl(2-PP)(CO)3] (Liu & Heinze, 2010[Liu, W. & Heinze, K. (2010). Dalton Trans. 39, 9554-9564.]). In another report, two rhenium complexes of the general formula [ReCl(pyca-C6H4OH)(CO)3] (where pyca = pyridine-2-carbaldehyde­imine) were structurally characterized (Chanawanno et al., 2013[Chanawanno, K., Engle, J. T., Le, K. X., Herrick, R. S. & Ziegler, C. J. (2013). Dalton Trans. 42, 13679-13684.]). In this case, the two complexes can be differentiated on the basis of the position of the –OH group on the arene ring. The complex with the –OH group at the meta position was described in the P21/c space group, while that with the –OH group in the ortho position of the arene ring was described in the setting P21/n. In a relatively recent report, another rhenium complex, namely [ReCl(pyca-2,6-iPr2C6H3)(CO)3], was synthesized (C2/c; Kianfar et al., 2015[Kianfar, E., Kaiser, M. & Knör, G. (2015). J. Organomet. Chem. 799-800, 13-18.]). However, no such rhenium complex incorporating an aliphatic amine in the Schiff base ligand has been structurally characterized so far.

5. Synthesis and crystallization

A slurry of 50 mg (0.138 mmol) of [ReCl(CO)5] and 33 mg of pyAm (0.138 mmol) were added in a mixture of 15 ml of methanol and 5 ml of chloro­form and allowed to reflux for 24 h. After this time, the reaction mixture was allowed to cool to room temperature, whereupon an orange precipitate was observed. The orange solid was collected by filtration and dried under vacuum to obtain 44.2 mg (55%) of the title complex. Single crystals were obtained by layering hexa­nes over a di­chloro­methane solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were included in calculated positions on the C atoms to which they are bonded, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). One reflection (i.e. [\overline{1}]01) was removed from the refinement because it was partly obscured by the beam stop.

Table 3
Experimental details

Crystal data
Chemical formula [ReCl(C16H20N2)(CO)3]
Mr 546.02
Crystal system, space group Monoclinic, P21/n
Temperature (K) 273
a, b, c (Å) 6.9550 (6), 21.7483 (19), 12.4482 (11)
β (°) 94.509 (1)
V3) 1877.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.64
Crystal size (mm) 0.15 × 0.10 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.496, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 20008, 4728, 4045
Rint 0.027
(sin θ/λ)max−1) 0.683
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.050, 1.05
No. of reflections 4728
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.79, −0.55
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CrystalMaker (Palmer, 2014[Palmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, Oxfordshire, England.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and CrystalMaker (Palmer, 2014)'; software used to prepare material for publication: publCIF (Westrip, 2010).

Tricarbonylchlorido{1-[(pyridin-2-ylmethylidene)amino]tricyclo[3.3.1.13,7]decane}rhenium(I) top
Crystal data top
[ReCl(C16H20N2)(CO)3]F(000) = 1056
Mr = 546.02Dx = 1.932 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.9550 (6) ÅCell parameters from 8126 reflections
b = 21.7483 (19) Åθ = 2.5–24.1°
c = 12.4482 (11) ŵ = 6.64 mm1
β = 94.509 (1)°T = 273 K
V = 1877.1 (3) Å3Plate, yellow
Z = 40.15 × 0.10 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
4045 reflections with I > 2σ(I)
ω scansRint = 0.027
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 29.1°, θmin = 2.5°
Tmin = 0.496, Tmax = 0.745h = 99
20008 measured reflectionsk = 2929
4728 independent reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0213P)2 + 0.918P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
4728 reflectionsΔρmax = 0.79 e Å3
235 parametersΔρmin = 0.55 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.37969 (2)0.32771 (2)0.53456 (2)0.03239 (5)
Cl10.23110 (12)0.42838 (4)0.48815 (7)0.0476 (2)
N20.6343 (3)0.38424 (11)0.58745 (18)0.0298 (5)
O20.1930 (4)0.30895 (12)0.7472 (2)0.0568 (7)
N10.5242 (4)0.34377 (12)0.3884 (2)0.0371 (6)
O30.0223 (4)0.26163 (13)0.4307 (3)0.0742 (9)
O10.5930 (4)0.20826 (14)0.5848 (2)0.0729 (8)
C170.7065 (4)0.35397 (14)0.7773 (2)0.0335 (6)
H17A0.59110.32880.77080.040*
H17B0.81470.32880.75980.040*
C20.2629 (5)0.31762 (14)0.6679 (3)0.0399 (7)
C80.6851 (4)0.37871 (15)0.4017 (2)0.0374 (7)
C100.6832 (4)0.40873 (13)0.6989 (2)0.0296 (6)
C10.5193 (5)0.25045 (17)0.5650 (3)0.0444 (8)
C90.7374 (4)0.39986 (15)0.5113 (2)0.0374 (7)
H90.84540.42460.52570.045*
C70.7933 (5)0.39368 (18)0.3160 (3)0.0509 (9)
H70.90390.41760.32690.061*
C40.4683 (6)0.32441 (16)0.2888 (3)0.0501 (9)
H40.35680.30080.27870.060*
C30.1587 (5)0.28552 (16)0.4682 (3)0.0472 (8)
C180.8699 (4)0.44667 (15)0.7101 (2)0.0384 (7)
H18A0.85940.48130.66090.046*
H18B0.97770.42150.69190.046*
C140.9052 (5)0.47005 (15)0.8271 (3)0.0444 (8)
H141.02390.49450.83370.053*
C150.9266 (5)0.41588 (16)0.9048 (3)0.0460 (8)
H15A0.94960.43070.97820.055*
H15B1.03520.39060.88810.055*
C50.5687 (6)0.33785 (17)0.2005 (3)0.0559 (10)
H50.52500.32370.13250.067*
C190.5695 (5)0.41766 (18)0.9200 (3)0.0511 (9)
H19A0.45220.39340.91290.061*
H19B0.58840.43210.99390.061*
C160.7408 (5)0.37820 (15)0.8932 (2)0.0423 (7)
H160.75280.34330.94300.051*
C110.5154 (5)0.44984 (15)0.7271 (2)0.0392 (7)
H11A0.50440.48480.67850.047*
H11B0.39570.42680.71880.047*
C60.7330 (6)0.37222 (18)0.2143 (3)0.0564 (10)
H60.80380.38110.15580.068*
C120.5508 (5)0.47239 (17)0.8435 (3)0.0505 (9)
H120.44200.49800.86160.061*
C130.7357 (6)0.51060 (17)0.8544 (3)0.0563 (10)
H13A0.75760.52610.92740.068*
H13B0.72390.54550.80570.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.03066 (7)0.03249 (7)0.03334 (7)0.00218 (5)0.00171 (5)0.00180 (5)
Cl10.0399 (5)0.0493 (5)0.0525 (5)0.0033 (4)0.0035 (4)0.0066 (4)
N20.0258 (12)0.0349 (13)0.0281 (12)0.0010 (10)0.0019 (9)0.0014 (10)
O20.0540 (16)0.0645 (16)0.0542 (16)0.0045 (13)0.0188 (13)0.0064 (13)
N10.0388 (15)0.0427 (15)0.0293 (13)0.0026 (11)0.0009 (11)0.0061 (11)
O30.0520 (17)0.0655 (18)0.100 (2)0.0128 (14)0.0233 (16)0.0201 (16)
O10.067 (2)0.065 (2)0.085 (2)0.0119 (16)0.0044 (16)0.0020 (16)
C170.0331 (16)0.0357 (15)0.0311 (15)0.0000 (13)0.0009 (12)0.0012 (12)
C20.0325 (17)0.0354 (17)0.051 (2)0.0013 (13)0.0018 (15)0.0034 (14)
C80.0340 (17)0.0462 (18)0.0316 (15)0.0040 (13)0.0001 (12)0.0014 (13)
C100.0320 (15)0.0315 (15)0.0245 (14)0.0029 (12)0.0028 (11)0.0018 (11)
C10.048 (2)0.0429 (19)0.0407 (18)0.0109 (16)0.0049 (15)0.0019 (15)
C90.0267 (16)0.0519 (19)0.0333 (16)0.0056 (13)0.0000 (12)0.0000 (13)
C70.043 (2)0.074 (3)0.0352 (18)0.0016 (18)0.0046 (15)0.0082 (17)
C40.059 (2)0.053 (2)0.0364 (18)0.0015 (17)0.0052 (16)0.0083 (15)
C30.043 (2)0.0428 (19)0.054 (2)0.0011 (15)0.0085 (16)0.0058 (15)
C180.0365 (17)0.0397 (17)0.0381 (17)0.0081 (13)0.0027 (13)0.0039 (13)
C140.046 (2)0.0445 (19)0.0405 (18)0.0113 (15)0.0074 (15)0.0069 (14)
C150.047 (2)0.054 (2)0.0351 (17)0.0024 (16)0.0121 (15)0.0053 (15)
C50.076 (3)0.059 (2)0.0315 (18)0.008 (2)0.0020 (17)0.0086 (16)
C190.052 (2)0.073 (3)0.0290 (16)0.0026 (18)0.0039 (15)0.0115 (16)
C160.049 (2)0.0476 (19)0.0294 (16)0.0015 (15)0.0048 (14)0.0050 (13)
C110.0377 (18)0.0419 (18)0.0370 (17)0.0085 (14)0.0038 (13)0.0068 (13)
C60.064 (3)0.074 (3)0.0324 (18)0.010 (2)0.0105 (17)0.0049 (17)
C120.049 (2)0.057 (2)0.0452 (19)0.0102 (17)0.0002 (16)0.0187 (17)
C130.069 (3)0.047 (2)0.050 (2)0.0017 (18)0.0100 (18)0.0169 (17)
Geometric parameters (Å, º) top
Re1—C21.918 (4)C4—H40.9300
Re1—C31.920 (3)C18—C141.545 (4)
Re1—C11.963 (4)C18—H18A0.9700
Re1—N12.175 (3)C18—H18B0.9700
Re1—N22.213 (2)C14—C151.524 (5)
Re1—Cl12.4700 (8)C14—C131.532 (5)
N2—C91.279 (4)C14—H140.9800
N2—C101.500 (3)C15—C161.527 (4)
O2—C21.149 (4)C15—H15A0.9700
N1—C41.338 (4)C15—H15B0.9700
N1—C81.352 (4)C5—C61.365 (5)
O3—C31.149 (4)C5—H50.9300
O1—C11.070 (4)C19—C121.524 (5)
C17—C161.537 (4)C19—C161.526 (5)
C17—C101.541 (4)C19—H19A0.9700
C17—H17A0.9700C19—H19B0.9700
C17—H17B0.9700C16—H160.9800
C8—C71.392 (4)C11—C121.532 (4)
C8—C91.458 (4)C11—H11A0.9700
C10—C111.533 (4)C11—H11B0.9700
C10—C181.535 (4)C6—H60.9300
C9—H90.9300C12—C131.528 (5)
C7—C61.383 (5)C12—H120.9800
C7—H70.9300C13—H13A0.9700
