research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of aqua­tris­­(isonicotinamide-κN)bis­­(thio­cyanato-κN)cobalt(II) 2.5-hydrate

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: t.neumann@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 July 2016; accepted 2 August 2016; online 9 August 2016)

The asymmetric unit of the title compound, [Co(NCS)2(C6H6N2O)3(H2O)]·2.5H2O, comprises one CoII cation, three isonicotinamide ligands, two thio­cyanate anions, one aqua ligand and two water solvent mol­ecules in general positions, as well as one water solvent mol­ecule that is located on a twofold rotation axis. The CoII cations are octa­hedrally coordinated by two terminally N-bonded thio­cyanate anions, one water mol­ecule and three isonicotinamide ligands, each coordinating via the pyridine N atom. The discrete complexes are linked by inter­molecular O—H⋯O, N—H⋯O and N—H⋯S hydrogen bonding into a three-dimensional network that contains cavities in which the solvent water mol­ecules are located. The latter are linked by further O—H⋯O hydrogen bonds to the network. There are additional short contacts present in the crystal, indicative of weak C—H⋯S, C—H⋯O and C—H⋯N inter­actions.

1. Chemical context

The synthesis of new coordination polymers with cooperative magnetic properties is still a major field in coordination chemistry. In this context, compounds that show a slow relaxation of the magnetization, such as, for example, single chain magnets, are of special inter­est because of their potential for future applications (Dhers et al., 2015[Dhers, S., Feltham, H. L. C. & Brooker, S. (2015). Coord. Chem. Rev. 296, 24-44.]; Caneschi et al., 2001[Caneschi, A., Gatteschi, D., Lalioti, N., Sangregorio, C., Sessoli, R., Venturi, G., Vindigni, A. R., Rettori, A., Pini, M. G. & Novak, M. A. (2001). Angew. Chem. Int. Ed. 40, 1760-1763.]; Liu et al., 2010[Liu, R., Li, L., Wang, X., Yang, P., Wang, C., Liao, D. & Sutter, J.-P. (2010). Chem. Commun. 46, 2566-2568.]). To trigger such behavior, cations of large magnetic anisotropy, such as, for example, MnII, FeII or CoII, must be linked by ligands into chains that can mediate a magnetic exchange. Therefore, we are generally inter­ested in the synthesis and the magnetic properties of Co- and Fe-containing thio- and seleno­cyanate coordination polymers (Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.], 2015a[Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893-2901.],b[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149-14158.],c[Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015c). Eur. J. Inorg. Chem. 2015, 3236-3245.]; Boeckmann et al., 2012[Boeckmann, J., Wriedt, M. & Näther, C. (2012). Chem. Eur. J. 18, 5284-5289.]; Wöhlert et al., 2014[Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014). Inorg. Chem. 53, 8298-8310.]). This also includes the synthesis of discrete complexes with a terminal coordination because such compounds can be transformed into the desired polymeric compounds by thermal decomposition reactions (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]). In the course of our investigations, we attempted to prepare Co-containing thio­cyanate coordination compounds with isonicotinamide as ligand and obtained crystals of the title compound, [Co(NCS)2(C6H6N2O)3(H2O)]·2.5H2O. However, this phase could not be prepared as a pure phase. To identify these crystals, a single crystal structure analysis was performed and the results are reported herein.

2. Structural commentary

The asymmetric unit comprises one cobalt(II) cation, two thio­cyanate anions, three isonicotinamide ligands and three water mol­ecules (one as a ligand and two as solvent mol­ecules) that occupy general positions as well as one water solvent mol­ecule that is located on a twofold rotation axis (Fig. 1[link]). The CoII cation is coordinated by one water mol­ecule, two terminal N-bonded thio­cyanate anions and three terminal isonicotinamide ligands bonded through the pyridine N atom. The Co—N distances to the negatively charged anionic ligands of 2.0746 (1) and 2.0834 (17) Å are shorter than that to the neutral isonicotinamide ligands [Co—N: 2.1725 (16)–2.2059 (15) Å]. The bond angles around the CoII atom deviate slightly from the ideal values [cis angles: 85.81 (6)–92.60 (7)°; trans angles: 173.17 (7)–177.74 (6)°]. The resulting coordination polyhedron can be described as a slightly distorted octa­hedron (Fig. 1[link])

