research communications
κN)bis(thiocyanato-κN)cobalt(II) 2.5-hydrate
of aquatris(isonicotinamide-aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: t.neumann@ac.uni-kiel.de
The 2(C6H6N2O)3(H2O)]·2.5H2O, comprises one CoII cation, three isonicotinamide ligands, two thiocyanate anions, one aqua ligand and two water solvent molecules in general positions, as well as one water solvent molecule that is located on a twofold rotation axis. The CoII cations are octahedrally coordinated by two terminally N-bonded thiocyanate anions, one water molecule and three isonicotinamide ligands, each coordinating via the pyridine N atom. The discrete complexes are linked by intermolecular O—H⋯O, N—H⋯O and N—H⋯S hydrogen bonding into a three-dimensional network that contains cavities in which the solvent water molecules are located. The latter are linked by further O—H⋯O hydrogen bonds to the network. There are additional short contacts present in the crystal, indicative of weak C—H⋯S, C—H⋯O and C—H⋯N interactions.
of the title compound, [Co(NCS)Keywords: crystal structure; discrete complex; cobalt(II) thiocyanate; isonicotinamide; hydrogen bonding.
CCDC reference: 1497322
1. Chemical context
The synthesis of new coordination polymers with cooperative magnetic properties is still a major field in coordination chemistry. In this context, compounds that show a slow relaxation of the magnetization, such as, for example, single chain magnets, are of special interest because of their potential for future applications (Dhers et al., 2015; Caneschi et al., 2001; Liu et al., 2010). To trigger such behavior, cations of large magnetic anisotropy, such as, for example, MnII, FeII or CoII, must be linked by ligands into chains that can mediate a magnetic exchange. Therefore, we are generally interested in the synthesis and the magnetic properties of Co- and Fe-containing thio- and selenocyanate coordination polymers (Werner et al., 2014, 2015a,b,c; Boeckmann et al., 2012; Wöhlert et al., 2014). This also includes the synthesis of discrete complexes with a terminal coordination because such compounds can be transformed into the desired polymeric compounds by thermal decomposition reactions (Näther et al., 2013). In the course of our investigations, we attempted to prepare Co-containing thiocyanate coordination compounds with isonicotinamide as ligand and obtained crystals of the title compound, [Co(NCS)2(C6H6N2O)3(H2O)]·2.5H2O. However, this phase could not be prepared as a pure phase. To identify these crystals, a single analysis was performed and the results are reported herein.
2. Structural commentary
The ). The CoII cation is coordinated by one water molecule, two terminal N-bonded thiocyanate anions and three terminal isonicotinamide ligands bonded through the pyridine N atom. The Co—N distances to the negatively charged anionic ligands of 2.0746 (1) and 2.0834 (17) Å are shorter than that to the neutral isonicotinamide ligands [Co—N: 2.1725 (16)–2.2059 (15) Å]. The bond angles around the CoII atom deviate slightly from the ideal values [cis angles: 85.81 (6)–92.60 (7)°; trans angles: 173.17 (7)–177.74 (6)°]. The resulting can be described as a slightly distorted octahedron (Fig. 1)
comprises one cobalt(II) cation, two thiocyanate anions, three isonicotinamide ligands and three water molecules (one as a ligand and two as solvent molecules) that occupy general positions as well as one water solvent molecule that is located on a twofold rotation axis (Fig. 1 .3. Supramolecular features
In the ). These tetramers are further connected by intermolecular O—H⋯O and N—H⋯O hydrogen bonding between water molecules and amide H atoms, respectively, and the carbonyl as well as water acceptor-O atoms into a three-dimensional network (Fig. 2). There are additional hydrogen bonds between the amide H atoms and the S atoms of the anionic ligands. The N—H⋯S angles deviate only slightly from 180°. Within this network cavities are formed, in which additional water molecules are embedded. These solvent molecules are linked by (water)O—H⋯O(water) hydrogen bonding into chain-like aggregates that consist of five water molecules each, whereby the aggregates are located on twofold rotation axes. These water aggregates are linked by additional O—H⋯O hydrogen bonds involving the carbonyl O acceptor atoms of the isonicotinamide ligands to the network. Finally, there are several short contacts indicative of weak C—H⋯S, C—H⋯O and C—H⋯N interactions. Numerical values of the hydrogen-bonding interactions are collated in Table 1.
four symmetry-related complexes are linked by intermolecular O—H⋯O hydrogen bonding between the water H atoms of the coordinating water molecules of two complexes and the carbonyl O acceptor atoms of two additional complexes into eight-membered rings that are located on centres of inversion (Fig. 24. Database survey
Some metal compounds based on isonicotinamide ligands and thiocyanates anions are reported in the Cambridge Structure Database (Version 5.37, last update 2015; Groom et al., 2016). Two Ni-clathrates, one with 9,10-anthraquinone and the other with pyrene, in which NiII cations are connected by μ-1,3-bridging thiocyanate ligands into coordination polymers (Sekiya et al., 2009) and one very similar cadmium compound with 9,10-dichloroanthracene as clathrate molecule (Sekiya & Nishikiori, 2005). Moreover, one compound comprising a three-dimensional coordination network based on Cd(SCN)2 (Yang et al., 2001) and a compound built up of Cu–NCS layers are also reported (Đaković et al., 2010). Very recently we reported two discrete complexes with isonicotinamide as co-ligand, one of which is based on Zn(NCS)2 with the ZnII cation in tetrahedral coordination (Neumann et al., 2016a) while the other is based on Co(NCS)2 in which the CoII cation is octahedrally coordinated (Neumann et al., 2016b).
5. Synthesis and crystallization
Cobalt thiocyanate and 4-isonicotinamide were obtained from Alfa Aesar and were used without any further purification. Crystals suitable for single 2 (0.15 mmol) and 73.3 mg 4-isonicotinamide (0.6 mmol) in demineralized water (1.5 ml) within three days. The title compound could not be prepared as a single phase and was always contaminated with a second crystalline phase which could not be identified so far.
analysis were obtained from a mixture of 26.3 mg Co(NCS)6. Refinement
Crystal data, data collection and structure . The C—H and N—H hydrogen atoms were positioned in calculated positions with Uiso(H) = 1.2Ueq(C, N) using a riding model with C—H = 0.95 Å for aromatic and N—H = 0.88 Å for amide H atoms. The water hydrogen atoms were located in a difference map, and their bond lengths were constrained to O—H = 0.84 Å and with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1497322
https://doi.org/10.1107/S2056989016012470/wm5313sup1.cif
contains datablocks I, kw171. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016012470/wm5313Isup2.hkl
Data collection: X-AREA (Stoe, 2008); cell
X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).[Co(NCS)2(C6H6N2O)3(H2O)]·2.5H2O | F(000) = 2496 |
Mr = 604.53 | Dx = 1.539 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.2539 (16) Å | Cell parameters from 6260 reflections |
b = 13.1442 (8) Å | θ = 4.3–56° |
c = 20.7913 (16) Å | µ = 0.87 mm−1 |
β = 97.327 (10)° | T = 200 K |
V = 5218.8 (7) Å3 | Block, red-brown |
Z = 8 | 0.11 × 0.08 × 0.06 mm |
Stoe IPDS-2 diffractometer | 5098 reflections with I > 2σ(I) |
ω–scans | Rint = 0.060 |
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe, 2008) | θmax = 28.0°, θmin = 2.6° |
Tmin = 0.775, Tmax = 0.920 | h = −25→25 |
29661 measured reflections | k = −17→17 |
6260 independent reflections | l = −27→27 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0525P)2 + 5.523P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
6260 reflections | Δρmax = 0.33 e Å−3 |
339 parameters | Δρmin = −0.55 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.18635 (2) | 0.67227 (2) | 0.31272 (2) | 0.01581 (7) | |
N1 | 0.14313 (9) | 0.70880 (14) | 0.39620 (8) | 0.0246 (3) | |
C1 | 0.10950 (9) | 0.72960 (14) | 0.43682 (9) | 0.0186 (3) | |
S1 | 0.06154 (3) | 0.75764 (4) | 0.49356 (3) | 0.02889 (12) | |
N2 | 0.22147 (9) | 0.62103 (13) | 0.22769 (8) | 0.0233 (3) | |
C2 | 0.25664 (10) | 0.61371 (14) | 0.18638 (9) | 0.0201 (4) | |
S2 | 0.30765 (3) | 0.60830 (4) | 0.12936 (3) | 0.02793 (12) | |
N11 | 0.12709 (8) | 0.79048 (12) | 0.25649 (8) | 0.0209 (3) | |
C11 | 0.12791 (11) | 0.88801 (16) | 0.27443 (10) | 0.0262 (4) | |
H11 | 0.1524 | 0.9059 | 0.3155 | 0.031* | |
C12 | 0.09489 (11) | 0.96437 (16) | 0.23626 (10) | 0.0269 (4) | |
H12 | 0.0975 | 1.0329 | 0.2509 | 0.032* | |
C13 | 0.05785 (10) | 0.94012 (15) | 0.17636 (9) | 0.0206 (4) | |
C14 | 0.05573 (11) | 0.83848 (16) | 0.15789 (10) | 0.0264 (4) | |
H14 | 0.0305 | 0.8182 | 0.1177 | 0.032* | |
C15 | 0.09093 (11) | 0.76706 (15) | 0.19885 (10) | 0.0263 (4) | |
H15 | 0.0894 | 0.6979 | 0.1855 | 0.032* | |
C16 | 0.02360 (11) | 1.02471 (16) | 0.13489 (10) | 0.0250 (4) | |
N12 | −0.01376 (10) | 0.99985 (14) | 0.07899 (9) | 0.0324 (4) | |
H12A | −0.0341 | 1.0476 | 0.0536 | 0.039* | |
H12B | −0.0182 | 0.9356 | 0.0673 | 0.039* | |
O11 | 0.03115 (10) | 1.11340 (12) | 0.15299 (8) | 0.0415 (4) | |
N21 | 0.27358 (8) | 0.77939 (12) | 0.33884 (8) | 0.0187 (3) | |
C21 | 0.32723 (10) | 0.78644 (16) | 0.30338 (10) | 0.0246 (4) | |
H21 | 0.3289 | 0.7402 | 0.2685 | 0.030* | |
C22 | 0.38017 (10) | 0.85805 (16) | 0.31536 (10) | 0.0235 (4) | |
H22 | 0.4164 | 0.8613 | 0.2884 | 0.028* | |
C23 | 0.37979 (9) | 0.92477 (14) | 0.36683 (9) | 0.0174 (3) | |
C24 | 0.32564 (10) | 0.91704 (15) | 0.40465 (9) | 0.0207 (4) | |
H24 | 0.3239 | 0.9609 | 0.4407 | 0.025* | |
C25 | 0.27411 (10) | 0.84428 (15) | 0.38891 (9) | 0.0212 (4) | |
H25 | 0.2371 | 0.8400 | 0.4150 | 0.025* | |
C26 | 0.43638 (9) | 1.00411 (14) | 0.37791 (9) | 0.0187 (4) | |
N22 | 0.45023 (9) | 1.04280 (14) | 0.43691 (8) | 0.0252 (4) | |
H22A | 0.4825 | 1.0902 | 0.4449 | 0.030* | |
H22B | 0.4272 | 1.0212 | 0.4682 | 0.030* | |
O21 | 0.46730 (7) | 1.03177 (11) | 0.33192 (7) | 0.0231 (3) | |
N31 | 0.24699 (8) | 0.55232 (12) | 0.36533 (7) | 0.0182 (3) | |
C31 | 0.24100 (10) | 0.45608 (15) | 0.34455 (9) | 0.0222 (4) | |
H31 | 0.2135 | 0.4428 | 0.3042 | 0.027* | |
C32 | 0.27278 (10) | 0.37491 (15) | 0.37887 (10) | 0.0235 (4) | |
H32 | 0.2667 | 0.3076 | 0.3625 | 0.028* | |
C33 | 0.31380 (9) | 0.39326 (14) | 0.43780 (9) | 0.0183 (3) | |
C34 | 0.32139 (10) | 0.49318 (15) | 0.45905 (10) | 0.0238 (4) | |
H34 | 0.3497 | 0.5088 | 0.4986 | 0.029* | |
C35 | 0.28715 (11) | 0.56976 (15) | 0.42182 (10) | 0.0245 (4) | |
H35 | 0.2924 | 0.6378 | 0.4370 | 0.029* | |
C36 | 0.35105 (10) | 0.31096 (15) | 0.47912 (9) | 0.0203 (4) | |
N32 | 0.32523 (10) | 0.21708 (13) | 0.47146 (9) | 0.0283 (4) | |
H32A | 0.3452 | 0.1668 | 0.4949 | 0.034* | |
H32B | 0.2882 | 0.2054 | 0.4430 | 0.034* | |
O31 | 0.40296 (7) | 0.33185 (11) | 0.51840 (7) | 0.0257 (3) | |
O1 | 0.09982 (7) | 0.56631 (11) | 0.29295 (7) | 0.0226 (3) | |
H1O1 | 0.0844 | 0.5474 | 0.2552 | 0.034* | |
H2O1 | 0.0639 | 0.5683 | 0.3120 | 0.034* | |
O2 | 0.38171 (8) | 1.02681 (13) | 0.55143 (7) | 0.0324 (3) | |
H1O2 | 0.4007 | 1.0670 | 0.5798 | 0.049* | |
H2O2 | 0.3617 | 0.9813 | 0.5707 | 0.049* | |
O3 | 0.43909 (14) | 0.17955 (15) | 0.62254 (12) | 0.0672 (7) | |
H1O3 | 0.4391 | 0.2301 | 0.5978 | 0.101* | |
H2O3 | 0.4411 | 0.2036 | 0.6602 | 0.101* | |
O4 | 0.5000 | 0.73797 (19) | 0.2500 | 0.0451 (6) | |
H1O4 | 0.5181 | 0.7008 | 0.2238 | 0.068* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.01664 (12) | 0.01500 (12) | 0.01570 (12) | −0.00072 (9) | 0.00174 (9) | 0.00114 (9) |
N1 | 0.0253 (8) | 0.0258 (9) | 0.0237 (8) | −0.0016 (7) | 0.0075 (7) | −0.0018 (7) |
C1 | 0.0190 (8) | 0.0162 (8) | 0.0196 (8) | −0.0020 (7) | −0.0014 (7) | 0.0010 (7) |
S1 | 0.0318 (3) | 0.0333 (3) | 0.0232 (2) | 0.0063 (2) | 0.0099 (2) | −0.0006 (2) |
N2 | 0.0264 (8) | 0.0240 (9) | 0.0200 (8) | −0.0008 (7) | 0.0048 (6) | −0.0017 (6) |
C2 | 0.0245 (9) | 0.0144 (8) | 0.0202 (9) | 0.0006 (7) | −0.0012 (7) | 0.0016 (7) |
S2 | 0.0301 (3) | 0.0310 (3) | 0.0243 (2) | 0.0070 (2) | 0.0096 (2) | 0.0061 (2) |
N11 | 0.0225 (8) | 0.0187 (8) | 0.0205 (8) | 0.0005 (6) | −0.0010 (6) | 0.0020 (6) |
C11 | 0.0303 (10) | 0.0226 (10) | 0.0230 (9) | 0.0048 (8) | −0.0067 (8) | −0.0034 (8) |
C12 | 0.0331 (10) | 0.0188 (9) | 0.0267 (10) | 0.0045 (8) | −0.0044 (8) | −0.0048 (8) |
C13 | 0.0208 (9) | 0.0199 (9) | 0.0205 (9) | 0.0029 (7) | 0.0009 (7) | 0.0016 (7) |
C14 | 0.0316 (10) | 0.0222 (10) | 0.0222 (9) | 0.0012 (8) | −0.0084 (8) | 0.0000 (8) |
C15 | 0.0342 (10) | 0.0158 (9) | 0.0259 (10) | −0.0007 (8) | −0.0083 (8) | 0.0000 (8) |
C16 | 0.0282 (10) | 0.0209 (10) | 0.0256 (10) | 0.0060 (8) | 0.0020 (8) | 0.0015 (8) |
N12 | 0.0417 (10) | 0.0221 (9) | 0.0294 (9) | 0.0076 (8) | −0.0105 (8) | 0.0027 (7) |
O11 | 0.0673 (12) | 0.0199 (8) | 0.0337 (9) | 0.0107 (8) | −0.0072 (8) | −0.0019 (7) |
N21 | 0.0172 (7) | 0.0158 (7) | 0.0227 (8) | −0.0023 (6) | 0.0012 (6) | 0.0014 (6) |
C21 | 0.0255 (9) | 0.0214 (10) | 0.0279 (10) | −0.0026 (8) | 0.0071 (8) | −0.0058 (8) |
C22 | 0.0221 (9) | 0.0225 (10) | 0.0273 (10) | −0.0032 (7) | 0.0083 (7) | −0.0022 (8) |
C23 | 0.0160 (8) | 0.0147 (8) | 0.0209 (9) | −0.0002 (6) | 0.0000 (6) | 0.0041 (7) |
C24 | 0.0204 (8) | 0.0212 (9) | 0.0205 (9) | −0.0032 (7) | 0.0027 (7) | −0.0025 (7) |
C25 | 0.0189 (8) | 0.0222 (10) | 0.0228 (9) | −0.0041 (7) | 0.0041 (7) | −0.0011 (7) |
C26 | 0.0163 (8) | 0.0171 (9) | 0.0223 (9) | 0.0011 (7) | 0.0010 (7) | 0.0027 (7) |
N22 | 0.0237 (8) | 0.0284 (9) | 0.0235 (8) | −0.0098 (7) | 0.0031 (6) | −0.0026 (7) |
O21 | 0.0214 (6) | 0.0260 (7) | 0.0220 (7) | −0.0043 (5) | 0.0026 (5) | 0.0057 (6) |
N31 | 0.0199 (7) | 0.0159 (7) | 0.0185 (7) | 0.0005 (6) | 0.0007 (6) | 0.0015 (6) |
C31 | 0.0256 (9) | 0.0195 (9) | 0.0197 (9) | 0.0016 (7) | −0.0043 (7) | −0.0037 (7) |
C32 | 0.0292 (10) | 0.0159 (9) | 0.0239 (9) | −0.0003 (7) | −0.0024 (8) | −0.0017 (7) |
C33 | 0.0178 (8) | 0.0163 (9) | 0.0206 (9) | 0.0008 (6) | 0.0016 (7) | 0.0008 (7) |
C34 | 0.0270 (9) | 0.0190 (9) | 0.0231 (9) | 0.0007 (7) | −0.0058 (7) | −0.0013 (7) |
C35 | 0.0297 (10) | 0.0160 (9) | 0.0252 (10) | −0.0007 (7) | −0.0068 (8) | −0.0011 (7) |
C36 | 0.0212 (8) | 0.0189 (9) | 0.0209 (9) | 0.0032 (7) | 0.0026 (7) | −0.0009 (7) |
N32 | 0.0318 (9) | 0.0162 (8) | 0.0337 (10) | 0.0011 (7) | −0.0085 (7) | 0.0036 (7) |
O31 | 0.0254 (7) | 0.0227 (7) | 0.0267 (7) | 0.0016 (6) | −0.0057 (6) | −0.0004 (6) |
O1 | 0.0187 (6) | 0.0271 (7) | 0.0220 (7) | −0.0063 (5) | 0.0023 (5) | −0.0021 (6) |
O2 | 0.0374 (8) | 0.0337 (9) | 0.0272 (8) | −0.0031 (7) | 0.0085 (6) | 0.0033 (7) |
O3 | 0.1016 (18) | 0.0296 (10) | 0.0598 (14) | −0.0097 (11) | −0.0299 (13) | 0.0075 (9) |
O4 | 0.0690 (18) | 0.0284 (13) | 0.0415 (14) | 0.000 | 0.0211 (13) | 0.000 |
Co1—N1 | 2.0746 (17) | C23—C24 | 1.387 (3) |
Co1—N2 | 2.0834 (17) | C23—C26 | 1.505 (2) |
Co1—O1 | 2.1703 (13) | C24—C25 | 1.387 (3) |
Co1—N31 | 2.1725 (16) | C24—H24 | 0.9500 |
Co1—N11 | 2.1778 (16) | C25—H25 | 0.9500 |
Co1—N21 | 2.2059 (15) | C26—O21 | 1.244 (2) |
N1—C1 | 1.161 (3) | C26—N22 | 1.323 (3) |
C1—S1 | 1.6304 (19) | N22—H22A | 0.8800 |
N2—C2 | 1.164 (3) | N22—H22B | 0.8800 |
C2—S2 | 1.635 (2) | N31—C31 | 1.337 (2) |
N11—C11 | 1.335 (3) | N31—C35 | 1.341 (2) |
N11—C15 | 1.343 (3) | C31—C32 | 1.382 (3) |
C11—C12 | 1.383 (3) | C31—H31 | 0.9500 |
C11—H11 | 0.9500 | C32—C33 | 1.392 (3) |
C12—C13 | 1.391 (3) | C32—H32 | 0.9500 |
C12—H12 | 0.9500 | C33—C34 | 1.387 (3) |
C13—C14 | 1.389 (3) | C33—C36 | 1.505 (3) |
C13—C16 | 1.506 (3) | C34—C35 | 1.384 (3) |
C14—C15 | 1.385 (3) | C34—H34 | 0.9500 |
C14—H14 | 0.9500 | C35—H35 | 0.9500 |
C15—H15 | 0.9500 | C36—O31 | 1.238 (2) |
C16—O11 | 1.228 (3) | C36—N32 | 1.332 (3) |
C16—N12 | 1.327 (3) | N32—H32A | 0.8800 |
N12—H12A | 0.8800 | N32—H32B | 0.8800 |
N12—H12B | 0.8800 | O1—H1O1 | 0.8401 |
N21—C25 | 1.345 (2) | O1—H2O1 | 0.8398 |
N21—C21 | 1.347 (2) | O2—H1O2 | 0.8401 |
C21—C22 | 1.386 (3) | O2—H2O2 | 0.8400 |
C21—H21 | 0.9500 | O3—H1O3 | 0.8400 |
C22—C23 | 1.384 (3) | O3—H2O3 | 0.8400 |
C22—H22 | 0.9500 | O4—H1O4 | 0.8400 |
N1—Co1—N2 | 173.17 (7) | C22—C21—H21 | 118.5 |
N1—Co1—O1 | 85.81 (6) | C23—C22—C21 | 119.53 (18) |
N2—Co1—O1 | 87.49 (6) | C23—C22—H22 | 120.2 |
N1—Co1—N31 | 89.65 (6) | C21—C22—H22 | 120.2 |
N2—Co1—N31 | 88.90 (6) | C22—C23—C24 | 118.04 (17) |
O1—Co1—N31 | 88.85 (6) | C22—C23—C26 | 118.85 (16) |
N1—Co1—N11 | 92.60 (7) | C24—C23—C26 | 123.08 (17) |
N2—Co1—N11 | 88.83 (7) | C25—C24—C23 | 118.91 (18) |
O1—Co1—N11 | 91.10 (6) | C25—C24—H24 | 120.5 |
N31—Co1—N11 | 177.74 (6) | C23—C24—H24 | 120.5 |
N1—Co1—N21 | 91.16 (6) | N21—C25—C24 | 123.68 (17) |
N2—Co1—N21 | 95.51 (6) | N21—C25—H25 | 118.2 |
O1—Co1—N21 | 176.67 (6) | C24—C25—H25 | 118.2 |
N31—Co1—N21 | 89.76 (6) | O21—C26—N22 | 122.75 (17) |
N11—Co1—N21 | 90.41 (6) | O21—C26—C23 | 119.55 (17) |
C1—N1—Co1 | 169.72 (16) | N22—C26—C23 | 117.69 (16) |
N1—C1—S1 | 179.25 (19) | C26—N22—H22A | 120.0 |
C2—N2—Co1 | 159.31 (16) | C26—N22—H22B | 120.0 |
N2—C2—S2 | 177.44 (19) | H22A—N22—H22B | 120.0 |
C11—N11—C15 | 117.13 (17) | C31—N31—C35 | 117.46 (16) |
C11—N11—Co1 | 123.26 (13) | C31—N31—Co1 | 120.35 (12) |
C15—N11—Co1 | 119.48 (13) | C35—N31—Co1 | 121.99 (13) |
N11—C11—C12 | 123.26 (18) | N31—C31—C32 | 123.31 (17) |
N11—C11—H11 | 118.4 | N31—C31—H31 | 118.3 |
C12—C11—H11 | 118.4 | C32—C31—H31 | 118.3 |
C11—C12—C13 | 119.55 (19) | C31—C32—C33 | 119.01 (18) |
C11—C12—H12 | 120.2 | C31—C32—H32 | 120.5 |
C13—C12—H12 | 120.2 | C33—C32—H32 | 120.5 |
C14—C13—C12 | 117.48 (18) | C34—C33—C32 | 117.99 (17) |
C14—C13—C16 | 123.79 (18) | C34—C33—C36 | 118.40 (17) |
C12—C13—C16 | 118.71 (18) | C32—C33—C36 | 123.60 (17) |
C15—C14—C13 | 119.15 (18) | C35—C34—C33 | 119.14 (18) |
C15—C14—H14 | 120.4 | C35—C34—H34 | 120.4 |
C13—C14—H14 | 120.4 | C33—C34—H34 | 120.4 |
N11—C15—C14 | 123.41 (19) | N31—C35—C34 | 123.07 (18) |
N11—C15—H15 | 118.3 | N31—C35—H35 | 118.5 |
C14—C15—H15 | 118.3 | C34—C35—H35 | 118.5 |
O11—C16—N12 | 122.13 (19) | O31—C36—N32 | 122.80 (18) |
O11—C16—C13 | 119.94 (19) | O31—C36—C33 | 120.18 (17) |
N12—C16—C13 | 117.93 (18) | N32—C36—C33 | 117.02 (17) |
C16—N12—H12A | 120.0 | C36—N32—H32A | 120.0 |
C16—N12—H12B | 120.0 | C36—N32—H32B | 120.0 |
H12A—N12—H12B | 120.0 | H32A—N32—H32B | 120.0 |
C25—N21—C21 | 116.72 (16) | Co1—O1—H1O1 | 122.5 |
C25—N21—Co1 | 121.72 (12) | Co1—O1—H2O1 | 123.2 |
C21—N21—Co1 | 121.48 (13) | H1O1—O1—H2O1 | 103.7 |
N21—C21—C22 | 123.09 (18) | H1O2—O2—H2O2 | 107.4 |
N21—C21—H21 | 118.5 | H1O3—O3—H2O3 | 105.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···S2i | 0.95 | 2.96 | 3.646 (2) | 130 |
C14—H14···S1ii | 0.95 | 2.84 | 3.785 (2) | 172 |
C15—H15···O21iii | 0.95 | 2.45 | 3.324 (3) | 153 |
N12—H12A···O31iv | 0.88 | 2.07 | 2.922 (2) | 163 |
N12—H12B···S1ii | 0.88 | 2.74 | 3.592 (2) | 164 |
C21—H21···N2 | 0.95 | 2.65 | 3.245 (3) | 122 |
C22—H22···O4 | 0.95 | 2.49 | 3.234 (2) | 136 |
C24—H24···O2 | 0.95 | 2.58 | 3.423 (3) | 149 |
C25—H25···N1 | 0.95 | 2.49 | 3.107 (2) | 122 |
N22—H22A···S1v | 0.88 | 2.79 | 3.6484 (18) | 165 |
N22—H22B···O2 | 0.88 | 2.04 | 2.873 (2) | 158 |
C32—H32···S2iii | 0.95 | 3.00 | 3.826 (2) | 146 |
N32—H32A···O2vi | 0.88 | 2.25 | 3.121 (2) | 172 |
N32—H32B···S2iii | 0.88 | 2.57 | 3.4083 (19) | 160 |
O1—H1O1···O21iii | 0.84 | 1.96 | 2.7858 (19) | 166 |
O1—H2O1···O21vii | 0.84 | 2.01 | 2.8106 (19) | 158 |
O2—H1O2···O3viii | 0.84 | 1.83 | 2.650 (3) | 164 |
O2—H2O2···N1ix | 0.84 | 2.60 | 3.337 (2) | 148 |
O2—H2O2···N31ix | 0.84 | 2.66 | 3.363 (2) | 143 |
O3—H1O3···O31 | 0.84 | 2.17 | 2.966 (3) | 158 |
O3—H2O3···O4x | 0.84 | 2.20 | 2.963 (2) | 152 |
O4—H1O4···O11xi | 0.84 | 1.91 | 2.723 (2) | 163 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x, y, −z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x−1/2, −y+3/2, z−1/2; (v) x+1/2, y+1/2, z; (vi) x, y−1, z; (vii) x−1/2, y−1/2, z; (viii) x, y+1, z; (ix) −x+1/2, −y+3/2, −z+1; (x) −x+1, −y+1, −z+1; (xi) x+1/2, y−1/2, z. |
Acknowledgements
This project was supported by the Deutsche Forschungsgemeinschaft (project No. NA 720/5–1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.
References
Boeckmann, J., Wriedt, M. & Näther, C. (2012). Chem. Eur. J. 18, 5284–5289. Web of Science CSD CrossRef CAS PubMed Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Caneschi, A., Gatteschi, D., Lalioti, N., Sangregorio, C., Sessoli, R., Venturi, G., Vindigni, A. R., Rettori, A., Pini, M. G. & Novak, M. A. (2001). Angew. Chem. Int. Ed. 40, 1760–1763. CrossRef CAS Google Scholar
Đaković, M., Jagličić, Z., Kozlevčar, B. & Popović, Z. (2010). Polyhedron, 29, 1910–1917. Google Scholar
Dhers, S., Feltham, H. L. C. & Brooker, S. (2015). Coord. Chem. Rev. 296, 24–44. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, R., Li, L., Wang, X., Yang, P., Wang, C., Liao, D. & Sutter, J.-P. (2010). Chem. Commun. 46, 2566–2568. Web of Science CSD CrossRef Google Scholar
Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714. Google Scholar
Neumann, T., Jess, I. & Näther, C. (2016a). Acta Cryst. E72, 922–925. Web of Science CSD CrossRef IUCr Journals Google Scholar
Neumann, T., Jess, I. & Näther, C. (2016b). Acta Cryst. E72, 1077–1080. CSD CrossRef IUCr Journals Google Scholar
Sekiya, R. & Nishikiori, S. (2005). Chem. Lett. 34, 1076–1077. Web of Science CSD CrossRef CAS Google Scholar
Sekiya, R., Nishikiori, S. & Kuroda, R. (2009). CrystEngComm, 11, 2251–2253. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342. Web of Science CSD CrossRef CAS PubMed Google Scholar
Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893–2901. Web of Science CSD CrossRef CAS PubMed Google Scholar
Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015c). Eur. J. Inorg. Chem. 2015, 3236–3245. Web of Science CSD CrossRef CAS Google Scholar
Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149–14158. Web of Science CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014). Inorg. Chem. 53, 8298–8310. Web of Science PubMed Google Scholar
Yang, G., Zhu, H.-G., Liang, B.-H. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 580–585. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.