C4—C51.379 (5)C13—H13B0.9700
C2—Re1—C386.46 (14)C10—C18—H18B109.8
C2—Re1—C188.36 (14)C14—C18—H18B109.8
C3—Re1—C192.35 (14)H18A—C18—H18B108.2
C2—Re1—N1176.25 (11)C15—C14—C13110.1 (3)
C3—Re1—N197.12 (13)C15—C14—C18110.1 (3)
C1—Re1—N192.59 (12)C13—C14—C18109.3 (3)
C2—Re1—N2100.93 (11)C15—C14—H14109.1
C3—Re1—N2171.19 (12)C13—C14—H14109.1
C1—Re1—N292.65 (11)C18—C14—H14109.1
N1—Re1—N275.41 (9)C14—C15—C16108.4 (3)
C2—Re1—Cl196.08 (9)C14—C15—H15A110.0
C3—Re1—Cl190.98 (11)C16—C15—H15A110.0
C1—Re1—Cl1174.61 (10)C14—C15—H15B110.0
N1—Re1—Cl182.78 (7)C16—C15—H15B110.0
N2—Re1—Cl183.53 (6)H15A—C15—H15B108.4
C9—N2—C10119.4 (2)C6—C5—C4119.2 (3)
C9—N2—Re1114.15 (19)C6—C5—H5120.4
C10—N2—Re1126.21 (17)C4—C5—H5120.4
C4—N1—C8117.9 (3)C12—C19—C16109.4 (3)
C4—N1—Re1127.2 (2)C12—C19—H19A109.8
C8—N1—Re1114.88 (19)C16—C19—H19A109.8
C16—C17—C10109.3 (2)C12—C19—H19B109.8
C16—C17—H17A109.8C16—C19—H19B109.8
C10—C17—H17A109.8H19A—C19—H19B108.2
C16—C17—H17B109.8C19—C16—C15110.3 (3)
C10—C17—H17B109.8C19—C16—C17109.4 (3)
H17A—C17—H17B108.3C15—C16—C17109.9 (3)
O2—C2—Re1177.1 (3)C19—C16—H16109.1
N1—C8—C7122.0 (3)C15—C16—H16109.1
N1—C8—C9115.8 (3)C17—C16—H16109.1
C7—C8—C9122.2 (3)C12—C11—C10109.6 (2)
N2—C10—C11107.3 (2)C12—C11—H11A109.8
N2—C10—C18113.8 (2)C10—C11—H11A109.8
C11—C10—C18108.6 (2)C12—C11—H11B109.8
N2—C10—C17108.5 (2)C10—C11—H11B109.8
C11—C10—C17110.5 (2)H11A—C11—H11B108.2
C18—C10—C17108.2 (2)C5—C6—C7119.4 (3)
O1—C1—Re1177.7 (4)C5—C6—H6120.3
N2—C9—C8119.8 (3)C7—C6—H6120.3
N2—C9—H9120.1C19—C12—C13109.8 (3)
C8—C9—H9120.1C19—C12—C11109.9 (3)
C6—C7—C8118.7 (3)C13—C12—C11109.2 (3)
C6—C7—H7120.7C19—C12—H12109.3
C8—C7—H7120.7C13—C12—H12109.3
N1—C4—C5122.9 (4)C11—C12—H12109.3
N1—C4—H4118.5C12—C13—C14108.9 (3)
C5—C4—H4118.5C12—C13—H13A109.9
O3—C3—Re1177.5 (3)C14—C13—H13A109.9
C10—C18—C14109.5 (2)C12—C13—H13B109.9
C10—C18—H18A109.8C14—C13—H13B109.9
C14—C18—H18A109.8H13A—C13—H13B108.3
C4—N1—C8—C71.2 (5)C10—C18—C14—C1560.7 (3)
Re1—N1—C8—C7179.4 (3)C10—C18—C14—C1360.3 (3)
C4—N1—C8—C9178.6 (3)C13—C14—C15—C1660.5 (3)
Re1—N1—C8—C90.3 (3)C18—C14—C15—C1660.1 (4)
C9—N2—C10—C11114.9 (3)N1—C4—C5—C60.2 (6)
Re1—N2—C10—C1159.7 (3)C12—C19—C16—C1559.8 (3)
C9—N2—C10—C185.3 (4)C12—C19—C16—C1761.2 (4)
Re1—N2—C10—C18179.86 (19)C14—C15—C16—C1960.1 (3)
C9—N2—C10—C17125.8 (3)C14—C15—C16—C1760.6 (3)
Re1—N2—C10—C1759.7 (3)C10—C17—C16—C1959.6 (3)
C16—C17—C10—N2175.5 (2)C10—C17—C16—C1561.6 (3)
C16—C17—C10—C1158.2 (3)N2—C10—C11—C12175.8 (3)
C16—C17—C10—C1860.6 (3)C18—C10—C11—C1260.7 (3)
C10—N2—C9—C8177.0 (3)C17—C10—C11—C1257.8 (3)
Re1—N2—C9—C81.8 (4)C4—C5—C6—C71.1 (6)
N1—C8—C9—N21.0 (4)C8—C7—C6—C50.9 (5)
C7—C8—C9—N2179.2 (3)C16—C19—C12—C1359.3 (4)
N1—C8—C7—C60.3 (5)C16—C19—C12—C1161.0 (4)
C9—C8—C7—C6179.5 (3)C10—C11—C12—C1959.0 (4)
C8—N1—C4—C50.9 (5)C10—C11—C12—C1361.6 (4)
Re1—N1—C4—C5178.9 (3)C19—C12—C13—C1459.6 (4)
N2—C10—C18—C14179.4 (2)C11—C12—C13—C1461.1 (4)
C11—C10—C18—C1460.0 (3)C15—C14—C13—C1260.6 (3)
C17—C10—C18—C1460.0 (3)C18—C14—C13—C1260.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl1i0.932.763.523 (3)140
C7—H7···Cl1i0.932.923.662 (4)137
C18—H18A···Cl1ii0.972.743.701 (3)170
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

Financial support from NSF grant DMR-1409335 is gratefully acknowledged. JJ is supported by NIH grant 2R25GM058903.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarrington, S. J., Chakraborty, I., Bernard, J. M. L. & Mascharak, P. K. (2016). Inorg. Chem. doi:10.1021/acsinorgchem.6b00511.  Google Scholar
First citationChakraborty, I., Carrington, S. J. & Mascharak, P. K. (2014). Acc. Chem. Res. 47, 2603–2611.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChanawanno, K., Engle, J. T., Le, K. X., Herrick, R. S. & Ziegler, C. J. (2013). Dalton Trans. 42, 13679–13684.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDominey, R. N., Hauser, B., Hubbard, J. & Dunham, J. (1991). Inorg. Chem. 30, 4754–4758.  CSD CrossRef CAS Web of Science Google Scholar
First citationGonzalez, M. A. & Mascharak, P. K. (2014). J. Inorg. Biochem. 133, 127–135.  Web of Science PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHasheminasab, A., Engle, J. T., Bass, J., Herrick, R. S. & Ziegler, C. J. (2014). Eur. J. Inorg. Chem. pp. 2643–2652.  Web of Science CSD CrossRef Google Scholar
First citationKianfar, E., Kaiser, M. & Knör, G. (2015). J. Organomet. Chem. 799–800, 13–18.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, A., Sun, S.-S. & Lees, A. J. (2010). Top. Organomet. Chem. 29, 1–35.  CAS Google Scholar
First citationLiu, W. & Heinze, K. (2010). Dalton Trans. 39, 9554–9564.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPalmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, Oxfordshire, England.  Google Scholar
First citationRomao, C. C., Blatter, W. A., Seixas, J. D. & Bernardes, G. D. L. (2012). Chem. Soc. Rev. 41, 3571–3583.  Web of Science CAS PubMed Google Scholar
First citationSchatzschneider, U. (2015). Br. J. Pharmacol. 172, 1638–1650.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStufkens, D. J. & Vlcek, A. Jr (1998). Coord. Chem. Rev. 177, 127–179.  Web of Science CrossRef CAS Google Scholar
First citationWanka, L., Iqbal, K. & Schreiner, P. R. (2013). Chem. Rev. 113, 3516–3604.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZobi, F., Blacque, O., Jacobs, R. A., Schaub, M. C. & Bogdonova, A. Y. (2012). Dalton Trans. 41, 370–378.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds