research communications
Synthesis and
of tricarbonylchlorido{1-[(pyridin-2-ylmethylidene)amino]adamantane}rhenium(I)aDepartment of Chemistry, University of California Santa Cruz, CA 95064, USA
*Correspondence e-mail: pradip@ucsc.edu
The title compound, [ReCl(pyAm)(CO)3], where pyAm is 1-[(pyridin-2-ylmethylidene)amino]adamantane (C16H20N2), was synthesized from the reaction of [ReCl(CO)5] and pyAm in an equimolar ratio. The ReI atom resides in an octahedral C3ClN2 coordination sphere. The Re—C bond trans to the chloride ligand is noticeably longer compared to the other two Re—C distances. Weak C—H⋯Cl hydrogen-bonding interactions consoldiate the packing of the molecules. In this design, the pyAm ligand was employed due to its well-known pharmacokinetic properties.
Keywords: crystal structure; rhenium complex; fac-Re(CO)3; lipophilicity; adamantane motif.
CCDC reference: 1497515
1. Chemical context
The diverse photophysical and photochemical properties of tricarbonylrhenium(I) complexes make them invaluable for a range of applications, such as light-emitting devices, nonlinear optical materials, radiopharmaceuticals, reagents for CO-reduction chemistry and et al., 2010). As a consequence, among organometallic complexes, tricarbonylrhenium(I) compounds have received considerable attention. Facile synthesis and previously available knowledge of their photophysics (Stufkens & Vlcek, 1998) encouraged us to design new photo-active carbonylrhenium complexes as CO-donating molecules. Photo-active metal–carbonyl complexes (photoCORMs) have been utilized as more controllable CO donors to exploit various salutary effects in mammalian pathophysiology when administered in moderate concentrations (Gonzalez & Mascharak, 2014; Romao et al., 2012; Schatzschneider, 2015). We (Carrington et al., 2016) and others (Zobi et al., 2012) have shown applications of rhenium carbonyl-based photoCORMs towards the eradication of aggressive malignant cells, as well as oxidatively damaged cell restoration through light-induced CO delivery. Along the line of developing metal–carbonyl complex-based photoCORMs (Chakraborty et al., 2014), we report herein the synthesis and structural characterization of a carbonylrhenium complex, [ReCl(pyAm)(CO)3], where pyAm is 1-[(pyridin-2-ylmethylidene)amino]adamantane. In this design of pyAm ligand, the adamantyl moiety has been included beacuse of its well-known pharmacokinetic properties (Wanka et al., 2013).
(Kumar2. Structural commentary
The molecular structure of the title complex is shown in Fig. 1. The coordination geometry of ReI in the complex is distorted octahedral (Table 1). The pyAm ligand binds the metal in a bidenate fashion, while the three CO ligands reside in a facial disposition. The distortion from ideal values is reflected by the N1—Re1—N2 bite angle of 75.41 (9)°. The sixth site is occupied by a chloride ligand. The equatorial plane composed of atoms N1, N2, C2 and C3 is satisfactorily planar, with a mean deviation of 0.034 Å. In this complex, the chelate ring composed of atoms Re1, N1, C8, C9 and N2 is almost planar, with a mean deviation of 0.007 Å. The Re—Cl bond is considerably longer [1.963 (4) Å] compared to the other two Re—C bonds [1.918 (4) and 1.920 (3) Å], which can be attributed to the trans-labilizing effect arising from the chloride ligand across this bond.
|
3. Supramolecular features
The crystal packing of the title complex reveals few nonclassical hydrogen-bonding interactions of the C—H⋯Cl type (Table 2 and Fig. 2), leading to a three-dimensional network structure. The arrangement of molecules along the c axis is shown in Fig. 3.
4. Database survey
A search of the Cambridge Structural Database (Groom et al., 2016) revealed only a few structurally similar complexes, with a general formula of [ReCl(pyR)(CO)3], where R represents substituted or unsubstituted aromatic The complex [ReCl(2-PP)(CO)3] [where 2-PP = N-(pyridin-2-ylmethylidene)aniline] has space-group symmetry P21/n (Dominey et al., 1991) and exhibits comparable metric parameters as the title complex. However, careful scrunity reveals that in this case the trans-influence of the chloride ligand is not reflected as in the title complex. Later, the same complex was found to adopt also triclinic symmetry in the P (Hasheminasab et al., 2014). Another complex, [ReCl(L1)(CO)3] {where L1 = 4-[(pyridin-2-ylmethylidene)amino]phenol} has P21/n space-group symmetry, with unit-cell dimensions close to those of [ReCl(2-PP)(CO)3] (Liu & Heinze, 2010). In another report, two rhenium complexes of the general formula [ReCl(pyca-C6H4OH)(CO)3] (where pyca = pyridine-2-carbaldehydeimine) were structurally characterized (Chanawanno et al., 2013). In this case, the two complexes can be differentiated on the basis of the position of the –OH group on the arene ring. The complex with the –OH group at the meta position was described in the P21/c while that with the –OH group in the ortho position of the arene ring was described in the setting P21/n. In a relatively recent report, another rhenium complex, namely [ReCl(pyca-2,6-iPr2C6H3)(CO)3], was synthesized (C2/c; Kianfar et al., 2015). However, no such rhenium complex incorporating an aliphatic amine in the Schiff base ligand has been structurally characterized so far.
5. Synthesis and crystallization
A slurry of 50 mg (0.138 mmol) of [ReCl(CO)5] and 33 mg of pyAm (0.138 mmol) were added in a mixture of 15 ml of methanol and 5 ml of chloroform and allowed to reflux for 24 h. After this time, the reaction mixture was allowed to cool to room temperature, whereupon an orange precipitate was observed. The orange solid was collected by filtration and dried under vacuum to obtain 44.2 mg (55%) of the title complex. Single crystals were obtained by layering hexanes over a dichloromethane solution.
6. Refinement
Crystal data, data collection and structure . H atoms were included in calculated positions on the C atoms to which they are bonded, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). One reflection (i.e. 01) was removed from the because it was partly obscured by the beam stop.
details are summarized in Table 3Supporting information
CCDC reference: 1497515
https://doi.org/10.1107/S205698901601255X/wm5310sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901601255X/wm5310Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and CrystalMaker (Palmer, 2014)'; software used to prepare material for publication: publCIF (Westrip, 2010).[ReCl(C16H20N2)(CO)3] | F(000) = 1056 |
Mr = 546.02 | Dx = 1.932 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.9550 (6) Å | Cell parameters from 8126 reflections |
b = 21.7483 (19) Å | θ = 2.5–24.1° |
c = 12.4482 (11) Å | µ = 6.64 mm−1 |
β = 94.509 (1)° | T = 273 K |
V = 1877.1 (3) Å3 | Plate, yellow |
Z = 4 | 0.15 × 0.10 × 0.04 mm |
Bruker APEXII CCD diffractometer | 4045 reflections with I > 2σ(I) |
ω scans | Rint = 0.027 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | θmax = 29.1°, θmin = 2.5° |
Tmin = 0.496, Tmax = 0.745 | h = −9→9 |
20008 measured reflections | k = −29→29 |
4728 independent reflections | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters constrained |
wR(F2) = 0.050 | w = 1/[σ2(Fo2) + (0.0213P)2 + 0.918P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.002 |
4728 reflections | Δρmax = 0.79 e Å−3 |
235 parameters | Δρmin = −0.55 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Re1 | 0.37969 (2) | 0.32771 (2) | 0.53456 (2) | 0.03239 (5) | |
Cl1 | 0.23110 (12) | 0.42838 (4) | 0.48815 (7) | 0.0476 (2) | |
N2 | 0.6343 (3) | 0.38424 (11) | 0.58745 (18) | 0.0298 (5) | |
O2 | 0.1930 (4) | 0.30895 (12) | 0.7472 (2) | 0.0568 (7) | |
N1 | 0.5242 (4) | 0.34377 (12) | 0.3884 (2) | 0.0371 (6) | |
O3 | 0.0223 (4) | 0.26163 (13) | 0.4307 (3) | 0.0742 (9) | |
O1 | 0.5930 (4) | 0.20826 (14) | 0.5848 (2) | 0.0729 (8) | |
C17 | 0.7065 (4) | 0.35397 (14) | 0.7773 (2) | 0.0335 (6) | |
H17A | 0.5911 | 0.3288 | 0.7708 | 0.040* | |
H17B | 0.8147 | 0.3288 | 0.7598 | 0.040* | |
C2 | 0.2629 (5) | 0.31762 (14) | 0.6679 (3) | 0.0399 (7) | |
C8 | 0.6851 (4) | 0.37871 (15) | 0.4017 (2) | 0.0374 (7) | |
C10 | 0.6832 (4) | 0.40873 (13) | 0.6989 (2) | 0.0296 (6) | |
C1 | 0.5193 (5) | 0.25045 (17) | 0.5650 (3) | 0.0444 (8) | |
C9 | 0.7374 (4) | 0.39986 (15) | 0.5113 (2) | 0.0374 (7) | |
H9 | 0.8454 | 0.4246 | 0.5257 | 0.045* | |
C7 | 0.7933 (5) | 0.39368 (18) | 0.3160 (3) | 0.0509 (9) | |
H7 | 0.9039 | 0.4176 | 0.3269 | 0.061* | |
C4 | 0.4683 (6) | 0.32441 (16) | 0.2888 (3) | 0.0501 (9) | |
H4 | 0.3568 | 0.3008 | 0.2787 | 0.060* | |
C3 | 0.1587 (5) | 0.28552 (16) | 0.4682 (3) | 0.0472 (8) | |
C18 | 0.8699 (4) | 0.44667 (15) | 0.7101 (2) | 0.0384 (7) | |
H18A | 0.8594 | 0.4813 | 0.6609 | 0.046* | |
H18B | 0.9777 | 0.4215 | 0.6919 | 0.046* | |
C14 | 0.9052 (5) | 0.47005 (15) | 0.8271 (3) | 0.0444 (8) | |
H14 | 1.0239 | 0.4945 | 0.8337 | 0.053* | |
C15 | 0.9266 (5) | 0.41588 (16) | 0.9048 (3) | 0.0460 (8) | |
H15A | 0.9496 | 0.4307 | 0.9782 | 0.055* | |
H15B | 1.0352 | 0.3906 | 0.8881 | 0.055* | |
C5 | 0.5687 (6) | 0.33785 (17) | 0.2005 (3) | 0.0559 (10) | |
H5 | 0.5250 | 0.3237 | 0.1325 | 0.067* | |
C19 | 0.5695 (5) | 0.41766 (18) | 0.9200 (3) | 0.0511 (9) | |
H19A | 0.4522 | 0.3934 | 0.9129 | 0.061* | |
H19B | 0.5884 | 0.4321 | 0.9939 | 0.061* | |
C16 | 0.7408 (5) | 0.37820 (15) | 0.8932 (2) | 0.0423 (7) | |
H16 | 0.7528 | 0.3433 | 0.9430 | 0.051* | |
C11 | 0.5154 (5) | 0.44984 (15) | 0.7271 (2) | 0.0392 (7) | |
H11A | 0.5044 | 0.4848 | 0.6785 | 0.047* | |
H11B | 0.3957 | 0.4268 | 0.7188 | 0.047* | |
C6 | 0.7330 (6) | 0.37222 (18) | 0.2143 (3) | 0.0564 (10) | |
H6 | 0.8038 | 0.3811 | 0.1558 | 0.068* | |
C12 | 0.5508 (5) | 0.47239 (17) | 0.8435 (3) | 0.0505 (9) | |
H12 | 0.4420 | 0.4980 | 0.8616 | 0.061* | |
C13 | 0.7357 (6) | 0.51060 (17) | 0.8544 (3) | 0.0563 (10) | |
H13A | 0.7576 | 0.5261 | 0.9274 | 0.068* | |
H13B | 0.7239 | 0.5455 | 0.8057 | 0.068* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.03066 (7) | 0.03249 (7) | 0.03334 (7) | −0.00218 (5) | −0.00171 (5) | −0.00180 (5) |
Cl1 | 0.0399 (5) | 0.0493 (5) | 0.0525 (5) | 0.0033 (4) | −0.0035 (4) | 0.0066 (4) |
N2 | 0.0258 (12) | 0.0349 (13) | 0.0281 (12) | 0.0010 (10) | −0.0019 (9) | −0.0014 (10) |
O2 | 0.0540 (16) | 0.0645 (16) | 0.0542 (16) | −0.0045 (13) | 0.0188 (13) | 0.0064 (13) |
N1 | 0.0388 (15) | 0.0427 (15) | 0.0293 (13) | 0.0026 (11) | −0.0009 (11) | −0.0061 (11) |
O3 | 0.0520 (17) | 0.0655 (18) | 0.100 (2) | −0.0128 (14) | −0.0233 (16) | −0.0201 (16) |
O1 | 0.067 (2) | 0.065 (2) | 0.085 (2) | 0.0119 (16) | −0.0044 (16) | −0.0020 (16) |
C17 | 0.0331 (16) | 0.0357 (15) | 0.0311 (15) | 0.0000 (13) | −0.0009 (12) | 0.0012 (12) |
C2 | 0.0325 (17) | 0.0354 (17) | 0.051 (2) | −0.0013 (13) | −0.0018 (15) | −0.0034 (14) |
C8 | 0.0340 (17) | 0.0462 (18) | 0.0316 (15) | 0.0040 (13) | −0.0001 (12) | 0.0014 (13) |
C10 | 0.0320 (15) | 0.0315 (15) | 0.0245 (14) | −0.0029 (12) | −0.0028 (11) | −0.0018 (11) |
C1 | 0.048 (2) | 0.0429 (19) | 0.0407 (18) | −0.0109 (16) | −0.0049 (15) | −0.0019 (15) |
C9 | 0.0267 (16) | 0.0519 (19) | 0.0333 (16) | −0.0056 (13) | 0.0000 (12) | 0.0000 (13) |
C7 | 0.043 (2) | 0.074 (3) | 0.0352 (18) | −0.0016 (18) | 0.0046 (15) | 0.0082 (17) |
C4 | 0.059 (2) | 0.053 (2) | 0.0364 (18) | −0.0015 (17) | −0.0052 (16) | −0.0083 (15) |
C3 | 0.043 (2) | 0.0428 (19) | 0.054 (2) | −0.0011 (15) | −0.0085 (16) | −0.0058 (15) |
C18 | 0.0365 (17) | 0.0397 (17) | 0.0381 (17) | −0.0081 (13) | −0.0027 (13) | 0.0039 (13) |
C14 | 0.046 (2) | 0.0445 (19) | 0.0405 (18) | −0.0113 (15) | −0.0074 (15) | −0.0069 (14) |
C15 | 0.047 (2) | 0.054 (2) | 0.0351 (17) | −0.0024 (16) | −0.0121 (15) | −0.0053 (15) |
C5 | 0.076 (3) | 0.059 (2) | 0.0315 (18) | 0.008 (2) | −0.0020 (17) | −0.0086 (16) |
C19 | 0.052 (2) | 0.073 (3) | 0.0290 (16) | −0.0026 (18) | 0.0039 (15) | −0.0115 (16) |
C16 | 0.049 (2) | 0.0476 (19) | 0.0294 (16) | −0.0015 (15) | −0.0048 (14) | 0.0050 (13) |
C11 | 0.0377 (18) | 0.0419 (18) | 0.0370 (17) | 0.0085 (14) | −0.0038 (13) | −0.0068 (13) |
C6 | 0.064 (3) | 0.074 (3) | 0.0324 (18) | 0.010 (2) | 0.0105 (17) | 0.0049 (17) |
C12 | 0.049 (2) | 0.057 (2) | 0.0452 (19) | 0.0102 (17) | −0.0002 (16) | −0.0187 (17) |
C13 | 0.069 (3) | 0.047 (2) | 0.050 (2) | 0.0017 (18) | −0.0100 (18) | −0.0169 (17) |
Re1—C2 | 1.918 (4) | C4—H4 | 0.9300 |
Re1—C3 | 1.920 (3) | C18—C14 | 1.545 (4) |
Re1—C1 | 1.963 (4) | C18—H18A | 0.9700 |
Re1—N1 | 2.175 (3) | C18—H18B | 0.9700 |
Re1—N2 | 2.213 (2) | C14—C15 | 1.524 (5) |
Re1—Cl1 | 2.4700 (8) | C14—C13 | 1.532 (5) |
N2—C9 | 1.279 (4) | C14—H14 | 0.9800 |
N2—C10 | 1.500 (3) | C15—C16 | 1.527 (4) |
O2—C2 | 1.149 (4) | C15—H15A | 0.9700 |
N1—C4 | 1.338 (4) | C15—H15B | 0.9700 |
N1—C8 | 1.352 (4) | C5—C6 | 1.365 (5) |
O3—C3 | 1.149 (4) | C5—H5 | 0.9300 |
O1—C1 | 1.070 (4) | C19—C12 | 1.524 (5) |
C17—C16 | 1.537 (4) | C19—C16 | 1.526 (5) |
C17—C10 | 1.541 (4) | C19—H19A | 0.9700 |
C17—H17A | 0.9700 | C19—H19B | 0.9700 |
C17—H17B | 0.9700 | C16—H16 | 0.9800 |
C8—C7 | 1.392 (4) | C11—C12 | 1.532 (4) |
C8—C9 | 1.458 (4) | C11—H11A | 0.9700 |
C10—C11 | 1.533 (4) | C11—H11B | 0.9700 |
C10—C18 | 1.535 (4) | C6—H6 | 0.9300 |
C9—H9 | 0.9300 | C12—C13 | 1.528 (5) |
C7—C6 | 1.383 (5) | C12—H12 | 0.9800 |
C7—H7 | 0.9300 | C13—H13A | 0.9700 |
C4—C5 | 1.379 (5) | C13—H13B | 0.9700 |
C2—Re1—C3 | 86.46 (14) | C10—C18—H18B | 109.8 |
C2—Re1—C1 | 88.36 (14) | C14—C18—H18B | 109.8 |
C3—Re1—C1 | 92.35 (14) | H18A—C18—H18B | 108.2 |
C2—Re1—N1 | 176.25 (11) | C15—C14—C13 | 110.1 (3) |
C3—Re1—N1 | 97.12 (13) | C15—C14—C18 | 110.1 (3) |
C1—Re1—N1 | 92.59 (12) | C13—C14—C18 | 109.3 (3) |
C2—Re1—N2 | 100.93 (11) | C15—C14—H14 | 109.1 |
C3—Re1—N2 | 171.19 (12) | C13—C14—H14 | 109.1 |
C1—Re1—N2 | 92.65 (11) | C18—C14—H14 | 109.1 |
N1—Re1—N2 | 75.41 (9) | C14—C15—C16 | 108.4 (3) |
C2—Re1—Cl1 | 96.08 (9) | C14—C15—H15A | 110.0 |
C3—Re1—Cl1 | 90.98 (11) | C16—C15—H15A | 110.0 |
C1—Re1—Cl1 | 174.61 (10) | C14—C15—H15B | 110.0 |
N1—Re1—Cl1 | 82.78 (7) | C16—C15—H15B | 110.0 |
N2—Re1—Cl1 | 83.53 (6) | H15A—C15—H15B | 108.4 |
C9—N2—C10 | 119.4 (2) | C6—C5—C4 | 119.2 (3) |
C9—N2—Re1 | 114.15 (19) | C6—C5—H5 | 120.4 |
C10—N2—Re1 | 126.21 (17) | C4—C5—H5 | 120.4 |
C4—N1—C8 | 117.9 (3) | C12—C19—C16 | 109.4 (3) |
C4—N1—Re1 | 127.2 (2) | C12—C19—H19A | 109.8 |
C8—N1—Re1 | 114.88 (19) | C16—C19—H19A | 109.8 |
C16—C17—C10 | 109.3 (2) | C12—C19—H19B | 109.8 |
C16—C17—H17A | 109.8 | C16—C19—H19B | 109.8 |
C10—C17—H17A | 109.8 | H19A—C19—H19B | 108.2 |
C16—C17—H17B | 109.8 | C19—C16—C15 | 110.3 (3) |
C10—C17—H17B | 109.8 | C19—C16—C17 | 109.4 (3) |
H17A—C17—H17B | 108.3 | C15—C16—C17 | 109.9 (3) |
O2—C2—Re1 | 177.1 (3) | C19—C16—H16 | 109.1 |
N1—C8—C7 | 122.0 (3) | C15—C16—H16 | 109.1 |
N1—C8—C9 | 115.8 (3) | C17—C16—H16 | 109.1 |
C7—C8—C9 | 122.2 (3) | C12—C11—C10 | 109.6 (2) |
N2—C10—C11 | 107.3 (2) | C12—C11—H11A | 109.8 |
N2—C10—C18 | 113.8 (2) | C10—C11—H11A | 109.8 |
C11—C10—C18 | 108.6 (2) | C12—C11—H11B | 109.8 |
N2—C10—C17 | 108.5 (2) | C10—C11—H11B | 109.8 |
C11—C10—C17 | 110.5 (2) | H11A—C11—H11B | 108.2 |
C18—C10—C17 | 108.2 (2) | C5—C6—C7 | 119.4 (3) |
O1—C1—Re1 | 177.7 (4) | C5—C6—H6 | 120.3 |
N2—C9—C8 | 119.8 (3) | C7—C6—H6 | 120.3 |
N2—C9—H9 | 120.1 | C19—C12—C13 | 109.8 (3) |
C8—C9—H9 | 120.1 | C19—C12—C11 | 109.9 (3) |
C6—C7—C8 | 118.7 (3) | C13—C12—C11 | 109.2 (3) |
C6—C7—H7 | 120.7 | C19—C12—H12 | 109.3 |
C8—C7—H7 | 120.7 | C13—C12—H12 | 109.3 |
N1—C4—C5 | 122.9 (4) | C11—C12—H12 | 109.3 |
N1—C4—H4 | 118.5 | C12—C13—C14 | 108.9 (3) |
C5—C4—H4 | 118.5 | C12—C13—H13A | 109.9 |
O3—C3—Re1 | 177.5 (3) | C14—C13—H13A | 109.9 |
C10—C18—C14 | 109.5 (2) | C12—C13—H13B | 109.9 |
C10—C18—H18A | 109.8 | C14—C13—H13B | 109.9 |
C14—C18—H18A | 109.8 | H13A—C13—H13B | 108.3 |
C4—N1—C8—C7 | −1.2 (5) | C10—C18—C14—C15 | 60.7 (3) |
Re1—N1—C8—C7 | −179.4 (3) | C10—C18—C14—C13 | −60.3 (3) |
C4—N1—C8—C9 | 178.6 (3) | C13—C14—C15—C16 | 60.5 (3) |
Re1—N1—C8—C9 | 0.3 (3) | C18—C14—C15—C16 | −60.1 (4) |
C9—N2—C10—C11 | 114.9 (3) | N1—C4—C5—C6 | 0.2 (6) |
Re1—N2—C10—C11 | −59.7 (3) | C12—C19—C16—C15 | 59.8 (3) |
C9—N2—C10—C18 | −5.3 (4) | C12—C19—C16—C17 | −61.2 (4) |
Re1—N2—C10—C18 | −179.86 (19) | C14—C15—C16—C19 | −60.1 (3) |
C9—N2—C10—C17 | −125.8 (3) | C14—C15—C16—C17 | 60.6 (3) |
Re1—N2—C10—C17 | 59.7 (3) | C10—C17—C16—C19 | 59.6 (3) |
C16—C17—C10—N2 | −175.5 (2) | C10—C17—C16—C15 | −61.6 (3) |
C16—C17—C10—C11 | −58.2 (3) | N2—C10—C11—C12 | 175.8 (3) |
C16—C17—C10—C18 | 60.6 (3) | C18—C10—C11—C12 | −60.7 (3) |
C10—N2—C9—C8 | −177.0 (3) | C17—C10—C11—C12 | 57.8 (3) |
Re1—N2—C9—C8 | −1.8 (4) | C4—C5—C6—C7 | −1.1 (6) |
N1—C8—C9—N2 | 1.0 (4) | C8—C7—C6—C5 | 0.9 (5) |
C7—C8—C9—N2 | −179.2 (3) | C16—C19—C12—C13 | −59.3 (4) |
N1—C8—C7—C6 | 0.3 (5) | C16—C19—C12—C11 | 61.0 (4) |
C9—C8—C7—C6 | −179.5 (3) | C10—C11—C12—C19 | −59.0 (4) |
C8—N1—C4—C5 | 0.9 (5) | C10—C11—C12—C13 | 61.6 (4) |
Re1—N1—C4—C5 | 178.9 (3) | C19—C12—C13—C14 | 59.6 (4) |
N2—C10—C18—C14 | 179.4 (2) | C11—C12—C13—C14 | −61.1 (4) |
C11—C10—C18—C14 | 60.0 (3) | C15—C14—C13—C12 | −60.6 (3) |
C17—C10—C18—C14 | −60.0 (3) | C18—C14—C13—C12 | 60.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···Cl1i | 0.93 | 2.76 | 3.523 (3) | 140 |
C7—H7···Cl1i | 0.93 | 2.92 | 3.662 (4) | 137 |
C18—H18A···Cl1ii | 0.97 | 2.74 | 3.701 (3) | 170 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
Financial support from NSF grant DMR-1409335 is gratefully acknowledged. JJ is supported by NIH grant 2R25GM058903.
References
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carrington, S. J., Chakraborty, I., Bernard, J. M. L. & Mascharak, P. K. (2016). Inorg. Chem. doi:10.1021/acsinorgchem.6b00511. Google Scholar
Chakraborty, I., Carrington, S. J. & Mascharak, P. K. (2014). Acc. Chem. Res. 47, 2603–2611. Web of Science CrossRef CAS PubMed Google Scholar
Chanawanno, K., Engle, J. T., Le, K. X., Herrick, R. S. & Ziegler, C. J. (2013). Dalton Trans. 42, 13679–13684. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dominey, R. N., Hauser, B., Hubbard, J. & Dunham, J. (1991). Inorg. Chem. 30, 4754–4758. CSD CrossRef CAS Web of Science Google Scholar
Gonzalez, M. A. & Mascharak, P. K. (2014). J. Inorg. Biochem. 133, 127–135. Web of Science PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hasheminasab, A., Engle, J. T., Bass, J., Herrick, R. S. & Ziegler, C. J. (2014). Eur. J. Inorg. Chem. pp. 2643–2652. Web of Science CSD CrossRef Google Scholar
Kianfar, E., Kaiser, M. & Knör, G. (2015). J. Organomet. Chem. 799–800, 13–18. Web of Science CSD CrossRef CAS Google Scholar
Kumar, A., Sun, S.-S. & Lees, A. J. (2010). Top. Organomet. Chem. 29, 1–35. CAS Google Scholar
Liu, W. & Heinze, K. (2010). Dalton Trans. 39, 9554–9564. Web of Science CSD CrossRef CAS PubMed Google Scholar
Palmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, Oxfordshire, England. Google Scholar
Romao, C. C., Blatter, W. A., Seixas, J. D. & Bernardes, G. D. L. (2012). Chem. Soc. Rev. 41, 3571–3583. Web of Science CAS PubMed Google Scholar
Schatzschneider, U. (2015). Br. J. Pharmacol. 172, 1638–1650. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stufkens, D. J. & Vlcek, A. Jr (1998). Coord. Chem. Rev. 177, 127–179. Web of Science CrossRef CAS Google Scholar
Wanka, L., Iqbal, K. & Schreiner, P. R. (2013). Chem. Rev. 113, 3516–3604. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zobi, F., Blacque, O., Jacobs, R. A., Schaub, M. C. & Bogdonova, A. Y. (2012). Dalton Trans. 41, 370–378. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.