research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An unprecedented binuclear cadmium di­thio­carbamate adduct: bis­­[μ2-N-(2-hy­droxy­eth­yl)-N-iso­propyl­carbamodi­thio­ato-κ3S:S,S′]bis­­{[N-(2-hy­droxy­eth­yl)-N-iso­propyl­carbamodi­thio­ato-κ2S,S′](3-{(1E)-[(E)-2-(pyridin-3-yl­methyl­­idene)hydrazin-1-yl­­idene]meth­yl}pyridine-κN)cadmium]} dihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio, 43202, USA, and cCentre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 July 2016; accepted 27 July 2016; online 2 August 2016)

The asymmetric unit in the title binuclear compound, [Cd(C6H12NOS2)2(C12H10N4)]2·2H2O, comprises a CdII atom, two di­thio­carbamate (dtc) anions, a monodentate 3-pyridine­aldazine ligand and a lattice water mol­ecule. The binuclear mol­ecule is constructed by the application of inversion symmetry. One dtc ligand simultaneously chelates one cadmium atom and bridges the centrosymmetric mate, while the other dtc ligand is chelating only. This leads to a centrosymmetric [Cd(dtc)2]2 core to which are appended two 3-pyridine­aldazine ligands. The resulting NS5 donor set is based on an octa­hedron. The three-dimensional mol­ecular packing is sustained by hydroxyl-O—H(hydrox­yl) and water-O—H⋯O(hydrox­yl) hydrogen bonding, leading to supra­molecular layers parallel to (101) which are connected by water-O—H⋯N(pyrid­yl) hydrogen bonding; additional C—H⋯O, S π(chelate ring) inter­actions are also evident. The retention of the central [Cd(dtc)2]2 core upon adduct formation is unprecedented in the structural chemistry of the zinc-triad di­thio­carbamates.

1. Chemical context

The common feature of the structural chemistry of the binary cadmium di­thio­carbamates, i.e. mol­ecules of the general formula Cd(S2CNRR′)2 for R, R′ = alkyl, is the adoption of aggregated species in the solid state. The overwhelming majority of structures are binuclear, [Cd(S2CNRR′)2]2, arising from equal numbers of μ2-tridentate and bidentate (chelating) ligands (Tiekink, 2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]; Tan, Halim et al., 2016[Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.]). The exceptional structures are trinuclear {Cd[S2CN(p-tol)furan-2-ylmeth­yl]2}3 (Kumar et al., 2014[Kumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. & Singh, N. (2014). CrystEngComm, 16, 6765-6774.]), having two μ2-tridentate and four chelating ligands, and one-dimensional polymeric [Cd(S2CNMe2)2]n (Bing et al., 2010[Bing, Y., Li, X., Zha, M. & Lu, Y. (2010). Acta Cryst. E66, m1500.]), {Cd[S2CN(iPr)CH2CH2OH]2}n (Tan et al., 2013[Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046-3056.]; Tan, Halim et al., 2016[Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.]) and {Cd[S2CN(Me)CH2CH(OMe)2]2}n (Ferreira et al., 2016[Ferreira, I. P., de Lima, G. M., Paniago, E. B., Pinheiro, C. B., Wardell, J. L. & Wardell, S. M. S. V. (2016). Inorg. Chim. Acta, 441, 137-145.]), having all ligands μ2-tridentate. Inter­estingly, supra­molecular isomers were found for the {Cd[S2CN(iPr)CH2CH2OH]2}n species (Tan et al., 2013[Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046-3056.]; Tan, Halim et al., 2016[Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.]), which were shown to adopt the common binuclear structural motif. Up to now, whenever Cd(S2CNRR′)2 is reacted with bases, e.g. pyridyl-donors, the original aggregate is disrupted in that no dtc links are retained between cadmium atoms. Thus, when archetypal, binuclear [Cd(S2CNEt2)2]2 (Domenicano et al., 1968[Domenicano, A., Torelli, L., Vaciago, A. & Zambonelli, L. (1968). J. Chem. Soc. A, pp. 1351-1361.]; Dee & Tiekink, 2002[Dee, C. M. & Tiekink, E. R. T. (2002). Z. Kristallogr. New Cryst. Struct. 217, 85-86.]) reacts with monodentate N-donors such as 2,6-di­methyl­pyridine, mononuclear, five-coordinate species result (Lennartson & Håkansson, 2009[Lennartson, A. & Håkansson, M. (2009). Angew. Chem. Int. Ed. 48, 5869-5871.]). Similarly, bidentate chelating ligands, such as 2,2′-bipyridyl, lead to mononuclear species but with formally six-coordinate cadmium atoms (Airoldi et al., 1990[Airoldi, C., De Oliveira, S. F., Ruggiero, S. G. & Lechat, J. R. (1990). Inorg. Chim. Acta, 174, 103-108.]). Higher nuclearity structures are also formed with bridging, bidentate ligands such as in the one-dimensional coordination polymers formed with μ2-1,2-bis­(4-pyrid­yl)ethyl­ene (Chai et al., 2003[Chai, J., Lai, C. S., Yan, J. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 249-250.]) and μ2-1,2-bis­(4-pyrid­yl)ethane (Avila et al., 2006[Avila, V., Benson, R. E., Broker, G. A., Daniels, L. M. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m1425-m1427.]). In the latter structures, six-coordinate, trans-N2S4 donor sets are found. In the present report, crystals of the 1:2 adduct between {Cd[S2CN(iPr)CH2CH2OH)]2}2 and 3-pyridine­aldazine were isolated and shown by X-ray crystallography that despite having one potentially bidentate bi-pyridyl ligand per Cd[S2CN(iPr)CH2CH2OH)]2 unit, the central binuclear core (Tan et al., 2013[Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046-3056.]; Tan, Halim et al., 2016[Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.]) remained intact with the 3-pyridine­aldazine mol­ecules coordinating in a monodentate mode, thereby representing a new structural motif for this class of compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the binuclear title compound, isolated as a dihydrate, is shown in Fig. 1[link] and selected geometric parameters are collated in Table 1[link]. The binuclear compound is disposed about a centre of inversion so the asymmetric comprises a Cd[S2CN(iPr)CH2CH2OH)]2 entity, a 3-pyridine­aldazine ligand and one water mol­ecule of solvation. One di­thio­carbamate (dtc) ligand coordinates in a chelating mode forming very similar Cd—S bond lengths, i.e. the difference between the Cd—Sshort and Cd—Slong bond lengths is only 0.033 Å; this equivalence is reflected in the equivalence in the associated C1—S1, S2 bond lengths, Table 1[link]. The second independent dtc chelates one cadmium atom and at the same time bridges the other cadmium atom. The Cd—S3bridging bond lengths are close to being equal, differing by only 0.010 Å, and are longer by ca 0.1 Å than the non-bridging Cd—S4 bond length, Table 1[link]. The differences in the number and strength of the Cd—S bond lengths for the S3-dtc ligand is reflected in the C7—S3, S4 separations with the C7—S4 bond length of 1.714 (2) Å being the shortest across the series. The sixth position in the distorted octa­hedral coordination geometry is occupied by a nitro­gen atom of the monodentate 3-pyridine­aldazine ligand. Distortions in angles about the cadmium atom are largely related to the restricted bite distances of the dtc ligands, Table 1[link]. While not having crystallographic symmetry, the 3-pyridine­aldazine mol­ecule adopts an anti disposition about both imine bonds, i.e. C18=N4 = 1.283 (3) Å and C19=N5 = 1.277 (3) Å; the central, azo bond is 1.415 (2) Å. The pyridyl-N atoms are also anti but there are twists in the 3-pyridine­aldazine mol­ecule, as seen in the value of the dihedral angle between the two pyridyl rings of 22.78 (12)°.

Table 1
Selected geometric parameters (Å, °)

Cd—S1 2.6444 (5) Cd—N3 2.3811 (18)
Cd—S2 2.6768 (5) S1—C1 1.7267 (19)
Cd—S3 2.7422 (5) S2—C1 1.7231 (18)
Cd—S3i 2.7317 (6) S3—C7 1.7404 (19)
Cd—S4i 2.6342 (5) S4—C7 1.714 (2)
       
S1—Cd—S2 67.824 (14) S2—Cd—S3 167.393 (15)
S4i—Cd—S3i 67.343 (17) N3—Cd—S3i 166.35 (4)
S4i—Cd—S1 160.481 (17)    
Symmetry code: (i) -x+1, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the binuclear title compound, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. [Symmetry code: (i) 1 − x, −y, 1 − z.]

3. Supra­molecular features

Significant O—H⋯O hydrogen bonding is found in the mol­ecular packing of the binuclear title compound as would be expected from the chemical composition. Thus, mol­ecules are assembled into layers approximately parallel to (101) by hy­droxy-O—H⋯O(hydrox­yl) and hy­droxy-O—H⋯O(water) hydrogen bonds as detailed in Table 2[link]. Thus, strings of {⋯Ohy­droxy—H⋯Ohy­droxy—H⋯Owater—H}n chains are formed as shown in Fig. 2[link]a. The water mol­ecules also form water-O—H⋯N(pyrid­yl) hydrogen bonds on either side of the supra­molecular layers sustained by O—H⋯O hydrogen bonds, Fig. 2[link]b. The pendent pyridyl-N atoms of Fig. 2[link]b are coordinating to cadmium atoms of successive layers so that a three-dimensional architecture results. Globally, and as seen from Fig. 3[link], the mol­ecular packing comprises alternating layers of {Cd[S2CN(iPr)CH2CH2OH)]2}2 and 3-pyridine­aldazine with the key links between them being hydrogen and coordinate bonding. Within this framework stabilized primarily by hydrogen-bonding inter­actions, there are some second tier inter­actions worthy of comment (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Thus, referring to data in Table 2[link], the hydroxyl-O1 atom also accepts a contact from a pyridyl-C—H atom as the 3-pyridine­aldazine ligand is orientated so that the non-coord­inating end is directed over the hy­droxy/water-rich region of the structure. Within the layers shown in Fig. 2[link]a, methine-C—H⋯S inter­actions are seen and between layers pyridyl-C—H⋯S contacts, inter­estingly, both involving the S2 atom. Finally, as has increasingly been noted in recent descriptions of the structural chemistry of metal di­thio­carbamates, C—H⋯π(chelate) inter­actions are present (Tiekink & Zukerman-Schpector, 2011[Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623-6625.]). Here, a pyridyl-C—H atom sits almost perpendicular to the chelate ring involving the S1-di­thio­carbamate ligand, i.e. the C—H⋯ring centroid(chelate ring) angle is 178°, in the inter-layer region, Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2ii 0.83 (2) 1.83 (3) 2.655 (3) 172 (3)
O2—H2O⋯O1W 0.85 (3) 1.80 (3) 2.640 (3) 180 (6)
O1W—H1W⋯O1 0.84 (3) 1.92 (3) 2.750 (3) 172 (3)
O1W—H2W⋯N6iii 0.85 (2) 2.00 (2) 2.840 (3) 172 (2)
C23—H23⋯O1ii 0.95 2.50 3.295 (3) 141
C4—H4⋯S2iv 1.00 2.79 3.599 (2) 139
C15—H15⋯S2v 0.95 2.84 3.714 (2) 153
C15—H15⋯Cg(Cd,S1,S2,C1)vi 0.95 2.79 3.737 (2) 173
Symmetry codes: (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [x-{\script{3\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 2]
Figure 2
Mol­ecular packing: (a) view of the supra­molecular layer sustained by hy­droxy-O—H⋯O(hy­droxy) and hy­droxy-O—H⋯O(water) hydrogen bonds, shown as orange dashed lines. Only the pyridyl N atoms of the 3-pyridine­aldazine ligands are shown. (b) A side-on view of the layer in (a) extended to show the two central 3-pyridine­aldazine ligands (see text). The putative water-O—H⋯N(pyrid­yl) hydrogen bonds are shown as blue dashed lines. In both images, only acidic hydrogen atoms are included.
[Figure 3]
Figure 3
A view of the unit cell contents shown in projection down the b axis, highlighting the alternating layers of {Cd[S2CN(iPr)CH2CH2OH)]2}2 and 3-pyridine­aldazine mol­ecules. Water mol­ecules are located in the hy­droxy-rich regions, i.e. the key inter­faces between layers.

4. Database survey

There are 14 examples of cadmium compounds with 3-pyridine­aldazine in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Most of these feature μ2-bridging 3-pyridine­aldazine such as in the two most relevant compounds to the present study, namely {Cd[S2P(O-iPr)2]2(μ2-3-pyridine­aldazine)}n (Lai & Tiekink, 2006a[Lai, C. S. & Tiekink, E. R. T. (2006a). Z. Kristallogr. 221, 288-293.]) and bulky analogue {Cd[S2P(O-cHex)2]2(μ2-3-pyridine­aldazine)}n (Lai & Tiekink, 2006b[Lai, C. S. & Tiekink, E. R. T. (2006b). J. Mol. Struct. 796, 114-118.]). In the structure of {Cd[O2P(O-tBu)2]2(3-pyridine­aldazine)2(μ2-3-pyridine­aldazine)·H2O}n (Rajakannu et al., 2015[Rajakannu, P., Howlader, R., Kalita, A. Ch., Butcher, R. J. & Murugavel, R. (2015). Inorg. Chem. Front. 2, 55-66.]), both bridging and monodentate 3-pyridine­aldazine ligands, in a 1:2 ratio, are observed. Underscoring the flexibility in mode of association of 3-pyridine­aldazine in their crystal structures, in {[Cd(3-pyridine­aldazine)2(μ2-3-pyridine­aldazine)(OH2)2](3-pyridine­aldazine)·2ClO4}n (Bhattacharya et al., 2013[Bhattacharya, B., Dey, R., Maity, D. K. & Ghoshal, D. (2013). CrystEngComm, 15, 9457-9464.]), bridging, monodentate and non-coordinating 3-pyridine­aldazine ligands, in a 1:2:1 ratio, are noted.

The most curious feature of the structure of the title compound is the retention of the central binuclear core. This is unprecedented in the structural chemistry of cadmium di­thio­carbamates (see Chemical context). A good number of zinc and mercury binary di­thio­carbamates are also known to adopt related binuclear [M(S2CNRR')2]2 aggregates owing to the presence of equal numbers of μ2-tridentate and chelating ligands (Tiekink, 2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]; Jotani et al., 2016[Jotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403-413.]). Without exception, these are broken down upon adduct formation, regardless of the nature of the donor atom(s) (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). This makes more curious the recent report of the mol­ecular structure of a cadmium xanthate adduct, [Cd(S2CO-iPr)2(hmta)]2, where hmta is hexa­methyl­ene­tetra­mine, for which an analogous centrosymmetric core and NS5 donor set as in the title compound was observed (Tan, Azizuddin et al., 2016[Tan, Y. S., Azizuddin, A. D., Câmpian, M. V., Haiduc, I. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 155-165.]). This is quite unusual as there are no precedents for such [Cd(S2COR)2]2 cores in the structural chemistry of metal xanthates (Tiekink & Haiduc, 2005[Tiekink, E. R. T. & Haiduc, I. (2005). Prog. Inorg. Chem. 54, 127-319.]). Clearly, as more study continues in this field, more inter­esting outcomes will be noted and rationalizations emerge.

5. Synthesis and crystallization

Cd[S2CN(iPr)CH2CH2OH)]2 (235 mg, 0.5 mmol) and 3-pyridine­aldazine (110 mg, 0.5 mmol) were dissolved in 1-propanol (15 ml). The solution was carefully covered with hexa­nes. Yellow blocks were obtained via slow diffusion of hexa­nes into the 1-propanol solution over two weeks. m.p. 389–391 K. IR (cm−1): 1449 (m) ν(C=N), 1173 (s) ν(C—S). 1H NMR: δ 9.04 (d, Ar, J = 1.46 Hz), 8.81 (s, Ar), 8.72 (d, Ar, J = 1.46 Hz), 8.29 (d, Ar, J = 1.95 Hz), 7.56 (qd, HC=CH, J = 4.88 Hz), 5.22 [sept, CH(CH3)2, J = 6.83 Hz], 4.83 (t, OH, J = 5.37 Hz), 3.74 (d, CH2O, J = 6.83 Hz), 3.68 (d, NCH2, J = 6.83 Hz), 1.18 (d, CH3, J = 6.84 Hz). TGA: three steps, corresponding to loss of water (calculated weight loss 2.6%; experimental weight loss 2.3%; onset 352 K, mid-point 364 K, endset 378 K), loss of the 3-pyridine­aldazine ligand (calculated weight loss 30.2%; experimental weight loss 30.5%; onset 418 K, mid-point 496 K, endset 511 K), and decomposition down to cadmium sulfide (calculated weight loss 79.3; experimental weight loss 75.1%; onset 542 K, mid-point 576 K, endset 620 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set at 1.2–1.5Ueq(C). The oxygen-bound H atoms were located in a difference Fourier map but were refined with a distance restraint of O—H = 0.84±0.01 Å, and with Uiso(H) set at 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Cd(C6H12NOS2)2(C12H10N4)]2·2H2O
Mr 1394.48
Crystal system, space group Monoclinic, P21/n
Temperature (K) 98
a, b, c (Å) 16.4700 (18), 12.2257 (12), 17.0862 (19)
β (°) 114.932 (2)
V3) 3119.8 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.40 × 0.30 × 0.08
 
Data collection
Diffractometer AFC12K/SATURN724
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.661, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 22846, 7133, 6807
Rint 0.029
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.065, 1.08
No. of reflections 7133
No. of parameters 359
No. of restraints 4
Δρmax, Δρmin (e Å−3) 0.54, −0.39
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[µ2-N-(2-hydroxyethyl)-N-isopropylcarbamodithioato-κ3S:S,S']bis{[N-(2-hydroxyethyl)-N-isopropylcarbamodithioato-κ2S,S'](3-{(1E)-[(E)-2-(pyridin-3-ylmethylidene)hydrazin-1-ylidene]methyl}pyridine-κN)cadmium]} dihydrate top
Crystal data top
[Cd(C6H12NOS2)2(C12H10N4)2]2·2H2OF(000) = 1432
Mr = 1394.48Dx = 1.484 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.4700 (18) ÅCell parameters from 19902 reflections
b = 12.2257 (12) Åθ = 2.7–40.8°
c = 17.0862 (19) ŵ = 1.00 mm1
β = 114.932 (2)°T = 98 K
V = 3119.8 (6) Å3Plate, yellow
Z = 20.40 × 0.30 × 0.08 mm
Data collection top
AFC12K/SATURN724
diffractometer
7133 independent reflections
Radiation source: fine-focus sealed tube6807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2021
Tmin = 0.661, Tmax = 1.000k = 1515
22846 measured reflectionsl = 2219
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0243P)2 + 2.9797P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.54 e Å3
7133 reflectionsΔρmin = 0.39 e Å3
359 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.43075 (2)0.13535 (2)0.44655 (2)0.01368 (5)
S10.36321 (3)0.19066 (4)0.55658 (3)0.01568 (10)
S20.43474 (3)0.35177 (4)0.47165 (3)0.01378 (9)
S30.39975 (3)0.08571 (4)0.43612 (3)0.01393 (9)
S40.45562 (3)0.11726 (4)0.62449 (3)0.01652 (10)
O10.36420 (11)0.30641 (13)0.79528 (10)0.0241 (3)
H1O0.3348 (17)0.3606 (15)0.797 (2)0.036*
O20.24285 (16)0.03206 (14)0.70325 (14)0.0425 (5)
H2O0.241 (3)0.0271 (17)0.728 (2)0.064*
O1W0.23612 (12)0.15309 (13)0.77985 (12)0.0276 (4)
H1W0.2791 (15)0.195 (2)0.787 (2)0.041*
H2W0.1898 (13)0.185 (2)0.7437 (16)0.041*
N10.28639 (11)0.08842 (14)0.51175 (11)0.0165 (3)
N20.37924 (11)0.40314 (13)0.59396 (11)0.0150 (3)
N30.29195 (12)0.15099 (13)0.32251 (11)0.0177 (3)
N40.11563 (13)0.38202 (15)0.34081 (13)0.0242 (4)
N50.05594 (13)0.46819 (16)0.33476 (13)0.0260 (4)
N60.08839 (14)0.74203 (17)0.35311 (15)0.0324 (5)
C10.39084 (12)0.32403 (15)0.54493 (12)0.0126 (3)
C20.33799 (13)0.37919 (16)0.65353 (13)0.0165 (4)
H2A0.28880.32590.62620.020*
H2B0.31190.44720.66460.020*
C30.40587 (15)0.33254 (18)0.73950 (14)0.0218 (4)
H3A0.43350.26580.72840.026*
H3B0.45400.38680.76800.026*
C40.40109 (14)0.51947 (15)0.58531 (14)0.0178 (4)
H40.43610.52030.54970.021*
C50.46023 (15)0.56990 (17)0.67257 (15)0.0227 (4)
H5A0.51430.52550.70100.034*
H5B0.42730.57230.70870.034*
H5C0.47710.64430.66400.034*
C60.31638 (15)0.58567 (17)0.53696 (15)0.0238 (4)
H6A0.27980.54950.48210.036*
H6B0.33250.65920.52560.036*
H6C0.28230.59090.57200.036*
C70.37201 (13)0.09619 (15)0.52349 (13)0.0144 (4)
C80.26157 (15)0.10857 (17)0.58411 (14)0.0198 (4)
H8A0.29880.16870.62030.024*
H8B0.19820.13190.56090.024*
C90.27426 (16)0.00701 (17)0.63969 (15)0.0237 (4)
H9A0.33830.01350.66760.028*
H9B0.24000.05510.60370.028*
C100.21194 (14)0.07222 (17)0.42431 (14)0.0207 (4)
H100.23920.04310.38610.025*
C110.16893 (16)0.1815 (2)0.38682 (16)0.0305 (5)
H11A0.21420.23070.38320.046*
H11B0.12110.17010.32900.046*
H11C0.14380.21410.42410.046*
C120.14460 (15)0.0123 (2)0.42532 (17)0.0299 (5)
H12A0.17560.08120.44910.045*
H12B0.11540.01430.46120.045*
H12C0.09940.02450.36630.045*
C130.26289 (15)0.08493 (17)0.25306 (14)0.0201 (4)
H130.30110.02810.25070.024*
C140.17944 (15)0.09657 (18)0.18503 (14)0.0227 (4)
H140.16060.04820.13710.027*
C150.12347 (14)0.18035 (17)0.18798 (14)0.0209 (4)
H150.06650.19120.14140.025*
C160.15226 (13)0.24779 (16)0.26003 (13)0.0170 (4)
C170.23735 (14)0.22991 (16)0.32592 (13)0.0180 (4)
H170.25730.27580.37530.022*
C180.09590 (14)0.33688 (17)0.26722 (14)0.0199 (4)
H180.04520.36090.21780.024*
C190.07322 (14)0.50864 (18)0.40903 (15)0.0234 (4)
H190.11930.47730.45880.028*
C200.02300 (15)0.60274 (18)0.41864 (15)0.0231 (4)
C210.04395 (15)0.65334 (19)0.34710 (16)0.0256 (5)
H210.05850.62320.29150.031*
C220.06761 (18)0.7822 (2)0.4324 (2)0.0400 (6)
H220.09910.84500.43740.048*
C230.00341 (19)0.7380 (2)0.50682 (18)0.0378 (6)
H230.00870.76930.56150.045*
C240.04320 (17)0.6467 (2)0.50016 (17)0.0301 (5)
H240.08820.61450.55030.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01391 (8)0.01315 (7)0.01351 (8)0.00222 (5)0.00533 (6)0.00025 (5)
S10.0203 (2)0.0118 (2)0.0179 (2)0.00160 (17)0.0110 (2)0.00003 (17)
S20.0168 (2)0.0131 (2)0.0133 (2)0.00056 (17)0.00812 (18)0.00001 (16)
S30.0158 (2)0.0136 (2)0.0135 (2)0.00129 (17)0.00717 (18)0.00009 (16)
S40.0174 (2)0.0196 (2)0.0135 (2)0.00195 (18)0.00735 (19)0.00139 (18)
O10.0322 (9)0.0246 (8)0.0226 (8)0.0050 (7)0.0187 (7)0.0051 (6)
O20.0775 (15)0.0232 (8)0.0574 (13)0.0139 (9)0.0583 (13)0.0092 (8)
O1W0.0316 (9)0.0233 (8)0.0317 (10)0.0008 (7)0.0172 (8)0.0012 (7)
N10.0162 (8)0.0177 (8)0.0177 (9)0.0016 (6)0.0091 (7)0.0033 (6)
N20.0183 (8)0.0129 (7)0.0165 (8)0.0012 (6)0.0100 (7)0.0009 (6)
N30.0198 (8)0.0160 (8)0.0145 (8)0.0015 (7)0.0044 (7)0.0003 (6)
N40.0212 (9)0.0250 (9)0.0234 (10)0.0069 (7)0.0065 (8)0.0021 (7)
N50.0240 (9)0.0266 (9)0.0262 (10)0.0069 (8)0.0094 (8)0.0004 (8)
N60.0272 (10)0.0331 (11)0.0339 (12)0.0045 (9)0.0099 (9)0.0078 (9)
C10.0116 (8)0.0149 (8)0.0105 (9)0.0001 (7)0.0038 (7)0.0003 (7)
C20.0178 (9)0.0181 (9)0.0172 (10)0.0006 (7)0.0110 (8)0.0005 (7)
C30.0227 (10)0.0273 (10)0.0182 (10)0.0028 (9)0.0114 (9)0.0017 (8)
C40.0238 (10)0.0122 (8)0.0209 (10)0.0034 (8)0.0127 (9)0.0024 (7)
C50.0266 (11)0.0169 (9)0.0247 (11)0.0049 (8)0.0111 (9)0.0067 (8)
C60.0291 (11)0.0187 (10)0.0236 (11)0.0012 (9)0.0112 (10)0.0011 (8)
C70.0169 (9)0.0103 (8)0.0167 (9)0.0006 (7)0.0077 (8)0.0008 (7)
C80.0225 (10)0.0198 (9)0.0232 (11)0.0011 (8)0.0155 (9)0.0016 (8)
C90.0310 (11)0.0208 (10)0.0301 (12)0.0005 (9)0.0232 (10)0.0020 (9)
C100.0156 (9)0.0241 (10)0.0210 (11)0.0016 (8)0.0064 (8)0.0035 (8)
C110.0277 (12)0.0285 (12)0.0278 (13)0.0016 (10)0.0045 (10)0.0011 (10)
C120.0213 (11)0.0304 (12)0.0351 (14)0.0054 (9)0.0092 (10)0.0033 (10)
C130.0258 (11)0.0168 (9)0.0167 (10)0.0008 (8)0.0080 (9)0.0008 (8)
C140.0294 (11)0.0223 (10)0.0141 (10)0.0051 (9)0.0069 (9)0.0018 (8)
C150.0184 (10)0.0232 (10)0.0162 (10)0.0042 (8)0.0026 (8)0.0029 (8)
C160.0164 (9)0.0163 (9)0.0175 (10)0.0026 (7)0.0064 (8)0.0029 (7)
C170.0194 (10)0.0156 (9)0.0168 (10)0.0003 (8)0.0056 (8)0.0003 (7)
C180.0151 (9)0.0218 (10)0.0206 (10)0.0002 (8)0.0052 (8)0.0051 (8)
C190.0181 (10)0.0280 (11)0.0227 (11)0.0007 (8)0.0073 (9)0.0030 (9)
C200.0209 (10)0.0259 (10)0.0247 (11)0.0042 (9)0.0118 (9)0.0028 (9)
C210.0231 (11)0.0296 (11)0.0234 (12)0.0015 (9)0.0091 (9)0.0041 (9)
C220.0339 (14)0.0411 (14)0.0447 (16)0.0055 (12)0.0162 (13)0.0165 (13)
C230.0384 (14)0.0480 (15)0.0295 (14)0.0030 (12)0.0167 (12)0.0160 (12)
C240.0289 (12)0.0369 (13)0.0246 (12)0.0019 (10)0.0113 (10)0.0019 (10)
Geometric parameters (Å, º) top
Cd—S12.6444 (5)C5—H5B0.9800
Cd—S22.6768 (5)C5—H5C0.9800
Cd—S32.7422 (5)C6—H6A0.9800
Cd—S3i2.7317 (6)C6—H6B0.9800
Cd—S4i2.6342 (5)C6—H6C0.9800
Cd—N32.3811 (18)C8—C91.523 (3)
S1—C11.7267 (19)C8—H8A0.9900
S2—C11.7231 (18)C8—H8B0.9900
S3—C71.7404 (19)C9—H9A0.9900
S3—Cdi2.7317 (6)C9—H9B0.9900
S4—C71.714 (2)C10—C111.521 (3)
S4—Cdi2.6343 (5)C10—C121.521 (3)
O1—C31.426 (2)C10—H101.0000
O1—H1O0.830 (10)C11—H11A0.9800
O2—C91.419 (2)C11—H11B0.9800
O2—H2O0.846 (10)C11—H11C0.9800
O1W—H1W0.842 (10)C12—H12A0.9800
O1W—H2W0.847 (10)C12—H12B0.9800
N1—C71.341 (2)C12—H12C0.9800
N1—C81.477 (2)C13—C141.383 (3)
N1—C101.493 (3)C13—H130.9500
N2—C11.345 (2)C14—C151.393 (3)
N2—C21.472 (2)C14—H140.9500
N2—C41.490 (2)C15—C161.388 (3)
N3—C171.337 (3)C15—H150.9500
N3—C131.346 (3)C16—C171.396 (3)
N4—C181.283 (3)C16—C181.469 (3)
N4—N51.415 (2)C17—H170.9500
N5—C191.277 (3)C18—H180.9500
N6—C211.336 (3)C19—C201.466 (3)
N6—C221.342 (3)C19—H190.9500
C2—C31.532 (3)C20—C241.396 (3)
C2—H2A0.9900C20—C211.399 (3)
C2—H2B0.9900C21—H210.9500
C3—H3A0.9900C22—C231.377 (4)
C3—H3B0.9900C22—H220.9500
C4—C61.521 (3)C23—C241.386 (4)
C4—C51.526 (3)C23—H230.9500
C4—H41.0000C24—H240.9500
C5—H5A0.9800
N3—Cd—S4i101.46 (4)N1—C7—S4120.60 (15)
N3—Cd—S194.50 (4)N1—C7—S3120.40 (15)
N3—Cd—S290.73 (4)S4—C7—S3119.00 (11)
S4i—Cd—S2100.522 (15)N1—C8—C9111.86 (16)
S1—Cd—S267.824 (14)N1—C8—H8A109.2
S4i—Cd—S3i67.343 (17)C9—C8—H8A109.2
S4i—Cd—S1160.481 (17)N1—C8—H8B109.2
S2—Cd—S3167.393 (15)C9—C8—H8B109.2
N3—Cd—S3i166.35 (4)H8A—C8—H8B107.9
S1—Cd—S3i98.110 (17)O2—C9—C8107.62 (17)
S2—Cd—S3i98.831 (15)O2—C9—H9A110.2
N3—Cd—S386.49 (4)C8—C9—H9A110.2
S4i—Cd—S392.082 (15)O2—C9—H9B110.2
S1—Cd—S3100.113 (14)C8—C9—H9B110.2
S3i—Cd—S386.184 (15)H9A—C9—H9B108.5
C1—S1—Cd87.09 (6)N1—C10—C11110.18 (17)
C1—S2—Cd86.13 (6)N1—C10—C12111.95 (18)
C7—S3—Cdi84.87 (7)C11—C10—C12112.89 (19)
C7—S3—Cd97.23 (6)N1—C10—H10107.2
Cdi—S3—Cd93.816 (15)C11—C10—H10107.2
C7—S4—Cdi88.51 (7)C12—C10—H10107.2
C3—O1—H1O108 (2)C10—C11—H11A109.5
C9—O2—H2O107 (3)C10—C11—H11B109.5
H1W—O1W—H2W106 (3)H11A—C11—H11B109.5
C7—N1—C8120.49 (17)C10—C11—H11C109.5
C7—N1—C10121.81 (16)H11A—C11—H11C109.5
C8—N1—C10117.33 (16)H11B—C11—H11C109.5
C1—N2—C2121.05 (16)C10—C12—H12A109.5
C1—N2—C4121.41 (16)C10—C12—H12B109.5
C2—N2—C4117.38 (15)H12A—C12—H12B109.5
C17—N3—C13118.42 (18)C10—C12—H12C109.5
C17—N3—Cd115.48 (14)H12A—C12—H12C109.5
C13—N3—Cd126.01 (14)H12B—C12—H12C109.5
C18—N4—N5111.56 (18)N3—C13—C14122.51 (19)
C19—N5—N4111.02 (19)N3—C13—H13118.7
C21—N6—C22117.4 (2)C14—C13—H13118.7
N2—C1—S2121.63 (14)C13—C14—C15118.9 (2)
N2—C1—S1119.59 (14)C13—C14—H14120.5
S2—C1—S1118.77 (11)C15—C14—H14120.5
N2—C2—C3111.96 (16)C16—C15—C14119.0 (2)
N2—C2—H2A109.2C16—C15—H15120.5
C3—C2—H2A109.2C14—C15—H15120.5
N2—C2—H2B109.2C15—C16—C17118.27 (19)
C3—C2—H2B109.2C15—C16—C18121.51 (19)
H2A—C2—H2B107.9C17—C16—C18120.22 (19)
O1—C3—C2111.22 (17)N3—C17—C16122.88 (19)
O1—C3—H3A109.4N3—C17—H17118.6
C2—C3—H3A109.4C16—C17—H17118.6
O1—C3—H3B109.4N4—C18—C16119.52 (19)
C2—C3—H3B109.4N4—C18—H18120.2
H3A—C3—H3B108.0C16—C18—H18120.2
N2—C4—C6110.94 (17)N5—C19—C20121.0 (2)
N2—C4—C5111.74 (17)N5—C19—H19119.5
C6—C4—C5112.17 (17)C20—C19—H19119.5
N2—C4—H4107.2C24—C20—C21118.1 (2)
C6—C4—H4107.2C24—C20—C19120.3 (2)
C5—C4—H4107.2C21—C20—C19121.6 (2)
C4—C5—H5A109.5N6—C21—C20123.2 (2)
C4—C5—H5B109.5N6—C21—H21118.4
H5A—C5—H5B109.5C20—C21—H21118.4
C4—C5—H5C109.5N6—C22—C23123.9 (2)
H5A—C5—H5C109.5N6—C22—H22118.0
H5B—C5—H5C109.5C23—C22—H22118.0
C4—C6—H6A109.5C22—C23—C24118.5 (2)
C4—C6—H6B109.5C22—C23—H23120.8
H6A—C6—H6B109.5C24—C23—H23120.8
C4—C6—H6C109.5C23—C24—C20119.0 (2)
H6A—C6—H6C109.5C23—C24—H24120.5
H6B—C6—H6C109.5C20—C24—H24120.5
C18—N4—N5—C19176.5 (2)C7—N1—C10—C1196.7 (2)
C2—N2—C1—S2177.27 (14)C8—N1—C10—C1176.4 (2)
C4—N2—C1—S22.0 (3)C7—N1—C10—C12136.83 (19)
C2—N2—C1—S13.9 (3)C8—N1—C10—C1250.1 (2)
C4—N2—C1—S1179.22 (14)C17—N3—C13—C140.8 (3)
Cd—S2—C1—N2174.63 (16)Cd—N3—C13—C14177.07 (15)
Cd—S2—C1—S14.16 (10)N3—C13—C14—C150.6 (3)
Cd—S1—C1—N2174.61 (16)C13—C14—C15—C161.6 (3)
Cd—S1—C1—S24.21 (11)C14—C15—C16—C171.3 (3)
C1—N2—C2—C382.7 (2)C14—C15—C16—C18179.43 (18)
C4—N2—C2—C3101.9 (2)C13—N3—C17—C161.1 (3)
N2—C2—C3—O1178.05 (16)Cd—N3—C17—C16177.75 (15)
C1—N2—C4—C6104.3 (2)C15—C16—C17—N30.0 (3)
C2—N2—C4—C671.1 (2)C18—C16—C17—N3179.23 (18)
C1—N2—C4—C5129.72 (19)N5—N4—C18—C16178.04 (17)
C2—N2—C4—C554.8 (2)C15—C16—C18—N4165.2 (2)
C8—N1—C7—S46.0 (2)C17—C16—C18—N415.5 (3)
C10—N1—C7—S4178.81 (14)N4—N5—C19—C20176.96 (18)
C8—N1—C7—S3173.68 (14)N5—C19—C20—C24179.4 (2)
C10—N1—C7—S30.9 (3)N5—C19—C20—C211.6 (3)
Cdi—S4—C7—N1174.52 (15)C22—N6—C21—C201.0 (4)
Cdi—S4—C7—S35.15 (10)C24—C20—C21—N60.8 (3)
Cdi—S3—C7—N1174.68 (15)C19—C20—C21—N6177.0 (2)
Cd—S3—C7—N192.11 (15)C21—N6—C22—C230.4 (4)
Cdi—S3—C7—S44.99 (10)N6—C22—C23—C240.3 (5)
Cd—S3—C7—S488.22 (11)C22—C23—C24—C200.4 (4)
C7—N1—C8—C984.0 (2)C21—C20—C24—C230.1 (3)
C10—N1—C8—C9102.9 (2)C19—C20—C24—C23177.8 (2)
N1—C8—C9—O2175.92 (19)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2ii0.83 (2)1.83 (3)2.655 (3)172 (3)
O2—H2O···O1W0.85 (3)1.80 (3)2.640 (3)180 (6)
O1W—H1W···O10.84 (3)1.92 (3)2.750 (3)172 (3)
O1W—H2W···N6iii0.85 (2)2.00 (2)2.840 (3)172 (2)
C23—H23···O1ii0.952.503.295 (3)141
C4—H4···S2iv1.002.793.599 (2)139
C15—H15···S2v0.952.843.714 (2)153
C15—H15···Cg(Cd,S1,S2,C1)vi0.952.793.737 (2)173
Symmetry codes: (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x1/2, y+1/2, z1/2; (vi) x3/2, y1/2, z3/2.
 

References

First citationAiroldi, C., De Oliveira, S. F., Ruggiero, S. G. & Lechat, J. R. (1990). Inorg. Chim. Acta, 174, 103–108.  CSD CrossRef CAS Web of Science Google Scholar
First citationAvila, V., Benson, R. E., Broker, G. A., Daniels, L. M. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m1425–m1427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBhattacharya, B., Dey, R., Maity, D. K. & Ghoshal, D. (2013). CrystEngComm, 15, 9457–9464.  Web of Science CSD CrossRef CAS Google Scholar
First citationBing, Y., Li, X., Zha, M. & Lu, Y. (2010). Acta Cryst. E66, m1500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChai, J., Lai, C. S., Yan, J. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 249–250.  Web of Science CSD CrossRef CAS Google Scholar
First citationDee, C. M. & Tiekink, E. R. T. (2002). Z. Kristallogr. New Cryst. Struct. 217, 85–86.  CAS Google Scholar
First citationDomenicano, A., Torelli, L., Vaciago, A. & Zambonelli, L. (1968). J. Chem. Soc. A, pp. 1351–1361.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, I. P., de Lima, G. M., Paniago, E. B., Pinheiro, C. B., Wardell, J. L. & Wardell, S. M. S. V. (2016). Inorg. Chim. Acta, 441, 137–145.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403–413.  CAS Google Scholar
First citationKumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. & Singh, N. (2014). CrystEngComm, 16, 6765–6774.  Web of Science CSD CrossRef CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2006a). Z. Kristallogr. 221, 288–293.  CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2006b). J. Mol. Struct. 796, 114–118.  Web of Science CSD CrossRef CAS Google Scholar
First citationLennartson, A. & Håkansson, M. (2009). Angew. Chem. Int. Ed. 48, 5869–5871.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRajakannu, P., Howlader, R., Kalita, A. Ch., Butcher, R. J. & Murugavel, R. (2015). Inorg. Chem. Front. 2, 55–66.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, Y. S., Azizuddin, A. D., Câmpian, M. V., Haiduc, I. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 155–165.  CAS Google Scholar
First citationTan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113–126.  CAS Google Scholar
First citationTan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046–3056.  Web of Science CSD CrossRef CAS Google Scholar
First citationTiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T. & Haiduc, I. (2005). Prog. Inorg. Chem. 54, 127–319.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623–6625.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds