research communications
Crystal structures of two ytterbium(III) complexes comprising alkynylamidinate ligands
aChemisches Institut der Otto-von-Guericke-Universitaet Magdeburg, Universitaetsplatz 2, 39106 Magdeburg, Germany, and bOrganometallic and Organometalloid Chemistry Department, National Research, Centre, 12622 Cairo, Egypt
*Correspondence e-mail: frank.edelmann@ovgu.de
Two ytterbium(III) complexes comprising alkynylamidinate ligands, namely bis(η5-cyclopentadienyl)(3-cyclopropyl-N,N′-diisopropylpropynamidinato-κ2N,N′)ytterbium(III), [Yb(C5H5)2(C12H19N2)] or Cp2Yb[(iPr2N)2C—C≡C—c-C3H5] (1) and tris(3-phenyl-N,N′-dicyclohexylpropynamidinato-κ2N,N′)ytterbium(III), [Yb(C21H27N2)3] or Yb[(CyN)2C—C≡C—Ph]3 (Cy = cyclohexyl) (2) have been synthesized and structurally characterized. Both complexes are monomers; for complex 2, the contribution to the scattering from highly disordered toluene solvent molecules in these voids was removed with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The stated crystal data for Mr, μ etc. do not take these into account.
1. Chemical context
Anionic amidinate ligands of the type [RC(NR′)2]− (R = H, alkyl, aryl; R′ = alkyl, cycloalkyl, aryl, SiMe3) are highly useful and versatile spectator ligands in organolanthanide chemistry. These readily available N-chelating ligands are generally regarded as sterically demanding cyclopentadienyl equivalents (Collins, 2011; Edelmann, 2013). Mono-, di- and trisubstituted lanthanide amidinate complexes are all accessible, in close analogy to the long known mono-, di- and tricyclopentadienyl complexes. Over the past ca 25 years, lanthanide amidinates have witnessed an impressive transformation from laboratory curiosities to homogeneous catalysts as well as valuable precursors in materials science. Rare-earth metal amidinates have been reported to be highly active homogeneous catalysts e.g. for reactions of the guanylation of or the addition of terminal to carbodiimides (Edelmann, 2009, 2012). In materials science, certain homoleptic alkyl-substituted lanthanide tris(amidinate) complexes are highly volatile and can be used as precursors for ALD (atomic layer deposition) and MOCVD (metal–organic chemical vapor deposition) processes, e.g. for the deposition of lanthanide oxide (Ln2O3) or lanthanide nitride (LnN) thin films (Devi, 2013).
Introduction of alkynyl groups to the central C atom in R—C≡C—C(NR′)(NHR′). In organic synthesis, alkynylamidines have been frequently employed in the preparation of various heterocycles (Ong et al., 2006; Xu et al., 2008; Weingärtner & Maas, 2012). Alkynylamidines are also useful for diverse applications in biological and pharmacological systems (Rowley et al., 2005; Sienkiewicz et al., 2005). Thus far, only a few lanthanide complexes containing alkynylamidinate ligands have been described. Previously used alkynylamidinate ligands include e.g. phenylethynyl derivatives [Ph—C≡C—C(NR)2]− (R = iPr, tBu) (Dröse et al., 2010a,b; Xu et al., 2013) and the trimethylsilyl-substituted anions [Me3Si—C≡C—C(NR)2]− [R = cyclohexyl (Cy), iPr] (Seidel et al., 2012).
provides alkynylamidines of the general typeWe recently initiated a study of alkynylamidinates derived from cyclopropylacetylene (Sroor et al., 2015c). The cyclopropyl group was chosen because of the well-known electron-donating ability of this substituent to an adjacent electron-deficient atom or group. This would give us the rare chance to electronically influence the amidinate ligand system rather than altering only its steric demand. We now describe the synthesis and structural characterization of two new ytterbium(III) alkynylamidinate complexes, namely Cp2Yb[(iPrN)2C—C≡C—c-C3H5] (1) and Yb[(CyN)2C—C≡C—Ph]3 (Cy = cyclohexyl; 2), shown in Figs. 1 and 2.
2. Structural commentary
The structural analyses revealed that both title compounds are monomeric in the solid state, with the alkynylamidinate anion acting as an N,N′-chelating ligand. Compound 1 crystallizes in the orthorhombic Pbca with one complex molecule in the The two cyclopentadienyl ligands feature a typical symmetric η5-coordination with Yb–centroid(Cp) distances of 2.315 and 2.321 Å. The Yb—Cp distances are therefore slightly larger than in the related chloride [Cp2YbCl]2 [Yb–centroid(Cp) 2.300 and 2.307 Å; Lamberts et al., 1987; Lueken et al., 1987, 1989], possibly due to the steric demand of the two N-isopropyl groups close to the ytterbium atom. Probably for the same reason, the product does not contain coordinating THF even though the complex was prepared in THF solution. Accordingly the coordination geometry around Yb can be described as distorted pseudo-tetrahedral. At 131.1°, the Cp—Yb—Cp angle is close to that observed in [Cp2YbCl]2 (Cp—Yb—Cp 130.0°; Lamberts et al., 1987; Lueken et al., 1987, 1989) and compound 1 is therefore a typical bent metallocene complex of trivalent ytterbium. Due to the low formal of four around the Yb atom, the Yb—N bond lengths of 2.274 (2) and 2.293 (2) Å are short compared to those observed in other late lanthanide amidinates, such as [Yb2{(DippN)2CH}4(μ-OCPh=C6H4-4-CPh2O)(THF)] [Yb—N 2.285 (2)–2.391 (2) Å; Deacon et al., 2014], [Ho{N(SiMe3)2}{(CyN)2C—C≡C—c-C3H5}2] [Ho—N 2.303 (2)–2.348 (4) Å; Sroor et al., 2015b] and [Ho(η8-COT){(CyN)2C—C≡C—c-C3H5}(THF)] [Ho—N 2.342 (3) and 2.349 (3) Å; Sroor et al., 2016].
Compound 2 crystallizes in the trigonal Rc, with the Yb atom located on a threefold rotation axis along the crystallographic c axis. The complex molecule is therefore C3 symmetric. The Yb atom is coordinated by the three symmetry-equivalent chelating amidinate ligands in a distorted octahedral fashion with C1—Yb—C1′ angles of 120° and an angle of 90±3° between the YbN2C planes. The cyclohexyl group attached to N2 is disordered over two orientations by rotation around the N2—C16 vector. As a result of the higher the Yb—N bonds [2.310 (2) and 2.320 (2) Å] are slightly longer than in compound 1. However, in consequence of the small size of the Yb3+ ion, the Yb—N bonds in compound 2 are significantly shorter than in corresponding hexacoordinated lanthanide(III) amidinates, e.g. [Ln{(iPrN)2C–tBu}3] [Ln = Ce: Ce—N 2.469 (2)–2.550 (2) Å; Ln = Eu: Eu—N 2.402 (4)–2.457 (4) Å; Ln = Tb: Tb—N 2.391 (3)–2.409 (3) Å; Dröse et al., 2011] and [Ho{(CyN)2C—C≡C—c-C3H5}3] [Ho—N 2.342 (2)–2.383 (3) Å] (Sroor et al., 2015a).
The N—Yb—N angle in compound 2 [58.2 (1)°] is slightly smaller than in compound 1 [59.1 (1)°], but larger than in other homoleptic lanthanide (III) amidinates {e.g. [Ln{(iPrN)2C–tBu}3], Ln = Ce: N—Ce—N 51.81 (4)–52.72 (4)°; Ln = Eu: N—Eu—N 53.9 (1)–54.4 (2)°; Ln = Tb: N—Tb—N 54.9 (1)–55.0 (1)°; Dröse et al., 2011} and [Ho{(CyN)2C—C≡C—c-C3H5}3] [N—Ho—N 57.1 (1)–57.7 (1)°; Sroor et al., 2015a]. The N—Ln—N angle therefore correlates clearly with the Ln—N bond length, decreasing with rising Ln—N distance (i.e. with rising of the metal and within the lanthanide series from right to left). The C1—N bond lengths of the amidinate ligand are very similar [1: 1.332 (3) and 1.334 (3) Å; 2: 1.321 (4) and 1.324 (4) Å], indicating a typical delocalization of the negative charge within the NCN fragment (Sroor et al., 2016).
3. Supramolecular features
Compounds 1 and 2 do not exhibit any specific intermolecular interactions. In compound 1, the closest intermolecular C—C contacts are found between Cp ligands and cyclopropyl substituents, 3.510–3.625 Å. Compound 2 features one intermolecular phenyl–cyclohexyl contact where the shortest C—C distance is 3.567 Å, and various cyclohexyl–cyclohexyl contacts with C—C distances of 3.441–3.576 Å. The of compound 2 comprises a large void of ca 220 Å3 that is probably filled with a highly disordered toluene molecule. The content of the voids was corrected for using the SQUEEZE method (Spek, 2015), yielding a solvent-accessible volume of 1316 Å3 and 138 electrons, or about 1.5 solvate molecules per The composition of the crystal can therefore be assumed to be 2·0.166 toluene.
4. Database survey
For other lanthanide(III) complexes with amidinate ligands, see Richter et al. (2004), Edelmann (2009, 2012) and Deacon et al. (2014). For related bent sandwich complexes of the lanthanides, see Lueken et al. (1987, 1989), Schumann et al. (1998) and Kühling et al. (2015).
5. Synthesis and crystallization
Synthesis of Cp2Yb[(iPr2N)2C–C≡C–c-C3H5] (1)
This compound was prepared by treatment of Cp2YbCl (Maginn et al., 1963) with Li[(iPr2N)2C—C≡C—c-C3H5] (Sroor et al., 2013) in a molar ratio of 1:1. Treatment of Cp2YbCl (0.68 g, 2.0 mmol) with Li[(iPr2N)2C—C≡C—c-C3H5] (2.0 mmol, prepared in situ from Li—C≡C—c-C3H5 and N,N′-diisopropylcarbodiimide) in 30 ml of THF produced a bright-orange solution and a white precipitate (LiCl). After filtration and evaporation to dryness, the product was extracted with n-pentane (2 × 20 ml). The extract was filtered again and concentrated to a total volume of ca 10 ml. Crystallization at 253 K afforded 1 as orange air- and moisture-sensitive crystals. Yield: 0.53 g, 73%. M.p.: 478 K. Analysis calculated for C22H20N2Yb: C 53.43, H 5.91, N 5.66%; found: C 53.61, H 5.766, N 5.86%. MS (EI, M = 494.54): m/z (%) 450 (5) [M − 3CH3]+, 407 (5) [M − 2iPr]+, 384 (7), 369 (13) [M − 2Cp + 3H]+, 355 (5), 341 (66) [M − Cp − 2iPr]+, 328 (5), 313 (4) [YbNiPr—C(CH)—NiPr]+, 299 (7) [YbNiPr—C—NiPr]+, 284 (10) [YbNiPr—C—NCCH3]+, 274 (100) [YbNiPr—C—NCH3]+, 258 (25) [YbNiPr—CN]+, 243 (8), 232 (10), 215 (12) [YbNCN]+. IR (KBr) ν (cm−1): 3093 (w), 2963 (m), 2922 (w), 2871 (w), 2609 (w), 2215 (m, C≡C), 2070 (w), 1985 (w), 1746 (w), 1609 (m, NCN), 1450 (s), 1367 (m), 1327 (m), 1258 (w), 1224 (m), 1177 (m), 1055 (w), 1012 (m), 968 (m), 878 (w), 766 (vs), 695 (m), 531 (w), 481 (w), 393 (w), 328 (w). 1H NMR (400 MHz, [D6]-benzene, 298 K): δ 0.92 (overlapped, m, CH-cyclopropyl), 0.47–0.51 (m, 2H, CH2-cyclopropyl), 0.25–0.20 (m, 2H, CH2-cyclopropyl), −1.5 (br s, 10H, CH Cp), −7.2 (1H, sept, CH iPr), −10.8 (1H, sept, CH iPr), −36.9 (br s, CH3 iPr). 13C NMR (100.6 MHz, [D6]-benzene, 298 K): δ 152.3 (s, NCN), 96.4 (s, C≡C–C), 69.7 (s, CH–C≡C), 65.3 (s, CH Cp), 2.5–2.6 (s, CH iPr), 1.1 (br s, CH3 iPr), 8.4 (s, CH2 cyclopropyl), −0.4 (s, CH cyclopropyl).
Synthesis of Yb[(CyN)2C—C≡C—Ph]3 (Cy = cyclohexyl) (2)
Anhydrous ytterbium(III) trichloride (1.40 g, 5.0 mmol) (Freeman & Smith, 1958) was suspended in THF (50 ml) and treated with a solution of Li[Ph—C≡C—C(NCy)2] (4.72 g, 15.0 mmol) (prepared in situ by addition of lithium phenylacetylide to N,N′-dicyclohexylcarbodiimide) in THF (60 ml). The reaction mixture was refluxed for 3 h. After cooling to room temperature, the white precipitate (LiCl) was removed by filtration, and the clear filtrate was evaporated to dryness. Off-white air- and moisture-sensitive solid. Yield: 3.07 g, 56%. M.p.: 505 K. Single crystal suitable for X-ray were obtained from a saturated toluene solution at 281 K. Analysis calculated for C63H81N6Yb: C 69.07, H 7.45, N 7.67%; found: C 69.21, H 7.50, N 7.47%. MS (EI, M = 1095.42): m/z (%) 1014 (23) [M – Cy]+, 1006 (7) [M – PhC]+, 998 (15), 964 (14), 949 (16), 899 (46), 849 (30), 833 (20), 811 (12), 799 (23), 787 (75) [M − NCy—C(C≡C—Ph)—NCy]+, 783 (35), 733 (62), 711 (6) [M − NCy—C(C≡C—Ph)-NCy – Ph]+, 683 (45), 667 (100) [M − NCy—C(C≡C—Ph)-NCy − Ph – C3H8]+, 645 (29). IR (KBr) ν (cm−1): 2922 (s), 2850 (m), 2661 (w), 2208 (w, C≡C), 1982 (w), 1598 (w), 1574 (w, NCN), 1491 (m), 1461 (vs), 1449 (s), 1411 (m), 1398 (m), 1343 (s), 1311 (m), 1256 (m), 1192 (m), 1170 (m), 1137 (m), 1070 (m), 1027 (w), 995 (m), 914 (w), 898 (m), 887 (m), 844 (w), 798 (w), 754 (s), 702 (m), 688 (s), 628 (s), 553 (w), 529 (m), 504 (w), 488 (w), 452 (w), 411 (m), 355 (m), 316 (m), 273 (w). 1H NMR (400.1 MHz, [D8]-THF, 298 K): 14.12 (br s, CH2, Cy), 6.88 (br s,CH2, Cy), 4.54 (m, 3H, p-CH Ph), 3.94 (m, 6H, m-CH Ph), 1.29 (br s, CH2, Cy), −0.15 (d, 6H, o-CH Ph), −14.62 (br s, N—CH, Cy). 13C NMR (100.6 MHz, [D8]-THF, 298 K): 126.4 (s, p-CH Ph), 126.0 (s, m-CH Ph), 124.6 (s, o-CH Ph), 111.2 (s, i-C Ph), 71.0 (s, ≡C-Ph), 46.0 (s, N-CH, Cy), 36.1 (s, CH2, Cy), 35.7 (s, CH2, Cy), 35.0 (s, CH2, Cy), ≡C-C(NCy)2 and NCN not observed.
6. Refinement
Crystal data, data collection and structure . In the case of compound 2, C atoms C17–C21 of the disordered cyclohexyl substituent have been split over two sites, with a freely refined occupancy ratio. The N-bonded C atom C16 was refined as not disordered using EXYZ and EADP commands but the different orientation of the corresponding H atom H17 was taken into account. The contribution to the scattering from the solvent molecule in compound 2 was removed with the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2009), yielding a solvent accessible volume of 1316 Å3 and 138 electrons. H atoms were fixed geometrically and refined using a riding model with U(H) = 1.20Ueq(C).
details are summarized in Table 1Supporting information
https://doi.org/10.1107/S2056989016012135/zl2671sup1.cif
contains datablocks li0090, li0065_sq. DOI:Structure factors: contains datablock li0090. DOI: https://doi.org/10.1107/S2056989016012135/zl2671li0090sup2.hkl
Structure factors: contains datablock li0065_sq. DOI: https://doi.org/10.1107/S2056989016012135/zl2671li0065_sqsup4.hkl
For both compounds, data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-AREA and X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).[Yb(C5H5)2(C12H19N2)] | Dx = 1.621 Mg m−3 |
Mr = 494.51 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 21907 reflections |
a = 9.4578 (2) Å | θ = 1.8–26.2° |
b = 19.2910 (6) Å | µ = 4.62 mm−1 |
c = 22.2114 (5) Å | T = 153 K |
V = 4052.48 (18) Å3 | Block, orange |
Z = 8 | 0.33 × 0.31 × 0.25 mm |
F(000) = 1960 |
Stoe IPDS 2T diffractometer | 4045 independent reflections |
Radiation source: fine-focus sealed tube | 3263 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.051 |
area detector scans | θmax = 26.2°, θmin = 2.3° |
Absorption correction: numerical (X-AREA and X-RED; Stoe & Cie, 2002) | h = −11→10 |
Tmin = 0.326, Tmax = 0.448 | k = −23→22 |
21905 measured reflections | l = −27→27 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.018 | H-atom parameters constrained |
wR(F2) = 0.040 | w = 1/[σ2(Fo2) + (0.0189P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max < 0.001 |
4045 reflections | Δρmax = 0.50 e Å−3 |
227 parameters | Δρmin = −0.72 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: heavy-atom method | Extinction coefficient: 0.00042 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3923 (3) | 0.02660 (12) | 0.12656 (11) | 0.0209 (5) | |
C2 | 0.4476 (3) | −0.03844 (14) | 0.14935 (12) | 0.0243 (5) | |
C3 | 0.5016 (3) | −0.08748 (13) | 0.17234 (12) | 0.0237 (5) | |
C4 | 0.5728 (3) | −0.14441 (13) | 0.20074 (11) | 0.0239 (5) | |
H1 | 0.5401 | −0.1564 | 0.2423 | 0.029* | |
C5 | 0.7285 (3) | −0.15415 (18) | 0.18859 (17) | 0.0451 (9) | |
H3 | 0.7748 | −0.1214 | 0.1605 | 0.054* | |
H2 | 0.7888 | −0.1699 | 0.2224 | 0.054* | |
C6 | 0.6272 (4) | −0.20392 (15) | 0.16337 (14) | 0.0363 (7) | |
H4 | 0.6240 | −0.2509 | 0.1813 | 0.044* | |
H5 | 0.6100 | −0.2024 | 0.1194 | 0.044* | |
C7 | 0.1682 (3) | 0.00848 (14) | 0.17826 (13) | 0.0279 (6) | |
H6 | 0.2233 | −0.0186 | 0.2086 | 0.033* | |
C8 | 0.0678 (3) | 0.05675 (15) | 0.21099 (14) | 0.0354 (7) | |
H9 | 0.0013 | 0.0294 | 0.2351 | 0.042* | |
H7 | 0.1218 | 0.0876 | 0.2375 | 0.042* | |
H8 | 0.0153 | 0.0845 | 0.1816 | 0.042* | |
C9 | 0.0881 (3) | −0.04153 (15) | 0.13814 (15) | 0.0396 (7) | |
H11 | 0.0232 | −0.0693 | 0.1627 | 0.048* | |
H10 | 0.0341 | −0.0154 | 0.1081 | 0.048* | |
H12 | 0.1553 | −0.0722 | 0.1177 | 0.048* | |
C10 | 0.6091 (3) | 0.04894 (13) | 0.07174 (12) | 0.0265 (6) | |
H13 | 0.6102 | −0.0018 | 0.0627 | 0.032* | |
C11 | 0.7191 (3) | 0.06331 (19) | 0.12009 (15) | 0.0407 (8) | |
H15 | 0.8127 | 0.0496 | 0.1054 | 0.049* | |
H16 | 0.7193 | 0.1129 | 0.1297 | 0.049* | |
H14 | 0.6961 | 0.0367 | 0.1564 | 0.049* | |
C12 | 0.6454 (3) | 0.08777 (16) | 0.01454 (14) | 0.0361 (7) | |
H18 | 0.7412 | 0.0753 | 0.0017 | 0.043* | |
H17 | 0.5779 | 0.0753 | −0.0171 | 0.043* | |
H19 | 0.6406 | 0.1378 | 0.0221 | 0.043* | |
C13 | 0.3678 (4) | 0.19289 (17) | 0.20356 (15) | 0.0468 (9) | |
H20 | 0.3727 | 0.1576 | 0.2333 | 0.056* | |
C14 | 0.4768 (4) | 0.21487 (18) | 0.16796 (18) | 0.0513 (10) | |
H21 | 0.5707 | 0.1974 | 0.1690 | 0.062* | |
C15 | 0.4272 (4) | 0.26772 (16) | 0.12948 (17) | 0.0458 (9) | |
H22 | 0.4803 | 0.2920 | 0.0999 | 0.055* | |
C16 | 0.2837 (3) | 0.27732 (14) | 0.14360 (13) | 0.0333 (7) | |
H23 | 0.2215 | 0.3098 | 0.1254 | 0.040* | |
C17 | 0.2495 (4) | 0.23090 (15) | 0.18876 (14) | 0.0368 (7) | |
H24 | 0.1588 | 0.2260 | 0.2067 | 0.044* | |
C18 | 0.2309 (3) | 0.20903 (15) | −0.00641 (12) | 0.0292 (6) | |
H25 | 0.2880 | 0.2466 | −0.0196 | 0.035* | |
C19 | 0.1094 (3) | 0.21427 (15) | 0.02902 (12) | 0.0308 (6) | |
H26 | 0.0686 | 0.2558 | 0.0441 | 0.037* | |
C20 | 0.0589 (3) | 0.14683 (19) | 0.03826 (14) | 0.0456 (9) | |
H27 | −0.0230 | 0.1346 | 0.0606 | 0.055* | |
C21 | 0.1492 (4) | 0.10076 (17) | 0.00905 (15) | 0.0470 (9) | |
H28 | 0.1402 | 0.0517 | 0.0086 | 0.056* | |
C22 | 0.2543 (4) | 0.13851 (15) | −0.01913 (13) | 0.0368 (7) | |
H29 | 0.3290 | 0.1201 | −0.0429 | 0.044* | |
N1 | 0.2658 (2) | 0.05054 (11) | 0.14281 (10) | 0.0212 (4) | |
N2 | 0.4664 (2) | 0.06799 (10) | 0.09026 (10) | 0.0216 (4) | |
Yb | 0.29970 (2) | 0.15407 (2) | 0.09600 (2) | 0.01886 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0188 (12) | 0.0168 (11) | 0.0271 (13) | −0.0009 (10) | −0.0038 (11) | −0.0017 (9) |
C2 | 0.0197 (13) | 0.0225 (12) | 0.0308 (13) | 0.0006 (11) | 0.0012 (10) | −0.0002 (11) |
C3 | 0.0191 (13) | 0.0243 (13) | 0.0276 (14) | −0.0013 (12) | 0.0011 (11) | −0.0005 (10) |
C4 | 0.0233 (13) | 0.0235 (13) | 0.0248 (13) | 0.0024 (11) | 0.0008 (10) | 0.0049 (10) |
C5 | 0.0207 (16) | 0.0513 (19) | 0.063 (2) | 0.0067 (15) | −0.0007 (14) | 0.0297 (17) |
C6 | 0.044 (2) | 0.0315 (15) | 0.0335 (16) | 0.0146 (15) | 0.0064 (14) | 0.0086 (12) |
C7 | 0.0194 (14) | 0.0286 (14) | 0.0356 (15) | 0.0005 (11) | 0.0026 (11) | 0.0138 (12) |
C8 | 0.0289 (15) | 0.0425 (17) | 0.0347 (15) | 0.0003 (13) | 0.0108 (13) | 0.0069 (13) |
C9 | 0.0248 (15) | 0.0255 (14) | 0.069 (2) | −0.0048 (14) | 0.0090 (15) | 0.0011 (14) |
C10 | 0.0189 (13) | 0.0207 (13) | 0.0400 (14) | 0.0017 (11) | 0.0080 (12) | −0.0030 (11) |
C11 | 0.0202 (16) | 0.057 (2) | 0.0453 (18) | 0.0026 (14) | 0.0030 (13) | 0.0037 (15) |
C12 | 0.0281 (15) | 0.0424 (17) | 0.0377 (17) | −0.0037 (14) | 0.0093 (12) | −0.0038 (13) |
C13 | 0.065 (2) | 0.0368 (17) | 0.0390 (18) | 0.0037 (18) | −0.0226 (18) | −0.0134 (14) |
C14 | 0.0307 (18) | 0.0423 (19) | 0.081 (3) | 0.0127 (16) | −0.0246 (18) | −0.0393 (19) |
C15 | 0.047 (2) | 0.0275 (15) | 0.063 (2) | −0.0175 (16) | 0.0116 (17) | −0.0182 (15) |
C16 | 0.0367 (18) | 0.0198 (12) | 0.0434 (16) | 0.0058 (13) | −0.0073 (14) | −0.0059 (11) |
C17 | 0.0409 (17) | 0.0318 (15) | 0.0377 (16) | −0.0032 (15) | 0.0032 (14) | −0.0113 (12) |
C18 | 0.0290 (17) | 0.0302 (14) | 0.0284 (14) | 0.0040 (12) | −0.0004 (12) | 0.0090 (11) |
C19 | 0.0239 (14) | 0.0404 (16) | 0.0281 (14) | 0.0095 (13) | −0.0019 (12) | 0.0060 (12) |
C20 | 0.0282 (16) | 0.068 (2) | 0.0405 (18) | −0.0194 (17) | −0.0139 (13) | 0.0210 (17) |
C21 | 0.069 (3) | 0.0321 (16) | 0.0396 (19) | −0.0118 (18) | −0.0301 (17) | 0.0043 (13) |
C22 | 0.0532 (19) | 0.0357 (16) | 0.0216 (14) | 0.0131 (14) | −0.0055 (13) | 0.0006 (11) |
N1 | 0.0165 (11) | 0.0190 (10) | 0.0281 (11) | 0.0019 (9) | 0.0014 (9) | 0.0040 (8) |
N2 | 0.0169 (11) | 0.0182 (10) | 0.0298 (12) | 0.0014 (8) | 0.0024 (9) | −0.0018 (9) |
Yb | 0.01845 (6) | 0.01490 (6) | 0.02324 (6) | 0.00096 (4) | −0.00219 (4) | 0.00011 (4) |
C1—N1 | 1.332 (3) | C12—H19 | 0.9800 |
C1—N2 | 1.334 (3) | C13—C14 | 1.367 (6) |
C1—C2 | 1.451 (4) | C13—C17 | 1.378 (5) |
C1—Yb | 2.697 (2) | C13—Yb | 2.585 (3) |
C2—C3 | 1.190 (4) | C13—H20 | 0.9500 |
C3—C4 | 1.434 (4) | C14—C15 | 1.411 (5) |
C4—C6 | 1.507 (4) | C14—Yb | 2.595 (3) |
C4—C5 | 1.509 (4) | C14—H21 | 0.9500 |
C4—H1 | 1.0000 | C15—C16 | 1.405 (5) |
C5—C6 | 1.468 (5) | C15—Yb | 2.610 (3) |
C5—H3 | 0.9900 | C15—H22 | 0.9500 |
C5—H2 | 0.9900 | C16—C17 | 1.383 (4) |
C6—H4 | 0.9900 | C16—Yb | 2.607 (3) |
C6—H5 | 0.9900 | C16—H23 | 0.9500 |
C7—N1 | 1.460 (3) | C17—Yb | 2.582 (3) |
C7—C9 | 1.516 (4) | C17—H24 | 0.9500 |
C7—C8 | 1.516 (4) | C18—C19 | 1.396 (4) |
C7—H6 | 1.0000 | C18—C22 | 1.407 (4) |
C8—H9 | 0.9800 | C18—Yb | 2.592 (3) |
C8—H7 | 0.9800 | C18—H25 | 0.9500 |
C8—H8 | 0.9800 | C19—C20 | 1.401 (4) |
C9—H11 | 0.9800 | C19—Yb | 2.608 (3) |
C9—H10 | 0.9800 | C19—H26 | 0.9500 |
C9—H12 | 0.9800 | C20—C21 | 1.393 (5) |
C10—N2 | 1.458 (3) | C20—Yb | 2.617 (3) |
C10—C12 | 1.514 (4) | C20—H27 | 0.9500 |
C10—C11 | 1.521 (4) | C21—C22 | 1.382 (5) |
C10—H13 | 1.0000 | C21—Yb | 2.610 (3) |
C11—H15 | 0.9800 | C21—H28 | 0.9500 |
C11—H16 | 0.9800 | C22—Yb | 2.610 (3) |
C11—H14 | 0.9800 | C22—H29 | 0.9500 |
C12—H18 | 0.9800 | N1—Yb | 2.274 (2) |
C12—H17 | 0.9800 | N2—Yb | 2.293 (2) |
N1—C1—N2 | 115.4 (2) | Yb—C18—H25 | 116.2 |
N1—C1—C2 | 122.0 (2) | C18—C19—C20 | 107.2 (3) |
N2—C1—C2 | 122.6 (2) | C18—C19—Yb | 73.82 (16) |
N1—C1—Yb | 57.36 (12) | C20—C19—Yb | 74.83 (16) |
N2—C1—Yb | 58.18 (12) | C18—C19—H26 | 126.4 |
C2—C1—Yb | 173.46 (18) | C20—C19—H26 | 126.4 |
C3—C2—C1 | 172.8 (3) | Yb—C19—H26 | 117.1 |
C2—C3—C4 | 177.1 (3) | C21—C20—C19 | 108.4 (3) |
C3—C4—C6 | 120.1 (2) | C21—C20—Yb | 74.25 (18) |
C3—C4—C5 | 118.3 (2) | C19—C20—Yb | 74.06 (16) |
C6—C4—C5 | 58.2 (2) | C21—C20—H27 | 125.8 |
C3—C4—H1 | 116.0 | C19—C20—H27 | 125.8 |
C6—C4—H1 | 116.0 | Yb—C20—H27 | 117.8 |
C5—C4—H1 | 116.0 | C22—C21—C20 | 108.4 (3) |
C6—C5—C4 | 60.8 (2) | C22—C21—Yb | 74.66 (18) |
C6—C5—H3 | 117.7 | C20—C21—Yb | 74.84 (18) |
C4—C5—H3 | 117.7 | C22—C21—H28 | 125.8 |
C6—C5—H2 | 117.7 | C20—C21—H28 | 125.8 |
C4—C5—H2 | 117.7 | Yb—C21—H28 | 116.7 |
H3—C5—H2 | 114.8 | C21—C22—C18 | 107.8 (3) |
C5—C6—C4 | 61.0 (2) | C21—C22—Yb | 74.64 (18) |
C5—C6—H4 | 117.7 | C18—C22—Yb | 73.61 (16) |
C4—C6—H4 | 117.7 | C21—C22—H29 | 126.1 |
C5—C6—H5 | 117.7 | C18—C22—H29 | 126.1 |
C4—C6—H5 | 117.7 | Yb—C22—H29 | 117.7 |
H4—C6—H5 | 114.8 | C1—N1—C7 | 121.4 (2) |
N1—C7—C9 | 110.6 (2) | C1—N1—Yb | 93.09 (15) |
N1—C7—C8 | 108.3 (2) | C7—N1—Yb | 145.49 (16) |
C9—C7—C8 | 111.1 (2) | C1—N2—C10 | 120.4 (2) |
N1—C7—H6 | 108.9 | C1—N2—Yb | 92.20 (15) |
C9—C7—H6 | 108.9 | C10—N2—Yb | 146.57 (16) |
C8—C7—H6 | 108.9 | N1—Yb—N2 | 59.11 (7) |
C7—C8—H9 | 109.5 | N1—Yb—C17 | 96.51 (9) |
C7—C8—H7 | 109.5 | N2—Yb—C17 | 125.91 (9) |
H9—C8—H7 | 109.5 | N1—Yb—C13 | 82.36 (10) |
C7—C8—H8 | 109.5 | N2—Yb—C13 | 95.16 (10) |
H9—C8—H8 | 109.5 | C17—Yb—C13 | 30.92 (11) |
H7—C8—H8 | 109.5 | N1—Yb—C18 | 136.46 (9) |
C7—C9—H11 | 109.5 | N2—Yb—C18 | 114.82 (8) |
C7—C9—H10 | 109.5 | C17—Yb—C18 | 114.78 (10) |
H11—C9—H10 | 109.5 | C13—Yb—C18 | 139.01 (10) |
C7—C9—H12 | 109.5 | N1—Yb—C14 | 101.91 (11) |
H11—C9—H12 | 109.5 | N2—Yb—C14 | 85.28 (9) |
H10—C9—H12 | 109.5 | C17—Yb—C14 | 50.80 (11) |
N2—C10—C12 | 108.8 (2) | C13—Yb—C14 | 30.60 (12) |
N2—C10—C11 | 112.8 (2) | C18—Yb—C14 | 121.15 (12) |
C12—C10—C11 | 110.3 (2) | N1—Yb—C16 | 127.40 (9) |
N2—C10—H13 | 108.3 | N2—Yb—C16 | 136.29 (9) |
C12—C10—H13 | 108.3 | C17—Yb—C16 | 30.92 (10) |
C11—C10—H13 | 108.3 | C13—Yb—C16 | 51.34 (10) |
C10—C11—H15 | 109.5 | C18—Yb—C16 | 88.18 (9) |
C10—C11—H16 | 109.5 | C14—Yb—C16 | 51.34 (10) |
H15—C11—H16 | 109.5 | N1—Yb—C19 | 123.68 (8) |
C10—C11—H14 | 109.5 | N2—Yb—C19 | 139.92 (8) |
H15—C11—H14 | 109.5 | C17—Yb—C19 | 94.16 (10) |
H16—C11—H14 | 109.5 | C13—Yb—C19 | 124.76 (10) |
C10—C12—H18 | 109.5 | C18—Yb—C19 | 31.15 (9) |
C10—C12—H17 | 109.5 | C14—Yb—C19 | 126.54 (11) |
H18—C12—H17 | 109.5 | C16—Yb—C19 | 77.60 (9) |
C10—C12—H19 | 109.5 | N1—Yb—C21 | 85.14 (9) |
H18—C12—H19 | 109.5 | N2—Yb—C21 | 92.78 (10) |
H17—C12—H19 | 109.5 | C17—Yb—C21 | 135.74 (12) |
C14—C13—C17 | 108.0 (3) | C13—Yb—C21 | 159.02 (13) |
C14—C13—Yb | 75.12 (19) | C18—Yb—C21 | 51.33 (10) |
C17—C13—Yb | 74.42 (17) | C14—Yb—C21 | 170.27 (13) |
C14—C13—H20 | 126.0 | C16—Yb—C21 | 128.90 (10) |
C17—C13—H20 | 126.0 | C19—Yb—C21 | 51.47 (10) |
Yb—C13—H20 | 116.6 | N1—Yb—C15 | 132.26 (10) |
C13—C14—C15 | 108.9 (3) | N2—Yb—C15 | 107.84 (10) |
C13—C14—Yb | 74.29 (19) | C17—Yb—C15 | 51.36 (10) |
C15—C14—Yb | 74.87 (18) | C13—Yb—C15 | 51.56 (12) |
C13—C14—H21 | 125.5 | C18—Yb—C15 | 91.28 (11) |
C15—C14—H21 | 125.5 | C14—Yb—C15 | 31.44 (12) |
Yb—C14—H21 | 117.2 | C16—Yb—C15 | 31.25 (10) |
C16—C15—C14 | 106.3 (3) | C19—Yb—C15 | 96.16 (11) |
C16—C15—Yb | 74.22 (17) | C21—Yb—C15 | 142.52 (11) |
C14—C15—Yb | 73.69 (17) | N1—Yb—C22 | 108.89 (9) |
C16—C15—H22 | 126.8 | N2—Yb—C22 | 88.59 (9) |
C14—C15—H22 | 126.8 | C17—Yb—C22 | 144.82 (10) |
Yb—C15—H22 | 117.4 | C13—Yb—C22 | 168.41 (11) |
C17—C16—C15 | 107.6 (3) | C18—Yb—C22 | 31.38 (9) |
C17—C16—Yb | 73.57 (16) | C14—Yb—C22 | 139.59 (13) |
C15—C16—Yb | 74.53 (16) | C16—Yb—C22 | 119.52 (9) |
C17—C16—H23 | 126.2 | C19—Yb—C22 | 51.59 (9) |
C15—C16—H23 | 126.2 | C21—Yb—C22 | 30.70 (11) |
Yb—C16—H23 | 117.7 | C15—Yb—C22 | 116.85 (11) |
C13—C17—C16 | 109.1 (3) | N1—Yb—C20 | 93.12 (9) |
C13—C17—Yb | 74.66 (17) | N2—Yb—C20 | 122.16 (10) |
C16—C17—Yb | 75.52 (17) | C17—Yb—C20 | 105.16 (12) |
C13—C17—H24 | 125.4 | C13—Yb—C20 | 133.23 (12) |
C16—C17—H24 | 125.4 | C18—Yb—C20 | 51.22 (9) |
Yb—C17—H24 | 116.3 | C14—Yb—C20 | 152.55 (11) |
C19—C18—C22 | 108.2 (3) | C16—Yb—C20 | 101.36 (11) |
C19—C18—Yb | 75.03 (15) | C19—Yb—C20 | 31.11 (10) |
C22—C18—Yb | 75.01 (16) | C21—Yb—C20 | 30.91 (11) |
C19—C18—H25 | 125.9 | C15—Yb—C20 | 125.90 (12) |
C22—C18—H25 | 125.9 | C22—Yb—C20 | 51.00 (11) |
C3—C4—C5—C6 | −109.6 (3) | C19—C20—C21—Yb | 66.8 (2) |
C3—C4—C6—C5 | 106.6 (3) | C20—C21—C22—C18 | 1.1 (3) |
C17—C13—C14—C15 | −0.3 (3) | Yb—C21—C22—C18 | −66.7 (2) |
Yb—C13—C14—C15 | 67.5 (2) | C20—C21—C22—Yb | 67.8 (2) |
C17—C13—C14—Yb | −67.7 (2) | C19—C18—C22—C21 | −0.9 (3) |
C13—C14—C15—C16 | 0.5 (3) | Yb—C18—C22—C21 | 67.4 (2) |
Yb—C14—C15—C16 | 67.6 (2) | C19—C18—C22—Yb | −68.3 (2) |
C13—C14—C15—Yb | −67.1 (2) | N2—C1—N1—C7 | 174.8 (2) |
C14—C15—C16—C17 | −0.6 (3) | C2—C1—N1—C7 | −8.1 (4) |
Yb—C15—C16—C17 | 66.7 (2) | Yb—C1—N1—C7 | 179.6 (3) |
C14—C15—C16—Yb | −67.2 (2) | N2—C1—N1—Yb | −4.8 (2) |
C14—C13—C17—C16 | −0.1 (3) | C2—C1—N1—Yb | 172.3 (2) |
Yb—C13—C17—C16 | −68.3 (2) | C9—C7—N1—C1 | −81.7 (3) |
C14—C13—C17—Yb | 68.2 (2) | C8—C7—N1—C1 | 156.3 (2) |
C15—C16—C17—C13 | 0.4 (3) | C9—C7—N1—Yb | 97.6 (3) |
Yb—C16—C17—C13 | 67.7 (2) | C8—C7—N1—Yb | −24.4 (4) |
C15—C16—C17—Yb | −67.3 (2) | N1—C1—N2—C10 | 177.0 (2) |
C22—C18—C19—C20 | 0.3 (3) | C2—C1—N2—C10 | 0.0 (4) |
Yb—C18—C19—C20 | −68.0 (2) | Yb—C1—N2—C10 | 172.3 (3) |
C22—C18—C19—Yb | 68.3 (2) | N1—C1—N2—Yb | 4.7 (2) |
C18—C19—C20—C21 | 0.4 (3) | C2—C1—N2—Yb | −172.3 (2) |
Yb—C19—C20—C21 | −66.9 (2) | C12—C10—N2—C1 | 158.5 (2) |
C18—C19—C20—Yb | 67.3 (2) | C11—C10—N2—C1 | −78.8 (3) |
C19—C20—C21—C22 | −0.9 (4) | C12—C10—N2—Yb | −35.6 (4) |
Yb—C20—C21—C22 | −67.7 (2) | C11—C10—N2—Yb | 87.2 (4) |
[Yb(C21H27N2)3] | Dx = 1.210 Mg m−3 |
Mr = 1095.37 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c:H | Cell parameters from 36835 reflections |
a = 20.3469 (3) Å | θ = 2.0–25.1° |
c = 50.3074 (11) Å | µ = 1.60 mm−1 |
V = 18036.8 (7) Å3 | T = 153 K |
Z = 12 | Block, light yellow |
F(000) = 6852 | 0.36 × 0.35 × 0.24 mm |
Stoe IPDS 2T diffractometer | 3578 independent reflections |
Radiation source: fine-focus sealed tube | 2774 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.065 |
area detector scans | θmax = 25.1°, θmin = 2.0° |
Absorption correction: numerical (X-AREA and X-RED; Stoe & Cie, 2002) | h = −24→24 |
Tmin = 0.621, Tmax = 0.722 | k = −24→24 |
36832 measured reflections | l = −59→59 |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0274P)2 + 35.9511P] where P = (Fo2 + 2Fc2)/3 |
3578 reflections | (Δ/σ)max = 0.001 |
257 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −1.18 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. PLATON SQUEEZE (Spek, 2015) |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.11736 (16) | 0.97236 (16) | 0.14621 (6) | 0.0488 (7) | |
C2 | 0.18462 (17) | 0.96500 (16) | 0.14454 (7) | 0.0553 (8) | |
C3 | 0.24269 (17) | 0.96456 (16) | 0.14323 (7) | 0.0569 (8) | |
C4 | 0.31432 (16) | 0.96673 (17) | 0.14298 (7) | 0.0552 (8) | |
C5 | 0.36272 (19) | 0.9967 (2) | 0.16454 (8) | 0.0644 (9) | |
H1 | 0.3477 | 1.0145 | 0.1795 | 0.077* | |
C6 | 0.4328 (2) | 1.0010 (2) | 0.16442 (9) | 0.0773 (11) | |
H2 | 0.4658 | 1.0217 | 0.1792 | 0.093* | |
C7 | 0.4543 (2) | 0.9751 (2) | 0.14279 (10) | 0.0853 (13) | |
H3 | 0.5017 | 0.9768 | 0.1429 | 0.102* | |
C8 | 0.4074 (2) | 0.9468 (2) | 0.12089 (10) | 0.0847 (13) | |
H4 | 0.4233 | 0.9302 | 0.1058 | 0.102* | |
C9 | 0.3374 (2) | 0.9423 (2) | 0.12084 (9) | 0.0712 (10) | |
H5 | 0.3052 | 0.9228 | 0.1058 | 0.085* | |
C10 | 0.06136 (18) | 0.8906 (2) | 0.10821 (7) | 0.0610 (9) | |
H6 | 0.0980 | 0.8741 | 0.1138 | 0.073* | |
C11 | 0.0855 (2) | 0.9272 (3) | 0.08192 (8) | 0.0935 (14) | |
H8 | 0.1378 | 0.9707 | 0.0831 | 0.112* | |
H7 | 0.0518 | 0.9468 | 0.0764 | 0.112* | |
C12 | 0.0825 (3) | 0.8709 (3) | 0.06098 (11) | 0.134 (2) | |
H10 | 0.0972 | 0.8960 | 0.0434 | 0.161* | |
H9 | 0.1190 | 0.8540 | 0.0657 | 0.161* | |
C13 | 0.0034 (3) | 0.8030 (3) | 0.05952 (11) | 0.131 (2) | |
H12 | −0.0324 | 0.8195 | 0.0536 | 0.157* | |
H11 | 0.0023 | 0.7663 | 0.0463 | 0.157* | |
C14 | −0.0206 (2) | 0.7657 (3) | 0.08578 (11) | 0.1059 (18) | |
H13 | 0.0125 | 0.7450 | 0.0910 | 0.127* | |
H14 | −0.0733 | 0.7227 | 0.0846 | 0.127* | |
C15 | −0.0164 (2) | 0.82102 (19) | 0.10691 (8) | 0.0691 (10) | |
H15 | −0.0544 | 0.8365 | 0.1029 | 0.083* | |
H16 | −0.0290 | 0.7955 | 0.1244 | 0.083* | |
C16A | 0.17017 (18) | 1.05213 (17) | 0.18498 (7) | 0.0566 (8) | 0.442 (4) |
H17A | 0.2173 | 1.0728 | 0.1739 | 0.068* | 0.442 (4) |
C16B | 0.17017 (18) | 1.05213 (17) | 0.18498 (7) | 0.0566 (8) | 0.558 (4) |
H17B | 0.1932 | 1.0199 | 0.1891 | 0.068* | 0.558 (4) |
C17A | 0.1797 (4) | 1.0071 (4) | 0.20382 (16) | 0.065 (2) | 0.442 (4) |
H18A | 0.1894 | 0.9698 | 0.1946 | 0.078* | 0.442 (4) |
H19A | 0.1324 | 0.9786 | 0.2142 | 0.078* | 0.442 (4) |
C17B | 0.1324 (4) | 1.0618 (3) | 0.21256 (12) | 0.0644 (17) | 0.558 (4) |
H18B | 0.1064 | 1.0909 | 0.2087 | 0.077* | 0.558 (4) |
H19B | 0.0938 | 1.0111 | 0.2191 | 0.077* | 0.558 (4) |
C18A | 0.2455 (6) | 1.0543 (5) | 0.2227 (2) | 0.091 (3) | 0.442 (4) |
H20A | 0.2459 | 1.0217 | 0.2373 | 0.109* | 0.442 (4) |
H21A | 0.2942 | 1.0753 | 0.2130 | 0.109* | 0.442 (4) |
C18B | 0.1916 (6) | 1.1025 (6) | 0.23422 (18) | 0.080 (3) | 0.558 (4) |
H20B | 0.1677 | 1.1124 | 0.2497 | 0.096* | 0.558 (4) |
H21B | 0.2121 | 1.0699 | 0.2402 | 0.096* | 0.558 (4) |
C19A | 0.2374 (8) | 1.1184 (9) | 0.2342 (2) | 0.089 (4) | 0.442 (4) |
H22A | 0.2808 | 1.1492 | 0.2462 | 0.106* | 0.442 (4) |
H23A | 0.1904 | 1.0971 | 0.2450 | 0.106* | 0.442 (4) |
C19B | 0.2552 (6) | 1.1765 (6) | 0.2237 (2) | 0.074 (3) | 0.558 (4) |
H22B | 0.2949 | 1.2007 | 0.2375 | 0.088* | 0.558 (4) |
H23B | 0.2354 | 1.2111 | 0.2198 | 0.088* | 0.558 (4) |
C20A | 0.2345 (7) | 1.1693 (8) | 0.2125 (2) | 0.067 (3) | 0.442 (4) |
H24A | 0.2269 | 1.2094 | 0.2206 | 0.080* | 0.442 (4) |
H25A | 0.2829 | 1.1940 | 0.2026 | 0.080* | 0.442 (4) |
C20B | 0.2903 (3) | 1.1658 (3) | 0.19873 (14) | 0.0672 (18) | 0.558 (4) |
H24B | 0.3151 | 1.1359 | 0.2029 | 0.081* | 0.558 (4) |
H25B | 0.3294 | 1.2159 | 0.1919 | 0.081* | 0.558 (4) |
C21A | 0.1690 (4) | 1.1208 (4) | 0.19379 (14) | 0.0533 (19) | 0.442 (4) |
H26A | 0.1203 | 1.1055 | 0.2029 | 0.064* | 0.442 (4) |
H27A | 0.1720 | 1.1514 | 0.1780 | 0.064* | 0.442 (4) |
C21B | 0.2294 (3) | 1.1248 (3) | 0.17762 (11) | 0.0516 (14) | 0.558 (4) |
H26B | 0.2070 | 1.1568 | 0.1730 | 0.062* | 0.558 (4) |
H27B | 0.2540 | 1.1196 | 0.1614 | 0.062* | 0.558 (4) |
N1 | 0.06247 (13) | 0.94267 (14) | 0.12836 (5) | 0.0520 (6) | |
N2 | 0.10931 (13) | 1.01127 (13) | 0.16578 (5) | 0.0481 (6) | |
Yb | 0.0000 | 1.0000 | 0.14748 (2) | 0.04418 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0332 (15) | 0.0310 (14) | 0.080 (2) | 0.0142 (12) | 0.0002 (14) | 0.0028 (14) |
C2 | 0.0374 (16) | 0.0342 (16) | 0.091 (2) | 0.0153 (13) | −0.0050 (16) | −0.0062 (15) |
C3 | 0.0392 (17) | 0.0312 (15) | 0.096 (2) | 0.0146 (13) | −0.0032 (16) | −0.0028 (15) |
C4 | 0.0349 (15) | 0.0358 (15) | 0.094 (2) | 0.0166 (13) | −0.0007 (16) | −0.0010 (16) |
C5 | 0.0480 (18) | 0.063 (2) | 0.086 (2) | 0.0308 (17) | −0.0031 (18) | −0.0010 (19) |
C6 | 0.050 (2) | 0.082 (3) | 0.101 (3) | 0.035 (2) | −0.013 (2) | −0.006 (2) |
C7 | 0.044 (2) | 0.081 (3) | 0.139 (4) | 0.037 (2) | −0.006 (2) | −0.009 (3) |
C8 | 0.058 (2) | 0.085 (3) | 0.121 (4) | 0.044 (2) | 0.005 (2) | −0.019 (3) |
C9 | 0.052 (2) | 0.062 (2) | 0.105 (3) | 0.0325 (18) | −0.010 (2) | −0.015 (2) |
C10 | 0.0388 (16) | 0.062 (2) | 0.083 (2) | 0.0258 (15) | −0.0023 (16) | −0.0217 (18) |
C11 | 0.070 (3) | 0.095 (3) | 0.086 (3) | 0.018 (2) | 0.015 (2) | −0.016 (2) |
C12 | 0.084 (3) | 0.155 (5) | 0.106 (4) | 0.017 (3) | 0.026 (3) | −0.054 (4) |
C13 | 0.060 (3) | 0.167 (5) | 0.121 (4) | 0.024 (3) | 0.004 (3) | −0.089 (4) |
C14 | 0.058 (2) | 0.089 (3) | 0.163 (5) | 0.031 (2) | −0.004 (3) | −0.065 (3) |
C15 | 0.055 (2) | 0.054 (2) | 0.090 (3) | 0.0210 (17) | 0.0019 (19) | −0.0201 (19) |
C16A | 0.0441 (17) | 0.0423 (17) | 0.084 (2) | 0.0221 (15) | −0.0159 (17) | −0.0112 (16) |
C16B | 0.0441 (17) | 0.0423 (17) | 0.084 (2) | 0.0221 (15) | −0.0159 (17) | −0.0112 (16) |
C17A | 0.055 (5) | 0.052 (4) | 0.077 (5) | 0.019 (4) | −0.015 (4) | 0.006 (4) |
C17B | 0.054 (3) | 0.044 (3) | 0.070 (3) | 0.006 (3) | 0.007 (3) | −0.003 (3) |
C18A | 0.097 (7) | 0.074 (6) | 0.091 (7) | 0.034 (6) | −0.042 (6) | 0.006 (5) |
C18B | 0.085 (6) | 0.058 (5) | 0.068 (4) | 0.014 (6) | −0.002 (5) | −0.003 (4) |
C19A | 0.091 (9) | 0.088 (10) | 0.066 (6) | 0.029 (10) | −0.021 (7) | −0.011 (6) |
C19B | 0.066 (6) | 0.051 (5) | 0.078 (7) | 0.010 (5) | −0.014 (5) | −0.010 (5) |
C20A | 0.065 (7) | 0.058 (6) | 0.067 (7) | 0.024 (6) | −0.017 (5) | −0.015 (6) |
C20B | 0.043 (3) | 0.045 (3) | 0.099 (5) | 0.012 (3) | −0.006 (3) | −0.003 (3) |
C21A | 0.053 (4) | 0.055 (4) | 0.048 (4) | 0.023 (4) | −0.003 (3) | −0.006 (3) |
C21B | 0.044 (3) | 0.035 (3) | 0.067 (3) | 0.014 (2) | 0.002 (2) | 0.003 (2) |
N1 | 0.0380 (13) | 0.0476 (14) | 0.0731 (15) | 0.0234 (11) | −0.0043 (13) | −0.0122 (13) |
N2 | 0.0356 (13) | 0.0367 (12) | 0.0716 (16) | 0.0177 (11) | −0.0075 (12) | −0.0059 (12) |
Yb | 0.03321 (10) | 0.03321 (10) | 0.06610 (15) | 0.01661 (5) | 0.000 | 0.000 |
C1—N1 | 1.321 (4) | C16B—N2 | 1.459 (4) |
C1—N2 | 1.324 (4) | C16B—C17B | 1.645 (7) |
C1—C2 | 1.451 (4) | C16B—H17B | 1.0000 |
C1—Yb | 2.714 (3) | C17A—C18A | 1.528 (11) |
C2—C3 | 1.188 (4) | C17A—H18A | 0.9900 |
C3—C4 | 1.436 (4) | C17A—H19A | 0.9900 |
C4—C5 | 1.385 (5) | C17B—C18B | 1.526 (11) |
C4—C9 | 1.393 (5) | C17B—H18B | 0.9900 |
C5—C6 | 1.384 (5) | C17B—H19B | 0.9900 |
C5—H1 | 0.9500 | C18A—C19A | 1.509 (18) |
C6—C7 | 1.372 (6) | C18A—H20A | 0.9900 |
C6—H2 | 0.9500 | C18A—H21A | 0.9900 |
C7—C8 | 1.381 (6) | C18B—C19B | 1.508 (15) |
C7—H3 | 0.9500 | C18B—H20B | 0.9900 |
C8—C9 | 1.382 (5) | C18B—H21B | 0.9900 |
C8—H4 | 0.9500 | C19A—C20A | 1.53 (2) |
C9—H5 | 0.9500 | C19A—H22A | 0.9900 |
C10—N1 | 1.458 (4) | C19A—H23A | 0.9900 |
C10—C11 | 1.476 (6) | C19B—C20B | 1.511 (13) |
C10—C15 | 1.507 (4) | C19B—H22B | 0.9900 |
C10—H6 | 1.0000 | C19B—H23B | 0.9900 |
C11—C12 | 1.536 (6) | C20A—C21A | 1.525 (12) |
C11—H8 | 0.9900 | C20A—H24A | 0.9900 |
C11—H7 | 0.9900 | C20A—H25A | 0.9900 |
C12—C13 | 1.510 (6) | C20B—C21B | 1.524 (8) |
C12—H10 | 0.9900 | C20B—H24B | 0.9900 |
C12—H9 | 0.9900 | C20B—H25B | 0.9900 |
C13—C14 | 1.480 (7) | C21A—H26A | 0.9900 |
C13—H12 | 0.9900 | C21A—H27A | 0.9900 |
C13—H11 | 0.9900 | C21B—H26B | 0.9900 |
C14—C15 | 1.520 (5) | C21B—H27B | 0.9900 |
C14—H13 | 0.9900 | N1—Yb | 2.320 (2) |
C14—H14 | 0.9900 | N2—Yb | 2.310 (2) |
C15—H15 | 0.9900 | Yb—N2i | 2.310 (2) |
C15—H16 | 0.9900 | Yb—N2ii | 2.310 (2) |
C16A—C17A | 1.398 (8) | Yb—N1i | 2.320 (2) |
C16A—N2 | 1.459 (4) | Yb—N1ii | 2.320 (2) |
C16A—C21A | 1.477 (8) | Yb—C1ii | 2.714 (3) |
C16A—H17A | 1.0000 | Yb—C1i | 2.714 (3) |
C16B—C21B | 1.412 (6) | ||
N1—C1—N2 | 116.7 (3) | C19A—C18A—H21A | 109.7 |
N1—C1—C2 | 122.6 (3) | C17A—C18A—H21A | 109.7 |
N2—C1—C2 | 120.6 (3) | H20A—C18A—H21A | 108.2 |
N1—C1—Yb | 58.68 (15) | C19B—C18B—C17B | 109.9 (7) |
N2—C1—Yb | 58.25 (15) | C19B—C18B—H20B | 109.7 |
C2—C1—Yb | 174.4 (2) | C17B—C18B—H20B | 109.7 |
C3—C2—C1 | 175.2 (3) | C19B—C18B—H21B | 109.7 |
C2—C3—C4 | 176.7 (4) | C17B—C18B—H21B | 109.7 |
C5—C4—C9 | 119.4 (3) | H20B—C18B—H21B | 108.2 |
C5—C4—C3 | 119.6 (3) | C18A—C19A—C20A | 111.7 (10) |
C9—C4—C3 | 120.9 (3) | C18A—C19A—H22A | 109.3 |
C6—C5—C4 | 120.5 (4) | C20A—C19A—H22A | 109.3 |
C6—C5—H1 | 119.8 | C18A—C19A—H23A | 109.3 |
C4—C5—H1 | 119.8 | C20A—C19A—H23A | 109.3 |
C7—C6—C5 | 119.7 (4) | H22A—C19A—H23A | 107.9 |
C7—C6—H2 | 120.2 | C18B—C19B—C20B | 112.3 (8) |
C5—C6—H2 | 120.2 | C18B—C19B—H22B | 109.1 |
C6—C7—C8 | 120.5 (4) | C20B—C19B—H22B | 109.1 |
C6—C7—H3 | 119.7 | C18B—C19B—H23B | 109.1 |
C8—C7—H3 | 119.7 | C20B—C19B—H23B | 109.1 |
C9—C8—C7 | 120.2 (4) | H22B—C19B—H23B | 107.9 |
C9—C8—H4 | 119.9 | C21A—C20A—C19A | 108.8 (10) |
C7—C8—H4 | 119.9 | C21A—C20A—H24A | 109.9 |
C8—C9—C4 | 119.7 (4) | C19A—C20A—H24A | 109.9 |
C8—C9—H5 | 120.2 | C21A—C20A—H25A | 109.9 |
C4—C9—H5 | 120.2 | C19A—C20A—H25A | 109.9 |
N1—C10—C11 | 112.1 (3) | H24A—C20A—H25A | 108.3 |
N1—C10—C15 | 109.9 (3) | C19B—C20B—C21B | 110.1 (6) |
C11—C10—C15 | 111.3 (3) | C19B—C20B—H24B | 109.6 |
N1—C10—H6 | 107.8 | C21B—C20B—H24B | 109.6 |
C11—C10—H6 | 107.8 | C19B—C20B—H25B | 109.6 |
C15—C10—H6 | 107.8 | C21B—C20B—H25B | 109.6 |
C10—C11—C12 | 111.1 (4) | H24B—C20B—H25B | 108.1 |
C10—C11—H8 | 109.4 | C16A—C21A—C20A | 112.0 (7) |
C12—C11—H8 | 109.4 | C16A—C21A—H26A | 109.2 |
C10—C11—H7 | 109.4 | C20A—C21A—H26A | 109.2 |
C12—C11—H7 | 109.4 | C16A—C21A—H27A | 109.2 |
H8—C11—H7 | 108.0 | C20A—C21A—H27A | 109.2 |
C13—C12—C11 | 109.9 (4) | H26A—C21A—H27A | 107.9 |
C13—C12—H10 | 109.7 | C16B—C21B—C20B | 115.1 (5) |
C11—C12—H10 | 109.7 | C16B—C21B—H26B | 108.5 |
C13—C12—H9 | 109.7 | C20B—C21B—H26B | 108.5 |
C11—C12—H9 | 109.7 | C16B—C21B—H27B | 108.5 |
H10—C12—H9 | 108.2 | C20B—C21B—H27B | 108.5 |
C14—C13—C12 | 110.7 (4) | H26B—C21B—H27B | 107.5 |
C14—C13—H12 | 109.5 | C1—N1—C10 | 120.5 (3) |
C12—C13—H12 | 109.5 | C1—N1—Yb | 92.22 (18) |
C14—C13—H11 | 109.5 | C10—N1—Yb | 147.1 (2) |
C12—C13—H11 | 109.5 | C1—N2—C16B | 120.6 (2) |
H12—C13—H11 | 108.1 | C1—N2—C16A | 120.6 (2) |
C13—C14—C15 | 111.2 (4) | C1—N2—Yb | 92.59 (18) |
C13—C14—H13 | 109.4 | C16B—N2—Yb | 145.21 (19) |
C15—C14—H13 | 109.4 | C16A—N2—Yb | 145.21 (19) |
C13—C14—H14 | 109.4 | N2i—Yb—N2ii | 105.17 (7) |
C15—C14—H14 | 109.4 | N2i—Yb—N2 | 105.17 (7) |
H13—C14—H14 | 108.0 | N2ii—Yb—N2 | 105.17 (7) |
C10—C15—C14 | 111.8 (3) | N2i—Yb—N1i | 58.20 (9) |
C10—C15—H15 | 109.3 | N2ii—Yb—N1i | 156.22 (8) |
C14—C15—H15 | 109.3 | N2—Yb—N1i | 96.18 (9) |
C10—C15—H16 | 109.3 | N2i—Yb—N1ii | 96.18 (9) |
C14—C15—H16 | 109.3 | N2ii—Yb—N1ii | 58.19 (9) |
H15—C15—H16 | 107.9 | N2—Yb—N1ii | 156.22 (8) |
C17A—C16A—N2 | 115.6 (4) | N1i—Yb—N1ii | 104.02 (8) |
C17A—C16A—C21A | 119.3 (5) | N2i—Yb—N1 | 156.22 (8) |
N2—C16A—C21A | 109.1 (3) | N2ii—Yb—N1 | 96.18 (8) |
C17A—C16A—H17A | 103.5 | N2—Yb—N1 | 58.19 (9) |
N2—C16A—H17A | 103.5 | N1i—Yb—N1 | 104.02 (8) |
C21A—C16A—H17A | 103.5 | N1ii—Yb—N1 | 104.02 (8) |
C21B—C16B—N2 | 117.4 (4) | N2i—Yb—C1ii | 103.62 (8) |
C21B—C16B—C17B | 107.5 (4) | N2ii—Yb—C1ii | 29.16 (9) |
N2—C16B—C17B | 108.2 (3) | N2—Yb—C1ii | 131.74 (9) |
C21B—C16B—H17B | 107.8 | N1i—Yb—C1ii | 131.99 (9) |
N2—C16B—H17B | 107.8 | N1ii—Yb—C1ii | 29.10 (9) |
C17B—C16B—H17B | 107.8 | N1—Yb—C1ii | 100.12 (8) |
C16A—C17A—C18A | 112.0 (6) | N2i—Yb—C1i | 29.16 (9) |
C16A—C17A—H18A | 109.2 | N2ii—Yb—C1i | 131.74 (9) |
C18A—C17A—H18A | 109.2 | N2—Yb—C1i | 103.62 (8) |
C16A—C17A—H19A | 109.2 | N1i—Yb—C1i | 29.10 (9) |
C18A—C17A—H19A | 109.2 | N1ii—Yb—C1i | 100.12 (8) |
H18A—C17A—H19A | 107.9 | N1—Yb—C1i | 131.99 (9) |
C18B—C17B—C16B | 112.2 (6) | C1ii—Yb—C1i | 119.946 (6) |
C18B—C17B—H18B | 109.2 | N2i—Yb—C1 | 131.74 (9) |
C16B—C17B—H18B | 109.2 | N2ii—Yb—C1 | 103.62 (8) |
C18B—C17B—H19B | 109.2 | N2—Yb—C1 | 29.16 (9) |
C16B—C17B—H19B | 109.2 | N1i—Yb—C1 | 100.12 (8) |
H18B—C17B—H19B | 107.9 | N1ii—Yb—C1 | 131.98 (9) |
C19A—C18A—C17A | 110.0 (8) | N1—Yb—C1 | 29.10 (9) |
C19A—C18A—H20A | 109.7 | C1ii—Yb—C1 | 119.947 (6) |
C17A—C18A—H20A | 109.7 | C1i—Yb—C1 | 119.945 (6) |
C9—C4—C5—C6 | −1.4 (5) | N2—C16B—C21B—C20B | 178.3 (4) |
C3—C4—C5—C6 | −178.4 (3) | C17B—C16B—C21B—C20B | 56.2 (6) |
C4—C5—C6—C7 | −0.2 (6) | C19B—C20B—C21B—C16B | −59.6 (8) |
C5—C6—C7—C8 | 1.7 (7) | N2—C1—N1—C10 | −171.7 (3) |
C6—C7—C8—C9 | −1.7 (7) | C2—C1—N1—C10 | 9.7 (4) |
C7—C8—C9—C4 | 0.0 (6) | Yb—C1—N1—C10 | −176.7 (3) |
C5—C4—C9—C8 | 1.5 (6) | N2—C1—N1—Yb | 4.9 (3) |
C3—C4—C9—C8 | 178.5 (3) | C2—C1—N1—Yb | −173.6 (3) |
N1—C10—C11—C12 | −179.1 (3) | C11—C10—N1—C1 | −104.2 (4) |
C15—C10—C11—C12 | −55.5 (5) | C15—C10—N1—C1 | 131.5 (3) |
C10—C11—C12—C13 | 57.3 (7) | C11—C10—N1—Yb | 81.9 (5) |
C11—C12—C13—C14 | −57.7 (7) | C15—C10—N1—Yb | −42.4 (6) |
C12—C13—C14—C15 | 56.7 (6) | N1—C1—N2—C16B | −174.1 (3) |
N1—C10—C15—C14 | 179.0 (4) | C2—C1—N2—C16B | 4.5 (4) |
C11—C10—C15—C14 | 54.2 (5) | Yb—C1—N2—C16B | −169.2 (3) |
C13—C14—C15—C10 | −54.7 (5) | N1—C1—N2—C16A | −174.1 (3) |
N2—C16A—C17A—C18A | 178.9 (6) | C2—C1—N2—C16A | 4.5 (4) |
C21A—C16A—C17A—C18A | −47.8 (9) | Yb—C1—N2—C16A | −169.2 (3) |
C21B—C16B—C17B—C18B | −53.7 (7) | N1—C1—N2—Yb | −5.0 (3) |
N2—C16B—C17B—C18B | 178.6 (6) | C2—C1—N2—Yb | 173.6 (3) |
C16A—C17A—C18A—C19A | 51.2 (11) | C21B—C16B—N2—C1 | 82.5 (4) |
C16B—C17B—C18B—C19B | 52.9 (11) | C17B—C16B—N2—C1 | −155.7 (3) |
C17A—C18A—C19A—C20A | −57.9 (14) | C21B—C16B—N2—Yb | −78.2 (5) |
C17B—C18B—C19B—C20B | −55.0 (12) | C17B—C16B—N2—Yb | 43.5 (5) |
C18A—C19A—C20A—C21A | 57.1 (14) | C17A—C16A—N2—C1 | −74.5 (5) |
C18B—C19B—C20B—C21B | 55.8 (11) | C21A—C16A—N2—C1 | 147.7 (4) |
C17A—C16A—C21A—C20A | 47.8 (9) | C17A—C16A—N2—Yb | 124.7 (5) |
N2—C16A—C21A—C20A | −176.2 (7) | C21A—C16A—N2—Yb | −13.1 (6) |
C19A—C20A—C21A—C16A | −49.3 (12) |
Symmetry codes: (i) −y+1, x−y+2, z; (ii) −x+y−1, −x+1, z. |
Acknowledgements
This work was financially supported by the Otto-von-Guericke-Universität Magdeburg. SW holds a PhD studentship from the China Scholarship Council (CSC). FMS is grateful to the Ministry of Higher Educational Scientific Research (MHESR), Egypt, and the Germany Academic Exchange Service (DAAD), Germany, for a PhD scholarship within the German Egyptian Research Long-Term Scholarship (GERLS) program.
References
Brandenburg, K. (1999). DIAMOND. University of Bonn, Germany. Google Scholar
Collins, S. (2011). Coord. Chem. Rev. 255, 118–138. Web of Science CrossRef CAS Google Scholar
Deacon, G. B., Junk, P. C., Wang, J. & Werner, D. (2014). Inorg. Chem. 53, 12553–12563. Web of Science CSD CrossRef CAS PubMed Google Scholar
Devi, A. (2013). Coord. Chem. Rev. 257, 3332–3384. Web of Science CrossRef CAS Google Scholar
Dröse, P., Blaurock, S., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2011). Z. Anorg. Allg. Chem. 637, 186–189. Google Scholar
Dröse, P., Hrib, C. G., Blaurock, S. & Edelmann, F. T. (2010a). Acta Cryst. E66, m1474. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dröse, P., Hrib, C. G. & Edelmann, F. T. (2010b). J. Organomet. Chem. 695, 1953–1956. Google Scholar
Edelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253–2268. Web of Science CrossRef PubMed CAS Google Scholar
Edelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657–7672. Web of Science CrossRef CAS PubMed Google Scholar
Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55–374. CAS Google Scholar
Freeman, J. H. & Smith, M. L. (1958). J. Inorg. Nucl. Chem. 7, 224–227. CrossRef CAS Web of Science Google Scholar
Kühling, M., Wickleder, C., Ferguson, M. J., Hrib, C. G., McDonald, R., Suta, M., Hilfert, L., Takats, J. & Edelmann, F. T. (2015). New J. Chem. 39, 7617–7625. Google Scholar
Lamberts, W., Lueken, H. & Hessner, B. (1987). Inorg. Chim. Acta, 134, 155–157. CSD CrossRef CAS Web of Science Google Scholar
Lueken, H., Lamberts, W. & Hannibal, P. (1987). Inorg. Chim. Acta, 132, 111–118. CSD CrossRef CAS Web of Science Google Scholar
Lueken, H., Schmitz, J., Lamberts, W., Hannibal, P. & Handrick, K. (1989). Inorg. Chim. Acta, 156, 119–124. CSD CrossRef CAS Web of Science Google Scholar
Maginn, R. E., Manastyrskyj, S. & Dubeck, M. (1963). J. Am. Chem. Soc. 85, 672–676. CrossRef CAS Web of Science Google Scholar
Ong, T.-G., O'Brien, J. S., Korobkov, I. & Richeson, D. S. (2006). Organometallics, 25, 4728–4730. Web of Science CSD CrossRef CAS Google Scholar
Richter, J., Feiling, J., Schmidt, H.-G., Noltemeyer, M., Brüser, W. & Edelmann, F. T. (2004). Z. Anorg. Allg. Chem. 630, 1269–1275. Web of Science CSD CrossRef CAS Google Scholar
Rowley, C. N., DiLabio, G. A. & Barry, S. T. (2005). Inorg. Chem. 44, 1983–1991. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schumann, H., Keitsch, M. R., Winterfeld, J., Mühle, S. & Molander, G. A. (1998). J. Organomet. Chem. 559, 181–190. Web of Science CSD CrossRef CAS Google Scholar
Seidel, W. W., Dachtler, W. & Pape, T. (2012). Z. Anorg. Allg. Chem. 638, 116–121. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sienkiewicz, P., Bielawski, K., Bielawska, A. & Pałka, J. (2005). Environ. Toxicol. Pharmacol. 20, 118–124. Web of Science CrossRef CAS PubMed Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Sroor, F. M., Hrib, C. G., Hilfert, L., Busse, S. & Edelmann, F. T. (2015a). New J. Chem. 39, 7595–7601. Web of Science CSD CrossRef CAS Google Scholar
Sroor, F. M., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2013). Z. Anorg. Allg. Chem. 639, 2390–2394. Web of Science CSD CrossRef CAS Google Scholar
Sroor, F. M., Hrib, C. G., Hilfert, L., Hartenstein, L., Roesky, P. W. & Edelmann, F. T. (2015b). J. Organomet. Chem. 799–800, 160–165. Web of Science CSD CrossRef CAS Google Scholar
Sroor, F. M., Hrib, C. G., Hilfert, L., Jones, P. G. & Edelmann, F. T. (2015c). J. Organomet. Chem. 785, 1–10. Web of Science CSD CrossRef CAS Google Scholar
Sroor, F. M., Hrib, C. G., Liebing, P., Hilfert, L., Busse, S. & Edelmann, F. T. (2016). Dalton Trans. doi: 10.1039/C6DT01974A. Google Scholar
Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Weingärtner, W. & Maas, G. (2012). Eur. J. Org. Chem. pp. 6372–6382. Google Scholar
Xu, X., Gao, J., Cheng, D., Li, J., Qiang, G. & Guo, H. (2008). Adv. Synth. Catal. 350, 61–64. Web of Science CrossRef CAS Google Scholar
Xu, L., Wang, Y.-C., Zhang, W.-X. & Xi, Z. (2013). Dalton Trans. 42, 16466–16469. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.