[Scheme 1]
.
[Figure 1]
Figure 1
View of the asymmetric unit of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure, four symmetry-related complexes are linked by inter­molecular O—H⋯O hydrogen bonding between the water H atoms of the coordinating water mol­ecules of two complexes and the carbonyl O acceptor atoms of two additional complexes into eight-membered rings that are located on centres of inversion (Fig. 2[link]). These tetra­mers are further connected by inter­molecular O—H⋯O and N—H⋯O hydrogen bonding between water mol­ecules and amide H atoms, respectively, and the carbonyl as well as water acceptor-O atoms into a three-dimensional network (Fig. 2[link]). There are additional hydrogen bonds between the amide H atoms and the S atoms of the anionic ligands. The N—H⋯S angles deviate only slightly from 180°. Within this network cavities are formed, in which additional water mol­ecules are embedded. These solvent mol­ecules are linked by (water)O—H⋯O(water) hydrogen bonding into chain-like aggregates that consist of five water mol­ecules each, whereby the aggregates are located on twofold rotation axes. These water aggregates are linked by additional O—H⋯O hydrogen bonds involving the carbonyl O acceptor atoms of the isonicotinamide ligands to the network. Finally, there are several short contacts indicative of weak C—H⋯S, C—H⋯O and C—H⋯N inter­actions. Numerical values of the hydrogen-bonding inter­actions are collated in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯S2i 0.95 2.96 3.646 (2) 130
C14—H14⋯S1ii 0.95 2.84 3.785 (2) 172
C15—H15⋯O21iii 0.95 2.45 3.324 (3) 153
N12—H12A⋯O31iv 0.88 2.07 2.922 (2) 163
N12—H12B⋯S1ii 0.88 2.74 3.592 (2) 164
C21—H21⋯N2 0.95 2.65 3.245 (3) 122
C22—H22⋯O4 0.95 2.49 3.234 (2) 136
C24—H24⋯O2 0.95 2.58 3.423 (3) 149
C25—H25⋯N1 0.95 2.49 3.107 (2) 122
N22—H22A⋯S1v 0.88 2.79 3.6484 (18) 165
N22—H22B⋯O2 0.88 2.04 2.873 (2) 158
C32—H32⋯S2iii 0.95 3.00 3.826 (2) 146
N32—H32A⋯O2vi 0.88 2.25 3.121 (2) 172
N32—H32B⋯S2iii 0.88 2.57 3.4083 (19) 160
O1—H1O1⋯O21iii 0.84 1.96 2.7858 (19) 166
O1—H2O1⋯O21vii 0.84 2.01 2.8106 (19) 158
O2—H1O2⋯O3viii 0.84 1.83 2.650 (3) 164
O2—H2O2⋯N1ix 0.84 2.60 3.337 (2) 148
O2—H2O2⋯N31ix 0.84 2.66 3.363 (2) 143
O3—H1O3⋯O31 0.84 2.17 2.966 (3) 158
O3—H2O3⋯O4x 0.84 2.20 2.963 (2) 152
O4—H1O4⋯O11xi 0.84 1.91 2.723 (2) 163
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vi) x, y-1, z; (vii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (viii) x, y+1, z; (ix) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (x) -x+1, -y+1, -z+1; (xi) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
The packing in the crystal structure of the title compound in a view along the b axis. Inter­molecular hydrogen bonding is shown as dashed lines.

4. Database survey

Some metal compounds based on isonicotinamide ligands and thio­cyanates anions are reported in the Cambridge Structure Database (Version 5.37, last update 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Two Ni-clathrates, one with 9,10-anthra­quinone and the other with pyrene, in which NiII cations are connected by μ-1,3-bridging thio­cyanate ligands into coordination polymers (Sekiya et al., 2009[Sekiya, R., Nishikiori, S. & Kuroda, R. (2009). CrystEngComm, 11, 2251-2253.]) and one very similar cadmium compound with 9,10-di­chloro­anthracene as clathrate mol­ecule (Sekiya & Nishikiori, 2005[Sekiya, R. & Nishikiori, S. (2005). Chem. Lett. 34, 1076-1077.]). Moreover, one compound comprising a three-dimensional coordination network based on Cd(SCN)2 (Yang et al., 2001[Yang, G., Zhu, H.-G., Liang, B.-H. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 580-585.]) and a compound built up of Cu–NCS layers are also reported (Đaković et al., 2010[Đaković, M., Jagličić, Z., Kozlevčar, B. & Popović, Z. (2010). Polyhedron, 29, 1910-1917.]). Very recently we reported two discrete complexes with isonicotinamide as co-ligand, one of which is based on Zn(NCS)2 with the ZnII cation in tetra­hedral coordination (Neumann et al., 2016a[Neumann, T., Jess, I. & Näther, C. (2016a). Acta Cryst. E72, 922-925.]) while the other is based on Co(NCS)2 in which the CoII cation is octa­hedrally coordinated (Neumann et al., 2016b[Neumann, T., Jess, I. & Näther, C. (2016b). Acta Cryst. E72, 1077-1080.]).

5. Synthesis and crystallization

Cobalt thio­cyanate and 4-isonicotinamide were obtained from Alfa Aesar and were used without any further purification. Crystals suitable for single crystal structure analysis were obtained from a mixture of 26.3 mg Co(NCS)2 (0.15 mmol) and 73.3 mg 4-isonicotinamide (0.6 mmol) in demineralized water (1.5 ml) within three days. The title compound could not be prepared as a single phase and was always contaminated with a second crystalline phase which could not be identified so far.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C—H and N—H hydrogen atoms were positioned in calculated positions with Uiso(H) = 1.2Ueq(C, N) using a riding model with C—H = 0.95 Å for aromatic and N—H = 0.88 Å for amide H atoms. The water hydrogen atoms were located in a difference map, and their bond lengths were constrained to O—H = 0.84 Å and with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula [Co(NCS)2(C6H6N2O)3(H2O)]·2.5H2O
Mr 604.53
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 19.2539 (16), 13.1442 (8), 20.7913 (16)
β (°) 97.327 (10)
V3) 5218.8 (7)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.87
Crystal size (mm) 0.11 × 0.08 × 0.06
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.775, 0.920
No. of measured, independent and observed [I > 2σ(I)] reflections 29661, 6260, 5098
Rint 0.060
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.094, 1.01
No. of reflections 6260
No. of parameters 339
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.55
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Aquatris(isonicotinamide-κN)bis(thiocyanato-κN)cobalt(II) 2.5-hydrate top
Crystal data top
[Co(NCS)2(C6H6N2O)3(H2O)]·2.5H2OF(000) = 2496
Mr = 604.53Dx = 1.539 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.2539 (16) ÅCell parameters from 6260 reflections
b = 13.1442 (8) Åθ = 4.3–56°
c = 20.7913 (16) ŵ = 0.87 mm1
β = 97.327 (10)°T = 200 K
V = 5218.8 (7) Å3Block, red-brown
Z = 80.11 × 0.08 × 0.06 mm
Data collection top
Stoe IPDS-2
diffractometer
5098 reflections with I > 2σ(I)
ω–scansRint = 0.060
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
θmax = 28.0°, θmin = 2.6°
Tmin = 0.775, Tmax = 0.920h = 2525
29661 measured reflectionsk = 1717
6260 independent reflectionsl = 2727
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0525P)2 + 5.523P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
6260 reflectionsΔρmax = 0.33 e Å3
339 parametersΔρmin = 0.55 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.18635 (2)0.67227 (2)0.31272 (2)0.01581 (7)
N10.14313 (9)0.70880 (14)0.39620 (8)0.0246 (3)
C10.10950 (9)0.72960 (14)0.43682 (9)0.0186 (3)
S10.06154 (3)0.75764 (4)0.49356 (3)0.02889 (12)
N20.22147 (9)0.62103 (13)0.22769 (8)0.0233 (3)
C20.25664 (10)0.61371 (14)0.18638 (9)0.0201 (4)
S20.30765 (3)0.60830 (4)0.12936 (3)0.02793 (12)
N110.12709 (8)0.79048 (12)0.25649 (8)0.0209 (3)
C110.12791 (11)0.88801 (16)0.27443 (10)0.0262 (4)
H110.15240.90590.31550.031*
C120.09489 (11)0.96437 (16)0.23626 (10)0.0269 (4)
H120.09751.03290.25090.032*
C130.05785 (10)0.94012 (15)0.17636 (9)0.0206 (4)
C140.05573 (11)0.83848 (16)0.15789 (10)0.0264 (4)
H140.03050.81820.11770.032*
C150.09093 (11)0.76706 (15)0.19885 (10)0.0263 (4)
H150.08940.69790.18550.032*
C160.02360 (11)1.02471 (16)0.13489 (10)0.0250 (4)
N120.01376 (10)0.99985 (14)0.07899 (9)0.0324 (4)
H12A0.03411.04760.05360.039*
H12B0.01820.93560.06730.039*
O110.03115 (10)1.11340 (12)0.15299 (8)0.0415 (4)
N210.27358 (8)0.77939 (12)0.33884 (8)0.0187 (3)
C210.32723 (10)0.78644 (16)0.30338 (10)0.0246 (4)
H210.32890.74020.26850.030*
C220.38017 (10)0.85805 (16)0.31536 (10)0.0235 (4)
H220.41640.86130.28840.028*
C230.37979 (9)0.92477 (14)0.36683 (9)0.0174 (3)
C240.32564 (10)0.91704 (15)0.40465 (9)0.0207 (4)
H240.32390.96090.44070.025*
C250.27411 (10)0.84428 (15)0.38891 (9)0.0212 (4)
H250.23710.84000.41500.025*
C260.43638 (9)1.00411 (14)0.37791 (9)0.0187 (4)
N220.45023 (9)1.04280 (14)0.43691 (8)0.0252 (4)
H22A0.48251.09020.44490.030*
H22B0.42721.02120.46820.030*
O210.46730 (7)1.03177 (11)0.33192 (7)0.0231 (3)
N310.24699 (8)0.55232 (12)0.36533 (7)0.0182 (3)
C310.24100 (10)0.45608 (15)0.34455 (9)0.0222 (4)
H310.21350.44280.30420.027*
C320.27278 (10)0.37491 (15)0.37887 (10)0.0235 (4)
H320.26670.30760.36250.028*
C330.31380 (9)0.39326 (14)0.43780 (9)0.0183 (3)
C340.32139 (10)0.49318 (15)0.45905 (10)0.0238 (4)
H340.34970.50880.49860.029*
C350.28715 (11)0.56976 (15)0.42182 (10)0.0245 (4)
H350.29240.63780.43700.029*
C360.35105 (10)0.31096 (15)0.47912 (9)0.0203 (4)
N320.32523 (10)0.21708 (13)0.47146 (9)0.0283 (4)
H32A0.34520.16680.49490.034*
H32B0.28820.20540.44300.034*
O310.40296 (7)0.33185 (11)0.51840 (7)0.0257 (3)
O10.09982 (7)0.56631 (11)0.29295 (7)0.0226 (3)
H1O10.08440.54740.25520.034*
H2O10.06390.56830.31200.034*
O20.38171 (8)1.02681 (13)0.55143 (7)0.0324 (3)
H1O20.40071.06700.57980.049*
H2O20.36170.98130.57070.049*
O30.43909 (14)0.17955 (15)0.62254 (12)0.0672 (7)
H1O30.43910.23010.59780.101*
H2O30.44110.20360.66020.101*
O40.50000.73797 (19)0.25000.0451 (6)
H1O40.51810.70080.22380.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01664 (12)0.01500 (12)0.01570 (12)0.00072 (9)0.00174 (9)0.00114 (9)
N10.0253 (8)0.0258 (9)0.0237 (8)0.0016 (7)0.0075 (7)0.0018 (7)
C10.0190 (8)0.0162 (8)0.0196 (8)0.0020 (7)0.0014 (7)0.0010 (7)
S10.0318 (3)0.0333 (3)0.0232 (2)0.0063 (2)0.0099 (2)0.0006 (2)
N20.0264 (8)0.0240 (9)0.0200 (8)0.0008 (7)0.0048 (6)0.0017 (6)
C20.0245 (9)0.0144 (8)0.0202 (9)0.0006 (7)0.0012 (7)0.0016 (7)
S20.0301 (3)0.0310 (3)0.0243 (2)0.0070 (2)0.0096 (2)0.0061 (2)
N110.0225 (8)0.0187 (8)0.0205 (8)0.0005 (6)0.0010 (6)0.0020 (6)
C110.0303 (10)0.0226 (10)0.0230 (9)0.0048 (8)0.0067 (8)0.0034 (8)
C120.0331 (10)0.0188 (9)0.0267 (10)0.0045 (8)0.0044 (8)0.0048 (8)
C130.0208 (9)0.0199 (9)0.0205 (9)0.0029 (7)0.0009 (7)0.0016 (7)
C140.0316 (10)0.0222 (10)0.0222 (9)0.0012 (8)0.0084 (8)0.0000 (8)
C150.0342 (10)0.0158 (9)0.0259 (10)0.0007 (8)0.0083 (8)0.0000 (8)
C160.0282 (10)0.0209 (10)0.0256 (10)0.0060 (8)0.0020 (8)0.0015 (8)
N120.0417 (10)0.0221 (9)0.0294 (9)0.0076 (8)0.0105 (8)0.0027 (7)
O110.0673 (12)0.0199 (8)0.0337 (9)0.0107 (8)0.0072 (8)0.0019 (7)
N210.0172 (7)0.0158 (7)0.0227 (8)0.0023 (6)0.0012 (6)0.0014 (6)
C210.0255 (9)0.0214 (10)0.0279 (10)0.0026 (8)0.0071 (8)0.0058 (8)
C220.0221 (9)0.0225 (10)0.0273 (10)0.0032 (7)0.0083 (7)0.0022 (8)
C230.0160 (8)0.0147 (8)0.0209 (9)0.0002 (6)0.0000 (6)0.0041 (7)
C240.0204 (8)0.0212 (9)0.0205 (9)0.0032 (7)0.0027 (7)0.0025 (7)
C250.0189 (8)0.0222 (10)0.0228 (9)0.0041 (7)0.0041 (7)0.0011 (7)
C260.0163 (8)0.0171 (9)0.0223 (9)0.0011 (7)0.0010 (7)0.0027 (7)
N220.0237 (8)0.0284 (9)0.0235 (8)0.0098 (7)0.0031 (6)0.0026 (7)
O210.0214 (6)0.0260 (7)0.0220 (7)0.0043 (5)0.0026 (5)0.0057 (6)
N310.0199 (7)0.0159 (7)0.0185 (7)0.0005 (6)0.0007 (6)0.0015 (6)
C310.0256 (9)0.0195 (9)0.0197 (9)0.0016 (7)0.0043 (7)0.0037 (7)
C320.0292 (10)0.0159 (9)0.0239 (9)0.0003 (7)0.0024 (8)0.0017 (7)
C330.0178 (8)0.0163 (9)0.0206 (9)0.0008 (6)0.0016 (7)0.0008 (7)
C340.0270 (9)0.0190 (9)0.0231 (9)0.0007 (7)0.0058 (7)0.0013 (7)
C350.0297 (10)0.0160 (9)0.0252 (10)0.0007 (7)0.0068 (8)0.0011 (7)
C360.0212 (8)0.0189 (9)0.0209 (9)0.0032 (7)0.0026 (7)0.0009 (7)
N320.0318 (9)0.0162 (8)0.0337 (10)0.0011 (7)0.0085 (7)0.0036 (7)
O310.0254 (7)0.0227 (7)0.0267 (7)0.0016 (6)0.0057 (6)0.0004 (6)
O10.0187 (6)0.0271 (7)0.0220 (7)0.0063 (5)0.0023 (5)0.0021 (6)
O20.0374 (8)0.0337 (9)0.0272 (8)0.0031 (7)0.0085 (6)0.0033 (7)
O30.1016 (18)0.0296 (10)0.0598 (14)0.0097 (11)0.0299 (13)0.0075 (9)
O40.0690 (18)0.0284 (13)0.0415 (14)0.0000.0211 (13)0.000
Geometric parameters (Å, º) top
Co1—N12.0746 (17)C23—C241.387 (3)
Co1—N22.0834 (17)C23—C261.505 (2)
Co1—O12.1703 (13)C24—C251.387 (3)
Co1—N312.1725 (16)C24—H240.9500
Co1—N112.1778 (16)C25—H250.9500
Co1—N212.2059 (15)C26—O211.244 (2)
N1—C11.161 (3)C26—N221.323 (3)
C1—S11.6304 (19)N22—H22A0.8800
N2—C21.164 (3)N22—H22B0.8800
C2—S21.635 (2)N31—C311.337 (2)
N11—C111.335 (3)N31—C351.341 (2)
N11—C151.343 (3)C31—C321.382 (3)
C11—C121.383 (3)C31—H310.9500
C11—H110.9500C32—C331.392 (3)
C12—C131.391 (3)C32—H320.9500
C12—H120.9500C33—C341.387 (3)
C13—C141.389 (3)C33—C361.505 (3)
C13—C161.506 (3)C34—C351.384 (3)
C14—C151.385 (3)C34—H340.9500
C14—H140.9500C35—H350.9500
C15—H150.9500C36—O311.238 (2)
C16—O111.228 (3)C36—N321.332 (3)
C16—N121.327 (3)N32—H32A0.8800
N12—H12A0.8800N32—H32B0.8800
N12—H12B0.8800O1—H1O10.8401
N21—C251.345 (2)O1—H2O10.8398
N21—C211.347 (2)O2—H1O20.8401
C21—C221.386 (3)O2—H2O20.8400
C21—H210.9500O3—H1O30.8400
C22—C231.384 (3)O3—H2O30.8400
C22—H220.9500O4—H1O40.8400
N1—Co1—N2173.17 (7)C22—C21—H21118.5
N1—Co1—O185.81 (6)C23—C22—C21119.53 (18)
N2—Co1—O187.49 (6)C23—C22—H22120.2
N1—Co1—N3189.65 (6)C21—C22—H22120.2
N2—Co1—N3188.90 (6)C22—C23—C24118.04 (17)
O1—Co1—N3188.85 (6)C22—C23—C26118.85 (16)
N1—Co1—N1192.60 (7)C24—C23—C26123.08 (17)
N2—Co1—N1188.83 (7)C25—C24—C23118.91 (18)
O1—Co1—N1191.10 (6)C25—C24—H24120.5
N31—Co1—N11177.74 (6)C23—C24—H24120.5
N1—Co1—N2191.16 (6)N21—C25—C24123.68 (17)
N2—Co1—N2195.51 (6)N21—C25—H25118.2
O1—Co1—N21176.67 (6)C24—C25—H25118.2
N31—Co1—N2189.76 (6)O21—C26—N22122.75 (17)
N11—Co1—N2190.41 (6)O21—C26—C23119.55 (17)
C1—N1—Co1169.72 (16)N22—C26—C23117.69 (16)
N1—C1—S1179.25 (19)C26—N22—H22A120.0
C2—N2—Co1159.31 (16)C26—N22—H22B120.0
N2—C2—S2177.44 (19)H22A—N22—H22B120.0
C11—N11—C15117.13 (17)C31—N31—C35117.46 (16)
C11—N11—Co1123.26 (13)C31—N31—Co1120.35 (12)
C15—N11—Co1119.48 (13)C35—N31—Co1121.99 (13)
N11—C11—C12123.26 (18)N31—C31—C32123.31 (17)
N11—C11—H11118.4N31—C31—H31118.3
C12—C11—H11118.4C32—C31—H31118.3
C11—C12—C13119.55 (19)C31—C32—C33119.01 (18)
C11—C12—H12120.2C31—C32—H32120.5
C13—C12—H12120.2C33—C32—H32120.5
C14—C13—C12117.48 (18)C34—C33—C32117.99 (17)
C14—C13—C16123.79 (18)C34—C33—C36118.40 (17)
C12—C13—C16118.71 (18)C32—C33—C36123.60 (17)
C15—C14—C13119.15 (18)C35—C34—C33119.14 (18)
C15—C14—H14120.4C35—C34—H34120.4
C13—C14—H14120.4C33—C34—H34120.4
N11—C15—C14123.41 (19)N31—C35—C34123.07 (18)
N11—C15—H15118.3N31—C35—H35118.5
C14—C15—H15118.3C34—C35—H35118.5
O11—C16—N12122.13 (19)O31—C36—N32122.80 (18)
O11—C16—C13119.94 (19)O31—C36—C33120.18 (17)
N12—C16—C13117.93 (18)N32—C36—C33117.02 (17)
C16—N12—H12A120.0C36—N32—H32A120.0
C16—N12—H12B120.0C36—N32—H32B120.0
H12A—N12—H12B120.0H32A—N32—H32B120.0
C25—N21—C21116.72 (16)Co1—O1—H1O1122.5
C25—N21—Co1121.72 (12)Co1—O1—H2O1123.2
C21—N21—Co1121.48 (13)H1O1—O1—H2O1103.7
N21—C21—C22123.09 (18)H1O2—O2—H2O2107.4
N21—C21—H21118.5H1O3—O3—H2O3105.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···S2i0.952.963.646 (2)130
C14—H14···S1ii0.952.843.785 (2)172
C15—H15···O21iii0.952.453.324 (3)153
N12—H12A···O31iv0.882.072.922 (2)163
N12—H12B···S1ii0.882.743.592 (2)164
C21—H21···N20.952.653.245 (3)122
C22—H22···O40.952.493.234 (2)136
C24—H24···O20.952.583.423 (3)149
C25—H25···N10.952.493.107 (2)122
N22—H22A···S1v0.882.793.6484 (18)165
N22—H22B···O20.882.042.873 (2)158
C32—H32···S2iii0.953.003.826 (2)146
N32—H32A···O2vi0.882.253.121 (2)172
N32—H32B···S2iii0.882.573.4083 (19)160
O1—H1O1···O21iii0.841.962.7858 (19)166
O1—H2O1···O21vii0.842.012.8106 (19)158
O2—H1O2···O3viii0.841.832.650 (3)164
O2—H2O2···N1ix0.842.603.337 (2)148
O2—H2O2···N31ix0.842.663.363 (2)143
O3—H1O3···O310.842.172.966 (3)158
O3—H2O3···O4x0.842.202.963 (2)152
O4—H1O4···O11xi0.841.912.723 (2)163
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+3/2, z1/2; (v) x+1/2, y+1/2, z; (vi) x, y1, z; (vii) x1/2, y1/2, z; (viii) x, y+1, z; (ix) x+1/2, y+3/2, z+1; (x) x+1, y+1, z+1; (xi) x+1/2, y1/2, z.
 

Acknowledgements

This project was supported by the Deutsche Forschungsgemeinschaft (project No. NA 720/5–1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBoeckmann, J., Wriedt, M. & Näther, C. (2012). Chem. Eur. J. 18, 5284–5289.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCaneschi, A., Gatteschi, D., Lalioti, N., Sangregorio, C., Sessoli, R., Venturi, G., Vindigni, A. R., Rettori, A., Pini, M. G. & Novak, M. A. (2001). Angew. Chem. Int. Ed. 40, 1760–1763.  CrossRef CAS Google Scholar
First citationĐaković, M., Jagličić, Z., Kozlevčar, B. & Popović, Z. (2010). Polyhedron, 29, 1910–1917.  Google Scholar
First citationDhers, S., Feltham, H. L. C. & Brooker, S. (2015). Coord. Chem. Rev. 296, 24–44.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, R., Li, L., Wang, X., Yang, P., Wang, C., Liao, D. & Sutter, J.-P. (2010). Chem. Commun. 46, 2566–2568.  Web of Science CSD CrossRef Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationNeumann, T., Jess, I. & Näther, C. (2016a). Acta Cryst. E72, 922–925.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeumann, T., Jess, I. & Näther, C. (2016b). Acta Cryst. E72, 1077–1080.  CSD CrossRef IUCr Journals Google Scholar
First citationSekiya, R. & Nishikiori, S. (2005). Chem. Lett. 34, 1076–1077.  Web of Science CSD CrossRef CAS Google Scholar
First citationSekiya, R., Nishikiori, S. & Kuroda, R. (2009). CrystEngComm, 11, 2251–2253.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893–2901.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015c). Eur. J. Inorg. Chem. 2015, 3236–3245.  Web of Science CSD CrossRef CAS Google Scholar
First citationWerner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015b). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014). Inorg. Chem. 53, 8298–8310.  Web of Science PubMed Google Scholar
First citationYang, G., Zhu, H.-G., Liang, B.-H. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 580–585.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds