research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two ytterbium(III) complexes comprising alkynylamidinate ligands

CROSSMARK_Color_square_no_text.svg

aChemisches Institut der Otto-von-Guericke-Universitaet Magdeburg, Universitaetsplatz 2, 39106 Magdeburg, Germany, and bOrganometallic and Organometalloid Chemistry Department, National Research, Centre, 12622 Cairo, Egypt
*Correspondence e-mail: frank.edelmann@ovgu.de

Edited by M. Zeller, Purdue University, USA (Received 22 July 2016; accepted 26 July 2016; online 2 August 2016)

Two ytterbium(III) complexes comprising alkynylamidinate ligands, namely bis­(η5-cyclo­penta­dien­yl)(3-cyclo­propyl-N,N′-diiso­propyl­propynamidinato-κ2N,N′)ytterbium(III), [Yb(C5H5)2(C12H19N2)] or Cp2Yb[(iPr2N)2C—C≡C—c-C3H5] (1) and tris­(3-phenyl-N,N′-di­cyclo­hexyl­propynamidinato-κ2N,N′)ytterbium(III), [Yb(C21H27N2)3] or Yb[(CyN)2C—C≡C—Ph]3 (Cy = cyclo­hex­yl) (2) have been synthesized and structurally characterized. Both complexes are monomers; for complex 2, the contribution to the scattering from highly disordered toluene solvent molecules in these voids was removed with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The stated crystal data for Mr, μ etc. do not take these into account.

1. Chemical context

Anionic amidinate ligands of the type [RC(NR′)2] (R = H, alkyl, aryl; R′ = alkyl, cyclo­alkyl, aryl, SiMe3) are highly useful and versatile spectator ligands in organolanthanide chemistry. These readily available N-chelating ligands are generally regarded as sterically demanding cyclo­penta­dienyl equivalents (Collins, 2011[Collins, S. (2011). Coord. Chem. Rev. 255, 118-138.]; Edelmann, 2013[Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55-374.]). Mono-, di- and tris­ubstituted lanthanide amidinate complexes are all accessible, in close analogy to the long known mono-, di- and tri­cyclo­penta­dienyl complexes. Over the past ca 25 years, lanthanide amidinates have witnessed an impressive transformation from laboratory curiosities to homogeneous catalysts as well as valuable precursors in materials science. Rare-earth metal amidinates have been reported to be highly active homogeneous catalysts e.g. for ring-opening polymerization reactions of lactones, the guanylation of amines or the addition of terminal alkynes to carbodi­imides (Edelmann, 2009[Edelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253-2268.], 2012[Edelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657-7672.]). In materials science, certain homoleptic alkyl-substituted lanthanide tris(amidinate) complexes are highly volatile and can be used as precursors for ALD (atomic layer deposition) and MOCVD (metal–organic chemical vapor deposition) processes, e.g. for the deposition of lanthanide oxide (Ln2O3) or lanthanide nitride (LnN) thin films (Devi, 2013[Devi, A. (2013). Coord. Chem. Rev. 257, 3332-3384.]).

Introduction of alkynyl groups to the central C atom in amidines provides alkynyl­amidines of the general type R—C≡C—C(NR′)(NHR′). In organic synthesis, alkynyl­amidines have been frequently employed in the preparation of various heterocycles (Ong et al., 2006[Ong, T.-G., O'Brien, J. S., Korobkov, I. & Richeson, D. S. (2006). Organometallics, 25, 4728-4730.]; Xu et al., 2008[Xu, X., Gao, J., Cheng, D., Li, J., Qiang, G. & Guo, H. (2008). Adv. Synth. Catal. 350, 61-64.]; Weingärtner & Maas, 2012[Weingärtner, W. & Maas, G. (2012). Eur. J. Org. Chem. pp. 6372-6382.]). Alkynyl­amidines are also useful for diverse applications in biological and pharmacological systems (Rowley et al., 2005[Rowley, C. N., DiLabio, G. A. & Barry, S. T. (2005). Inorg. Chem. 44, 1983-1991.]; Sienkiewicz et al., 2005[Sienkiewicz, P., Bielawski, K., Bielawska, A. & Pałka, J. (2005). Environ. Toxicol. Pharmacol. 20, 118-124.]). Thus far, only a few lanthanide complexes containing alkynylamidinate ligands have been described. Previously used alkynylamidinate ligands include e.g. phenyl­ethynyl derivatives [Ph—C≡C—C(NR)2] (R = iPr, tBu) (Dröse et al., 2010a[Dröse, P., Hrib, C. G., Blaurock, S. & Edelmann, F. T. (2010a). Acta Cryst. E66, m1474.],b[Dröse, P., Hrib, C. G. & Edelmann, F. T. (2010b). J. Organomet. Chem. 695, 1953-1956.]; Xu et al., 2013[Xu, L., Wang, Y.-C., Zhang, W.-X. & Xi, Z. (2013). Dalton Trans. 42, 16466-16469.]) and the tri­methyl­silyl-substituted anions [Me3Si—C≡C—C(NR)2] [R = cyclo­hexyl (Cy), iPr] (Seidel et al., 2012[Seidel, W. W., Dachtler, W. & Pape, T. (2012). Z. Anorg. Allg. Chem. 638, 116-121.]).

[Scheme 1]

We recently initiated a study of alkynylamidinates derived from cyclo­propyl­acetyl­ene (Sroor et al., 2015c[Sroor, F. M., Hrib, C. G., Hilfert, L., Jones, P. G. & Edelmann, F. T. (2015c). J. Organomet. Chem. 785, 1-10.]). The cyclo­propyl group was chosen because of the well-known electron-donating ability of this substituent to an adjacent electron-deficient atom or group. This would give us the rare chance to electronically influence the amidinate ligand system rather than altering only its steric demand. We now describe the synthesis and structural characterization of two new ytterbium(III) alkynylamidinate complexes, namely Cp2Yb[(iPrN)2C—C≡C—c-C3H5] (1) and Yb[(CyN)2C—C≡C—Ph]3 (Cy = cyclo­hexyl; 2), shown in Figs. 1[link] and 2[link].

[Figure 1]
Figure 1
The mol­ecular structure of compound 1.
[Figure 2]
Figure 2
The mol­ecular structure of compound 2. Displacement ellipsoids are at the 50% probability level and H atoms have been omitted for clarity. Only one orientation of the disordered cyclo­hexyl group at N2 is shown. The Yb atom is located on a threefold rotation axis parallel to the crystallographic c axis. [Symmetry operators to generate equivalent atoms: (′) 1 − y, −1 + x − y, z; (′′) 2 − x + y, 1 − x, z.]

2. Structural commentary

The structural analyses revealed that both title compounds are monomeric in the solid state, with the alkynylamidinate anion acting as an N,N′-chelating ligand. Compound 1 crystallizes in the ortho­rhom­bic space group Pbca with one complex mol­ecule in the asymmetric unit. The two cyclo­penta­dienyl ligands feature a typical symmetric η5-coordination with Yb–centroid(Cp) distances of 2.315 and 2.321 Å. The Yb—Cp distances are therefore slightly larger than in the related chloride [Cp2YbCl]2 [Yb–centroid(Cp) 2.300 and 2.307 Å; Lamberts et al., 1987[Lamberts, W., Lueken, H. & Hessner, B. (1987). Inorg. Chim. Acta, 134, 155-157.]; Lueken et al., 1987[Lueken, H., Lamberts, W. & Hannibal, P. (1987). Inorg. Chim. Acta, 132, 111-118.], 1989[Lueken, H., Schmitz, J., Lamberts, W., Hannibal, P. & Handrick, K. (1989). Inorg. Chim. Acta, 156, 119-124.]], possibly due to the steric demand of the two N-isopropyl groups close to the ytterbium atom. Probably for the same reason, the product does not contain coordinating THF even though the complex was prepared in THF solution. Accordingly the coordination geometry around Yb can be described as distorted pseudo-tetra­hedral. At 131.1°, the Cp—Yb—Cp angle is close to that observed in [Cp2YbCl]2 (Cp—Yb—Cp 130.0°; Lamberts et al., 1987[Lamberts, W., Lueken, H. & Hessner, B. (1987). Inorg. Chim. Acta, 134, 155-157.]; Lueken et al., 1987[Lueken, H., Lamberts, W. & Hannibal, P. (1987). Inorg. Chim. Acta, 132, 111-118.], 1989[Lueken, H., Schmitz, J., Lamberts, W., Hannibal, P. & Handrick, K. (1989). Inorg. Chim. Acta, 156, 119-124.]) and compound 1 is therefore a typical bent metallocene complex of trivalent ytterbium. Due to the low formal coordination number of four around the Yb atom, the Yb—N bond lengths of 2.274 (2) and 2.293 (2) Å are short compared to those observed in other late lanthanide amidinates, such as [Yb2{(DippN)2CH}4(μ-OCPh=C6H4-4-CPh2O)(THF)] [Yb—N 2.285 (2)–2.391 (2) Å; Deacon et al., 2014[Deacon, G. B., Junk, P. C., Wang, J. & Werner, D. (2014). Inorg. Chem. 53, 12553-12563.]], [Ho{N(SiMe3)2}{(CyN)2C—C≡C—c-C3H5}2] [Ho—N 2.303 (2)–2.348 (4) Å; Sroor et al., 2015b[Sroor, F. M., Hrib, C. G., Hilfert, L., Hartenstein, L., Roesky, P. W. & Edelmann, F. T. (2015b). J. Organomet. Chem. 799-800, 160-165.]] and [Ho(η8-COT){(CyN)2C—C≡C—c-C3H5}(THF)] [Ho—N 2.342 (3) and 2.349 (3) Å; Sroor et al., 2016[Sroor, F. M., Hrib, C. G., Liebing, P., Hilfert, L., Busse, S. & Edelmann, F. T. (2016). Dalton Trans. doi: 10.1039/C6DT01974A.]].

Compound 2 crystallizes in the trigonal space group R[\overline{3}]c, with the Yb atom located on a threefold rotation axis along the crystallographic c axis. The complex mol­ecule is therefore C3 symmetric. The Yb atom is coordinated by the three symmetry-equivalent chelating amidinate ligands in a distorted octa­hedral fashion with C1—Yb—C1′ angles of 120° and an angle of 90±3° between the YbN2C planes. The cyclo­hexyl group attached to N2 is disordered over two orientations by rotation around the N2—C16 vector. As a result of the higher coordination number, the Yb—N bonds [2.310 (2) and 2.320 (2) Å] are slightly longer than in compound 1. However, in consequence of the small size of the Yb3+ ion, the Yb—N bonds in compound 2 are significantly shorter than in corres­ponding hexa­coordinated lanthanide(III) amidinates, e.g. [Ln{(iPrN)2C–tBu}3] [Ln = Ce: Ce—N 2.469 (2)–2.550 (2) Å; Ln = Eu: Eu—N 2.402 (4)–2.457 (4) Å; Ln = Tb: Tb—N 2.391 (3)–2.409 (3) Å; Dröse et al., 2011[Dröse, P., Blaurock, S., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2011). Z. Anorg. Allg. Chem. 637, 186-189.]] and [Ho{(CyN)2C—C≡C—c-C3H5}3] [Ho—N 2.342 (2)–2.383 (3) Å] (Sroor et al., 2015a[Sroor, F. M., Hrib, C. G., Hilfert, L., Busse, S. & Edelmann, F. T. (2015a). New J. Chem. 39, 7595-7601.]).

The N—Yb—N angle in compound 2 [58.2 (1)°] is slightly smaller than in compound 1 [59.1 (1)°], but larger than in other homoleptic lanthanide (III) amidinates {e.g. [Ln{(iPrN)2C–tBu}3], Ln = Ce: N—Ce—N 51.81 (4)–52.72 (4)°; Ln = Eu: N—Eu—N 53.9 (1)–54.4 (2)°; Ln = Tb: N—Tb—N 54.9 (1)–55.0 (1)°; Dröse et al., 2011[Dröse, P., Blaurock, S., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2011). Z. Anorg. Allg. Chem. 637, 186-189.]} and [Ho{(CyN)2C—C≡C—c-C3H5}3] [N—Ho—N 57.1 (1)–57.7 (1)°; Sroor et al., 2015a[Sroor, F. M., Hrib, C. G., Hilfert, L., Busse, S. & Edelmann, F. T. (2015a). New J. Chem. 39, 7595-7601.]]. The N—Ln—N angle therefore correlates clearly with the Ln—N bond length, decreasing with rising Ln—N distance (i.e. with rising coordination number of the metal and within the lanthanide series from right to left). The C1—N bond lengths of the amidinate ligand are very similar [1: 1.332 (3) and 1.334 (3) Å; 2: 1.321 (4) and 1.324 (4) Å], indicating a typical delocalization of the negative charge within the NCN fragment (Sroor et al., 2016[Sroor, F. M., Hrib, C. G., Liebing, P., Hilfert, L., Busse, S. & Edelmann, F. T. (2016). Dalton Trans. doi: 10.1039/C6DT01974A.]).

3. Supra­molecular features

Compounds 1 and 2 do not exhibit any specific inter­molecular inter­actions. In compound 1, the closest inter­molecular C—C contacts are found between Cp ligands and cyclo­propyl substituents, 3.510–3.625 Å. Compound 2 features one inter­molecular phen­yl–cyclo­hexyl contact where the shortest C—C distance is 3.567 Å, and various cyclo­hex­yl–cyclo­hexyl contacts with C—C distances of 3.441–3.576 Å. The crystal structure of compound 2 comprises a large void of ca 220 Å3 that is probably filled with a highly disordered toluene mol­ecule. The content of the voids was corrected for using the SQUEEZE method (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]), yielding a solvent-accessible volume of 1316 Å3 and 138 electrons, or about 1.5 solvate mol­ecules per unit cell. The composition of the crystal can therefore be assumed to be 2·0.166 toluene.

4. Database survey

For other lanthanide(III) complexes with amidinate ligands, see Richter et al. (2004[Richter, J., Feiling, J., Schmidt, H.-G., Noltemeyer, M., Brüser, W. & Edelmann, F. T. (2004). Z. Anorg. Allg. Chem. 630, 1269-1275.]), Edelmann (2009[Edelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253-2268.], 2012[Edelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657-7672.]) and Deacon et al. (2014[Deacon, G. B., Junk, P. C., Wang, J. & Werner, D. (2014). Inorg. Chem. 53, 12553-12563.]). For related bent sandwich complexes of the lanthanides, see Lueken et al. (1987[Lueken, H., Lamberts, W. & Hannibal, P. (1987). Inorg. Chim. Acta, 132, 111-118.], 1989[Lueken, H., Schmitz, J., Lamberts, W., Hannibal, P. & Handrick, K. (1989). Inorg. Chim. Acta, 156, 119-124.]), Schumann et al. (1998[Schumann, H., Keitsch, M. R., Winterfeld, J., Mühle, S. & Molander, G. A. (1998). J. Organomet. Chem. 559, 181-190.]) and Kühling et al. (2015[Kühling, M., Wickleder, C., Ferguson, M. J., Hrib, C. G., McDonald, R., Suta, M., Hilfert, L., Takats, J. & Edelmann, F. T. (2015). New J. Chem. 39, 7617-7625.]).

5. Synthesis and crystallization

Synthesis of Cp2Yb[(iPr2N)2C–CC–c-C3H5] (1)

This compound was prepared by treatment of Cp2YbCl (Maginn et al., 1963[Maginn, R. E., Manastyrskyj, S. & Dubeck, M. (1963). J. Am. Chem. Soc. 85, 672-676.]) with Li[(iPr2N)2C—C≡C—c-C3H5] (Sroor et al., 2013[Sroor, F. M., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2013). Z. Anorg. Allg. Chem. 639, 2390-2394.]) in a molar ratio of 1:1. Treatment of Cp2YbCl (0.68 g, 2.0 mmol) with Li[(iPr2N)2C—C≡C—c-C3H5] (2.0 mmol, prepared in situ from Li—C≡C—c-C3H5 and N,N′-diiso­propyl­carbodi­imide) in 30 ml of THF produced a bright-orange solution and a white precipitate (LiCl). After filtration and evaporation to dryness, the product was extracted with n-pentane (2 × 20 ml). The extract was filtered again and concentrated to a total volume of ca 10 ml. Crystallization at 253 K afforded 1 as orange air- and moisture-sensitive crystals. Yield: 0.53 g, 73%. M.p.: 478 K. Analysis calculated for C22H20N2Yb: C 53.43, H 5.91, N 5.66%; found: C 53.61, H 5.766, N 5.86%. MS (EI, M = 494.54): m/z (%) 450 (5) [M − 3CH3]+, 407 (5) [M − 2iPr]+, 384 (7), 369 (13) [M − 2Cp + 3H]+, 355 (5), 341 (66) [M − Cp − 2iPr]+, 328 (5), 313 (4) [YbNiPr—C(CH)—NiPr]+, 299 (7) [YbNiPr—C—NiPr]+, 284 (10) [YbNiPr—C—NCCH3]+, 274 (100) [YbNiPr—C—NCH3]+, 258 (25) [YbNiPr—CN]+, 243 (8), 232 (10), 215 (12) [YbNCN]+. IR (KBr) ν (cm−1): 3093 (w), 2963 (m), 2922 (w), 2871 (w), 2609 (w), 2215 (m, C≡C), 2070 (w), 1985 (w), 1746 (w), 1609 (m, NCN), 1450 (s), 1367 (m), 1327 (m), 1258 (w), 1224 (m), 1177 (m), 1055 (w), 1012 (m), 968 (m), 878 (w), 766 (vs), 695 (m), 531 (w), 481 (w), 393 (w), 328 (w). 1H NMR (400 MHz, [D6]-benzene, 298 K): δ 0.92 (overlapped, m, CH-cyclo­prop­yl), 0.47–0.51 (m, 2H, CH2-cyclo­prop­yl), 0.25–0.20 (m, 2H, CH2-cyclo­prop­yl), −1.5 (br s, 10H, CH Cp), −7.2 (1H, sept, CH iPr), −10.8 (1H, sept, CH iPr), −36.9 (br s, CH3 iPr). 13C NMR (100.6 MHz, [D6]-benzene, 298 K): δ 152.3 (s, NCN), 96.4 (s, C≡C–C), 69.7 (s, CH–C≡C), 65.3 (s, CH Cp), 2.5–2.6 (s, CH iPr), 1.1 (br s, CH3 iPr), 8.4 (s, CH2 cyclo­prop­yl), −0.4 (s, CH cyclo­prop­yl).

Synthesis of Yb[(CyN)2C—CC—Ph]3 (Cy = cyclo­hex­yl) (2)

Anhydrous ytterbium(III) trichloride (1.40 g, 5.0 mmol) (Freeman & Smith, 1958[Freeman, J. H. & Smith, M. L. (1958). J. Inorg. Nucl. Chem. 7, 224-227.]) was suspended in THF (50 ml) and treated with a solution of Li[Ph—C≡C—C(NCy)2] (4.72 g, 15.0 mmol) (prepared in situ by addition of lithium phenyl­acetyl­ide to N,N′-di­cyclo­hexyl­carbodi­imide) in THF (60 ml). The reaction mixture was refluxed for 3 h. After cooling to room temperature, the white precipitate (LiCl) was removed by filtration, and the clear filtrate was evaporated to dryness. Off-white air- and moisture-sensitive solid. Yield: 3.07 g, 56%. M.p.: 505 K. Single crystal suitable for X-ray structure determination were obtained from a saturated toluene solution at 281 K. Analysis calculated for C63H81N6Yb: C 69.07, H 7.45, N 7.67%; found: C 69.21, H 7.50, N 7.47%. MS (EI, M = 1095.42): m/z (%) 1014 (23) [M – Cy]+, 1006 (7) [M – PhC]+, 998 (15), 964 (14), 949 (16), 899 (46), 849 (30), 833 (20), 811 (12), 799 (23), 787 (75) [M − NCy—C(C≡C—Ph)—NCy]+, 783 (35), 733 (62), 711 (6) [M − NCy—C(C≡C—Ph)-NCy – Ph]+, 683 (45), 667 (100) [M − NCy—C(C≡C—Ph)-NCy − Ph – C3H8]+, 645 (29). IR (KBr) ν (cm−1): 2922 (s), 2850 (m), 2661 (w), 2208 (w, C≡C), 1982 (w), 1598 (w), 1574 (w, NCN), 1491 (m), 1461 (vs), 1449 (s), 1411 (m), 1398 (m), 1343 (s), 1311 (m), 1256 (m), 1192 (m), 1170 (m), 1137 (m), 1070 (m), 1027 (w), 995 (m), 914 (w), 898 (m), 887 (m), 844 (w), 798 (w), 754 (s), 702 (m), 688 (s), 628 (s), 553 (w), 529 (m), 504 (w), 488 (w), 452 (w), 411 (m), 355 (m), 316 (m), 273 (w). 1H NMR (400.1 MHz, [D8]-THF, 298 K): 14.12 (br s, CH2, Cy), 6.88 (br s,CH2, Cy), 4.54 (m, 3H, p-CH Ph), 3.94 (m, 6H, m-CH Ph), 1.29 (br s, CH2, Cy), −0.15 (d, 6H, o-CH Ph), −14.62 (br s, N—CH, Cy). 13C NMR (100.6 MHz, [D8]-THF, 298 K): 126.4 (s, p-CH Ph), 126.0 (s, m-CH Ph), 124.6 (s, o-CH Ph), 111.2 (s, i-C Ph), 71.0 (s, ≡C-Ph), 46.0 (s, N-CH, Cy), 36.1 (s, CH2, Cy), 35.7 (s, CH2, Cy), 35.0 (s, CH2, Cy), ≡C-C(NCy)2 and NCN not observed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. In the case of compound 2, C atoms C17–C21 of the disordered cyclo­hexyl substituent have been split over two sites, with a freely refined occupancy ratio. The N-bonded C atom C16 was refined as not disordered using EXYZ and EADP commands but the different orientation of the corresponding H atom H17 was taken into account. The contribution to the scattering from the solvent molecule in compound 2 was removed with the SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), yielding a solvent accessible volume of 1316 Å3 and 138 electrons. H atoms were fixed geometrically and refined using a riding model with U(H) = 1.20Ueq(C).

Table 1
Experimental details

  1 2
Crystal data
Chemical formula [Yb(C5H5)2(C12H19N2)] [Yb(C21H27N2)3]
Mr 494.51 1095.37
Crystal system, space group Orthorhombic, Pbca Trigonal, R[\overline{3}]c:H
Temperature (K) 153 153
a, b, c (Å) 9.4578 (2), 19.2910 (6), 22.2114 (5) 20.3469 (3), 20.3469 (3), 50.3074 (11)
α, β, γ (°) 90, 90, 90 90, 90, 120
V3) 4052.48 (18) 18036.8 (7)
Z 8 12
Radiation type Mo Kα Mo Kα
μ (mm−1) 4.62 1.60
Crystal size (mm) 0.33 × 0.31 × 0.25 0.36 × 0.35 × 0.24
 
Data collection
Diffractometer Stoe IPDS 2T Stoe IPDS 2T
Absorption correction Numerical (X-AREA and X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Numerical (X-AREA and X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.326, 0.448 0.621, 0.722
No. of measured, independent and observed [I > 2σ(I)] reflections 21905, 4045, 3263 36832, 3578, 2774
Rint 0.051 0.065
(sin θ/λ)max−1) 0.620 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.040, 0.98 0.029, 0.071, 1.07
No. of reflections 4045 3578
No. of parameters 227 257
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.72 0.31, −1.18
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. University of Bonn, Germany.]).

Supporting information


Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA and X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(li0090) Bis(η5-cyclopentadienyl)(3-cyclopropyl-N,N'-diisopropylpropynamidinato-κ2N,N')ytterbium(III) top
Crystal data top
[Yb(C5H5)2(C12H19N2)]Dx = 1.621 Mg m3
Mr = 494.51Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 21907 reflections
a = 9.4578 (2) Åθ = 1.8–26.2°
b = 19.2910 (6) ŵ = 4.62 mm1
c = 22.2114 (5) ÅT = 153 K
V = 4052.48 (18) Å3Block, orange
Z = 80.33 × 0.31 × 0.25 mm
F(000) = 1960
Data collection top
Stoe IPDS 2T
diffractometer
4045 independent reflections
Radiation source: fine-focus sealed tube3263 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.051
area detector scansθmax = 26.2°, θmin = 2.3°
Absorption correction: numerical
(X-AREA and X-RED; Stoe & Cie, 2002)
h = 1110
Tmin = 0.326, Tmax = 0.448k = 2322
21905 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.0189P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
4045 reflectionsΔρmax = 0.50 e Å3
227 parametersΔρmin = 0.72 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: heavy-atom methodExtinction coefficient: 0.00042 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3923 (3)0.02660 (12)0.12656 (11)0.0209 (5)
C20.4476 (3)0.03844 (14)0.14935 (12)0.0243 (5)
C30.5016 (3)0.08748 (13)0.17234 (12)0.0237 (5)
C40.5728 (3)0.14441 (13)0.20074 (11)0.0239 (5)
H10.54010.15640.24230.029*
C50.7285 (3)0.15415 (18)0.18859 (17)0.0451 (9)
H30.77480.12140.16050.054*
H20.78880.16990.22240.054*
C60.6272 (4)0.20392 (15)0.16337 (14)0.0363 (7)
H40.62400.25090.18130.044*
H50.61000.20240.11940.044*
C70.1682 (3)0.00848 (14)0.17826 (13)0.0279 (6)
H60.22330.01860.20860.033*
C80.0678 (3)0.05675 (15)0.21099 (14)0.0354 (7)
H90.00130.02940.23510.042*
H70.12180.08760.23750.042*
H80.01530.08450.18160.042*
C90.0881 (3)0.04153 (15)0.13814 (15)0.0396 (7)
H110.02320.06930.16270.048*
H100.03410.01540.10810.048*
H120.15530.07220.11770.048*
C100.6091 (3)0.04894 (13)0.07174 (12)0.0265 (6)
H130.61020.00180.06270.032*
C110.7191 (3)0.06331 (19)0.12009 (15)0.0407 (8)
H150.81270.04960.10540.049*
H160.71930.11290.12970.049*
H140.69610.03670.15640.049*
C120.6454 (3)0.08777 (16)0.01454 (14)0.0361 (7)
H180.74120.07530.00170.043*
H170.57790.07530.01710.043*
H190.64060.13780.02210.043*
C130.3678 (4)0.19289 (17)0.20356 (15)0.0468 (9)
H200.37270.15760.23330.056*
C140.4768 (4)0.21487 (18)0.16796 (18)0.0513 (10)
H210.57070.19740.16900.062*
C150.4272 (4)0.26772 (16)0.12948 (17)0.0458 (9)
H220.48030.29200.09990.055*
C160.2837 (3)0.27732 (14)0.14360 (13)0.0333 (7)
H230.22150.30980.12540.040*
C170.2495 (4)0.23090 (15)0.18876 (14)0.0368 (7)
H240.15880.22600.20670.044*
C180.2309 (3)0.20903 (15)0.00641 (12)0.0292 (6)
H250.28800.24660.01960.035*
C190.1094 (3)0.21427 (15)0.02902 (12)0.0308 (6)
H260.06860.25580.04410.037*
C200.0589 (3)0.14683 (19)0.03826 (14)0.0456 (9)
H270.02300.13460.06060.055*
C210.1492 (4)0.10076 (17)0.00905 (15)0.0470 (9)
H280.14020.05170.00860.056*
C220.2543 (4)0.13851 (15)0.01913 (13)0.0368 (7)
H290.32900.12010.04290.044*
N10.2658 (2)0.05054 (11)0.14281 (10)0.0212 (4)
N20.4664 (2)0.06799 (10)0.09026 (10)0.0216 (4)
Yb0.29970 (2)0.15407 (2)0.09600 (2)0.01886 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0188 (12)0.0168 (11)0.0271 (13)0.0009 (10)0.0038 (11)0.0017 (9)
C20.0197 (13)0.0225 (12)0.0308 (13)0.0006 (11)0.0012 (10)0.0002 (11)
C30.0191 (13)0.0243 (13)0.0276 (14)0.0013 (12)0.0011 (11)0.0005 (10)
C40.0233 (13)0.0235 (13)0.0248 (13)0.0024 (11)0.0008 (10)0.0049 (10)
C50.0207 (16)0.0513 (19)0.063 (2)0.0067 (15)0.0007 (14)0.0297 (17)
C60.044 (2)0.0315 (15)0.0335 (16)0.0146 (15)0.0064 (14)0.0086 (12)
C70.0194 (14)0.0286 (14)0.0356 (15)0.0005 (11)0.0026 (11)0.0138 (12)
C80.0289 (15)0.0425 (17)0.0347 (15)0.0003 (13)0.0108 (13)0.0069 (13)
C90.0248 (15)0.0255 (14)0.069 (2)0.0048 (14)0.0090 (15)0.0011 (14)
C100.0189 (13)0.0207 (13)0.0400 (14)0.0017 (11)0.0080 (12)0.0030 (11)
C110.0202 (16)0.057 (2)0.0453 (18)0.0026 (14)0.0030 (13)0.0037 (15)
C120.0281 (15)0.0424 (17)0.0377 (17)0.0037 (14)0.0093 (12)0.0038 (13)
C130.065 (2)0.0368 (17)0.0390 (18)0.0037 (18)0.0226 (18)0.0134 (14)
C140.0307 (18)0.0423 (19)0.081 (3)0.0127 (16)0.0246 (18)0.0393 (19)
C150.047 (2)0.0275 (15)0.063 (2)0.0175 (16)0.0116 (17)0.0182 (15)
C160.0367 (18)0.0198 (12)0.0434 (16)0.0058 (13)0.0073 (14)0.0059 (11)
C170.0409 (17)0.0318 (15)0.0377 (16)0.0032 (15)0.0032 (14)0.0113 (12)
C180.0290 (17)0.0302 (14)0.0284 (14)0.0040 (12)0.0004 (12)0.0090 (11)
C190.0239 (14)0.0404 (16)0.0281 (14)0.0095 (13)0.0019 (12)0.0060 (12)
C200.0282 (16)0.068 (2)0.0405 (18)0.0194 (17)0.0139 (13)0.0210 (17)
C210.069 (3)0.0321 (16)0.0396 (19)0.0118 (18)0.0301 (17)0.0043 (13)
C220.0532 (19)0.0357 (16)0.0216 (14)0.0131 (14)0.0055 (13)0.0006 (11)
N10.0165 (11)0.0190 (10)0.0281 (11)0.0019 (9)0.0014 (9)0.0040 (8)
N20.0169 (11)0.0182 (10)0.0298 (12)0.0014 (8)0.0024 (9)0.0018 (9)
Yb0.01845 (6)0.01490 (6)0.02324 (6)0.00096 (4)0.00219 (4)0.00011 (4)
Geometric parameters (Å, º) top
C1—N11.332 (3)C12—H190.9800
C1—N21.334 (3)C13—C141.367 (6)
C1—C21.451 (4)C13—C171.378 (5)
C1—Yb2.697 (2)C13—Yb2.585 (3)
C2—C31.190 (4)C13—H200.9500
C3—C41.434 (4)C14—C151.411 (5)
C4—C61.507 (4)C14—Yb2.595 (3)
C4—C51.509 (4)C14—H210.9500
C4—H11.0000C15—C161.405 (5)
C5—C61.468 (5)C15—Yb2.610 (3)
C5—H30.9900C15—H220.9500
C5—H20.9900C16—C171.383 (4)
C6—H40.9900C16—Yb2.607 (3)
C6—H50.9900C16—H230.9500
C7—N11.460 (3)C17—Yb2.582 (3)
C7—C91.516 (4)C17—H240.9500
C7—C81.516 (4)C18—C191.396 (4)
C7—H61.0000C18—C221.407 (4)
C8—H90.9800C18—Yb2.592 (3)
C8—H70.9800C18—H250.9500
C8—H80.9800C19—C201.401 (4)
C9—H110.9800C19—Yb2.608 (3)
C9—H100.9800C19—H260.9500
C9—H120.9800C20—C211.393 (5)
C10—N21.458 (3)C20—Yb2.617 (3)
C10—C121.514 (4)C20—H270.9500
C10—C111.521 (4)C21—C221.382 (5)
C10—H131.0000C21—Yb2.610 (3)
C11—H150.9800C21—H280.9500
C11—H160.9800C22—Yb2.610 (3)
C11—H140.9800C22—H290.9500
C12—H180.9800N1—Yb2.274 (2)
C12—H170.9800N2—Yb2.293 (2)
N1—C1—N2115.4 (2)Yb—C18—H25116.2
N1—C1—C2122.0 (2)C18—C19—C20107.2 (3)
N2—C1—C2122.6 (2)C18—C19—Yb73.82 (16)
N1—C1—Yb57.36 (12)C20—C19—Yb74.83 (16)
N2—C1—Yb58.18 (12)C18—C19—H26126.4
C2—C1—Yb173.46 (18)C20—C19—H26126.4
C3—C2—C1172.8 (3)Yb—C19—H26117.1
C2—C3—C4177.1 (3)C21—C20—C19108.4 (3)
C3—C4—C6120.1 (2)C21—C20—Yb74.25 (18)
C3—C4—C5118.3 (2)C19—C20—Yb74.06 (16)
C6—C4—C558.2 (2)C21—C20—H27125.8
C3—C4—H1116.0C19—C20—H27125.8
C6—C4—H1116.0Yb—C20—H27117.8
C5—C4—H1116.0C22—C21—C20108.4 (3)
C6—C5—C460.8 (2)C22—C21—Yb74.66 (18)
C6—C5—H3117.7C20—C21—Yb74.84 (18)
C4—C5—H3117.7C22—C21—H28125.8
C6—C5—H2117.7C20—C21—H28125.8
C4—C5—H2117.7Yb—C21—H28116.7
H3—C5—H2114.8C21—C22—C18107.8 (3)
C5—C6—C461.0 (2)C21—C22—Yb74.64 (18)
C5—C6—H4117.7C18—C22—Yb73.61 (16)
C4—C6—H4117.7C21—C22—H29126.1
C5—C6—H5117.7C18—C22—H29126.1
C4—C6—H5117.7Yb—C22—H29117.7
H4—C6—H5114.8C1—N1—C7121.4 (2)
N1—C7—C9110.6 (2)C1—N1—Yb93.09 (15)
N1—C7—C8108.3 (2)C7—N1—Yb145.49 (16)
C9—C7—C8111.1 (2)C1—N2—C10120.4 (2)
N1—C7—H6108.9C1—N2—Yb92.20 (15)
C9—C7—H6108.9C10—N2—Yb146.57 (16)
C8—C7—H6108.9N1—Yb—N259.11 (7)
C7—C8—H9109.5N1—Yb—C1796.51 (9)
C7—C8—H7109.5N2—Yb—C17125.91 (9)
H9—C8—H7109.5N1—Yb—C1382.36 (10)
C7—C8—H8109.5N2—Yb—C1395.16 (10)
H9—C8—H8109.5C17—Yb—C1330.92 (11)
H7—C8—H8109.5N1—Yb—C18136.46 (9)
C7—C9—H11109.5N2—Yb—C18114.82 (8)
C7—C9—H10109.5C17—Yb—C18114.78 (10)
H11—C9—H10109.5C13—Yb—C18139.01 (10)
C7—C9—H12109.5N1—Yb—C14101.91 (11)
H11—C9—H12109.5N2—Yb—C1485.28 (9)
H10—C9—H12109.5C17—Yb—C1450.80 (11)
N2—C10—C12108.8 (2)C13—Yb—C1430.60 (12)
N2—C10—C11112.8 (2)C18—Yb—C14121.15 (12)
C12—C10—C11110.3 (2)N1—Yb—C16127.40 (9)
N2—C10—H13108.3N2—Yb—C16136.29 (9)
C12—C10—H13108.3C17—Yb—C1630.92 (10)
C11—C10—H13108.3C13—Yb—C1651.34 (10)
C10—C11—H15109.5C18—Yb—C1688.18 (9)
C10—C11—H16109.5C14—Yb—C1651.34 (10)
H15—C11—H16109.5N1—Yb—C19123.68 (8)
C10—C11—H14109.5N2—Yb—C19139.92 (8)
H15—C11—H14109.5C17—Yb—C1994.16 (10)
H16—C11—H14109.5C13—Yb—C19124.76 (10)
C10—C12—H18109.5C18—Yb—C1931.15 (9)
C10—C12—H17109.5C14—Yb—C19126.54 (11)
H18—C12—H17109.5C16—Yb—C1977.60 (9)
C10—C12—H19109.5N1—Yb—C2185.14 (9)
H18—C12—H19109.5N2—Yb—C2192.78 (10)
H17—C12—H19109.5C17—Yb—C21135.74 (12)
C14—C13—C17108.0 (3)C13—Yb—C21159.02 (13)
C14—C13—Yb75.12 (19)C18—Yb—C2151.33 (10)
C17—C13—Yb74.42 (17)C14—Yb—C21170.27 (13)
C14—C13—H20126.0C16—Yb—C21128.90 (10)
C17—C13—H20126.0C19—Yb—C2151.47 (10)
Yb—C13—H20116.6N1—Yb—C15132.26 (10)
C13—C14—C15108.9 (3)N2—Yb—C15107.84 (10)
C13—C14—Yb74.29 (19)C17—Yb—C1551.36 (10)
C15—C14—Yb74.87 (18)C13—Yb—C1551.56 (12)
C13—C14—H21125.5C18—Yb—C1591.28 (11)
C15—C14—H21125.5C14—Yb—C1531.44 (12)
Yb—C14—H21117.2C16—Yb—C1531.25 (10)
C16—C15—C14106.3 (3)C19—Yb—C1596.16 (11)
C16—C15—Yb74.22 (17)C21—Yb—C15142.52 (11)
C14—C15—Yb73.69 (17)N1—Yb—C22108.89 (9)
C16—C15—H22126.8N2—Yb—C2288.59 (9)
C14—C15—H22126.8C17—Yb—C22144.82 (10)
Yb—C15—H22117.4C13—Yb—C22168.41 (11)
C17—C16—C15107.6 (3)C18—Yb—C2231.38 (9)
C17—C16—Yb73.57 (16)C14—Yb—C22139.59 (13)
C15—C16—Yb74.53 (16)C16—Yb—C22119.52 (9)
C17—C16—H23126.2C19—Yb—C2251.59 (9)
C15—C16—H23126.2C21—Yb—C2230.70 (11)
Yb—C16—H23117.7C15—Yb—C22116.85 (11)
C13—C17—C16109.1 (3)N1—Yb—C2093.12 (9)
C13—C17—Yb74.66 (17)N2—Yb—C20122.16 (10)
C16—C17—Yb75.52 (17)C17—Yb—C20105.16 (12)
C13—C17—H24125.4C13—Yb—C20133.23 (12)
C16—C17—H24125.4C18—Yb—C2051.22 (9)
Yb—C17—H24116.3C14—Yb—C20152.55 (11)
C19—C18—C22108.2 (3)C16—Yb—C20101.36 (11)
C19—C18—Yb75.03 (15)C19—Yb—C2031.11 (10)
C22—C18—Yb75.01 (16)C21—Yb—C2030.91 (11)
C19—C18—H25125.9C15—Yb—C20125.90 (12)
C22—C18—H25125.9C22—Yb—C2051.00 (11)
C3—C4—C5—C6109.6 (3)C19—C20—C21—Yb66.8 (2)
C3—C4—C6—C5106.6 (3)C20—C21—C22—C181.1 (3)
C17—C13—C14—C150.3 (3)Yb—C21—C22—C1866.7 (2)
Yb—C13—C14—C1567.5 (2)C20—C21—C22—Yb67.8 (2)
C17—C13—C14—Yb67.7 (2)C19—C18—C22—C210.9 (3)
C13—C14—C15—C160.5 (3)Yb—C18—C22—C2167.4 (2)
Yb—C14—C15—C1667.6 (2)C19—C18—C22—Yb68.3 (2)
C13—C14—C15—Yb67.1 (2)N2—C1—N1—C7174.8 (2)
C14—C15—C16—C170.6 (3)C2—C1—N1—C78.1 (4)
Yb—C15—C16—C1766.7 (2)Yb—C1—N1—C7179.6 (3)
C14—C15—C16—Yb67.2 (2)N2—C1—N1—Yb4.8 (2)
C14—C13—C17—C160.1 (3)C2—C1—N1—Yb172.3 (2)
Yb—C13—C17—C1668.3 (2)C9—C7—N1—C181.7 (3)
C14—C13—C17—Yb68.2 (2)C8—C7—N1—C1156.3 (2)
C15—C16—C17—C130.4 (3)C9—C7—N1—Yb97.6 (3)
Yb—C16—C17—C1367.7 (2)C8—C7—N1—Yb24.4 (4)
C15—C16—C17—Yb67.3 (2)N1—C1—N2—C10177.0 (2)
C22—C18—C19—C200.3 (3)C2—C1—N2—C100.0 (4)
Yb—C18—C19—C2068.0 (2)Yb—C1—N2—C10172.3 (3)
C22—C18—C19—Yb68.3 (2)N1—C1—N2—Yb4.7 (2)
C18—C19—C20—C210.4 (3)C2—C1—N2—Yb172.3 (2)
Yb—C19—C20—C2166.9 (2)C12—C10—N2—C1158.5 (2)
C18—C19—C20—Yb67.3 (2)C11—C10—N2—C178.8 (3)
C19—C20—C21—C220.9 (4)C12—C10—N2—Yb35.6 (4)
Yb—C20—C21—C2267.7 (2)C11—C10—N2—Yb87.2 (4)
(li0065_sq) Tris(3-phenyl-N,N'-dicyclohexylpropynamidinato-κ2N,N')ytterbium(III) top
Crystal data top
[Yb(C21H27N2)3]Dx = 1.210 Mg m3
Mr = 1095.37Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 36835 reflections
a = 20.3469 (3) Åθ = 2.0–25.1°
c = 50.3074 (11) ŵ = 1.60 mm1
V = 18036.8 (7) Å3T = 153 K
Z = 12Block, light yellow
F(000) = 68520.36 × 0.35 × 0.24 mm
Data collection top
Stoe IPDS 2T
diffractometer
3578 independent reflections
Radiation source: fine-focus sealed tube2774 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.065
area detector scansθmax = 25.1°, θmin = 2.0°
Absorption correction: numerical
(X-AREA and X-RED; Stoe & Cie, 2002)
h = 2424
Tmin = 0.621, Tmax = 0.722k = 2424
36832 measured reflectionsl = 5959
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0274P)2 + 35.9511P]
where P = (Fo2 + 2Fc2)/3
3578 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 1.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. PLATON SQUEEZE (Spek, 2015)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.11736 (16)0.97236 (16)0.14621 (6)0.0488 (7)
C20.18462 (17)0.96500 (16)0.14454 (7)0.0553 (8)
C30.24269 (17)0.96456 (16)0.14323 (7)0.0569 (8)
C40.31432 (16)0.96673 (17)0.14298 (7)0.0552 (8)
C50.36272 (19)0.9967 (2)0.16454 (8)0.0644 (9)
H10.34771.01450.17950.077*
C60.4328 (2)1.0010 (2)0.16442 (9)0.0773 (11)
H20.46581.02170.17920.093*
C70.4543 (2)0.9751 (2)0.14279 (10)0.0853 (13)
H30.50170.97680.14290.102*
C80.4074 (2)0.9468 (2)0.12089 (10)0.0847 (13)
H40.42330.93020.10580.102*
C90.3374 (2)0.9423 (2)0.12084 (9)0.0712 (10)
H50.30520.92280.10580.085*
C100.06136 (18)0.8906 (2)0.10821 (7)0.0610 (9)
H60.09800.87410.11380.073*
C110.0855 (2)0.9272 (3)0.08192 (8)0.0935 (14)
H80.13780.97070.08310.112*
H70.05180.94680.07640.112*
C120.0825 (3)0.8709 (3)0.06098 (11)0.134 (2)
H100.09720.89600.04340.161*
H90.11900.85400.06570.161*
C130.0034 (3)0.8030 (3)0.05952 (11)0.131 (2)
H120.03240.81950.05360.157*
H110.00230.76630.04630.157*
C140.0206 (2)0.7657 (3)0.08578 (11)0.1059 (18)
H130.01250.74500.09100.127*
H140.07330.72270.08460.127*
C150.0164 (2)0.82102 (19)0.10691 (8)0.0691 (10)
H150.05440.83650.10290.083*
H160.02900.79550.12440.083*
C16A0.17017 (18)1.05213 (17)0.18498 (7)0.0566 (8)0.442 (4)
H17A0.21731.07280.17390.068*0.442 (4)
C16B0.17017 (18)1.05213 (17)0.18498 (7)0.0566 (8)0.558 (4)
H17B0.19321.01990.18910.068*0.558 (4)
C17A0.1797 (4)1.0071 (4)0.20382 (16)0.065 (2)0.442 (4)
H18A0.18940.96980.19460.078*0.442 (4)
H19A0.13240.97860.21420.078*0.442 (4)
C17B0.1324 (4)1.0618 (3)0.21256 (12)0.0644 (17)0.558 (4)
H18B0.10641.09090.20870.077*0.558 (4)
H19B0.09381.01110.21910.077*0.558 (4)
C18A0.2455 (6)1.0543 (5)0.2227 (2)0.091 (3)0.442 (4)
H20A0.24591.02170.23730.109*0.442 (4)
H21A0.29421.07530.21300.109*0.442 (4)
C18B0.1916 (6)1.1025 (6)0.23422 (18)0.080 (3)0.558 (4)
H20B0.16771.11240.24970.096*0.558 (4)
H21B0.21211.06990.24020.096*0.558 (4)
C19A0.2374 (8)1.1184 (9)0.2342 (2)0.089 (4)0.442 (4)
H22A0.28081.14920.24620.106*0.442 (4)
H23A0.19041.09710.24500.106*0.442 (4)
C19B0.2552 (6)1.1765 (6)0.2237 (2)0.074 (3)0.558 (4)
H22B0.29491.20070.23750.088*0.558 (4)
H23B0.23541.21110.21980.088*0.558 (4)
C20A0.2345 (7)1.1693 (8)0.2125 (2)0.067 (3)0.442 (4)
H24A0.22691.20940.22060.080*0.442 (4)
H25A0.28291.19400.20260.080*0.442 (4)
C20B0.2903 (3)1.1658 (3)0.19873 (14)0.0672 (18)0.558 (4)
H24B0.31511.13590.20290.081*0.558 (4)
H25B0.32941.21590.19190.081*0.558 (4)
C21A0.1690 (4)1.1208 (4)0.19379 (14)0.0533 (19)0.442 (4)
H26A0.12031.10550.20290.064*0.442 (4)
H27A0.17201.15140.17800.064*0.442 (4)
C21B0.2294 (3)1.1248 (3)0.17762 (11)0.0516 (14)0.558 (4)
H26B0.20701.15680.17300.062*0.558 (4)
H27B0.25401.11960.16140.062*0.558 (4)
N10.06247 (13)0.94267 (14)0.12836 (5)0.0520 (6)
N20.10931 (13)1.01127 (13)0.16578 (5)0.0481 (6)
Yb0.00001.00000.14748 (2)0.04418 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (15)0.0310 (14)0.080 (2)0.0142 (12)0.0002 (14)0.0028 (14)
C20.0374 (16)0.0342 (16)0.091 (2)0.0153 (13)0.0050 (16)0.0062 (15)
C30.0392 (17)0.0312 (15)0.096 (2)0.0146 (13)0.0032 (16)0.0028 (15)
C40.0349 (15)0.0358 (15)0.094 (2)0.0166 (13)0.0007 (16)0.0010 (16)
C50.0480 (18)0.063 (2)0.086 (2)0.0308 (17)0.0031 (18)0.0010 (19)
C60.050 (2)0.082 (3)0.101 (3)0.035 (2)0.013 (2)0.006 (2)
C70.044 (2)0.081 (3)0.139 (4)0.037 (2)0.006 (2)0.009 (3)
C80.058 (2)0.085 (3)0.121 (4)0.044 (2)0.005 (2)0.019 (3)
C90.052 (2)0.062 (2)0.105 (3)0.0325 (18)0.010 (2)0.015 (2)
C100.0388 (16)0.062 (2)0.083 (2)0.0258 (15)0.0023 (16)0.0217 (18)
C110.070 (3)0.095 (3)0.086 (3)0.018 (2)0.015 (2)0.016 (2)
C120.084 (3)0.155 (5)0.106 (4)0.017 (3)0.026 (3)0.054 (4)
C130.060 (3)0.167 (5)0.121 (4)0.024 (3)0.004 (3)0.089 (4)
C140.058 (2)0.089 (3)0.163 (5)0.031 (2)0.004 (3)0.065 (3)
C150.055 (2)0.054 (2)0.090 (3)0.0210 (17)0.0019 (19)0.0201 (19)
C16A0.0441 (17)0.0423 (17)0.084 (2)0.0221 (15)0.0159 (17)0.0112 (16)
C16B0.0441 (17)0.0423 (17)0.084 (2)0.0221 (15)0.0159 (17)0.0112 (16)
C17A0.055 (5)0.052 (4)0.077 (5)0.019 (4)0.015 (4)0.006 (4)
C17B0.054 (3)0.044 (3)0.070 (3)0.006 (3)0.007 (3)0.003 (3)
C18A0.097 (7)0.074 (6)0.091 (7)0.034 (6)0.042 (6)0.006 (5)
C18B0.085 (6)0.058 (5)0.068 (4)0.014 (6)0.002 (5)0.003 (4)
C19A0.091 (9)0.088 (10)0.066 (6)0.029 (10)0.021 (7)0.011 (6)
C19B0.066 (6)0.051 (5)0.078 (7)0.010 (5)0.014 (5)0.010 (5)
C20A0.065 (7)0.058 (6)0.067 (7)0.024 (6)0.017 (5)0.015 (6)
C20B0.043 (3)0.045 (3)0.099 (5)0.012 (3)0.006 (3)0.003 (3)
C21A0.053 (4)0.055 (4)0.048 (4)0.023 (4)0.003 (3)0.006 (3)
C21B0.044 (3)0.035 (3)0.067 (3)0.014 (2)0.002 (2)0.003 (2)
N10.0380 (13)0.0476 (14)0.0731 (15)0.0234 (11)0.0043 (13)0.0122 (13)
N20.0356 (13)0.0367 (12)0.0716 (16)0.0177 (11)0.0075 (12)0.0059 (12)
Yb0.03321 (10)0.03321 (10)0.06610 (15)0.01661 (5)0.0000.000
Geometric parameters (Å, º) top
C1—N11.321 (4)C16B—N21.459 (4)
C1—N21.324 (4)C16B—C17B1.645 (7)
C1—C21.451 (4)C16B—H17B1.0000
C1—Yb2.714 (3)C17A—C18A1.528 (11)
C2—C31.188 (4)C17A—H18A0.9900
C3—C41.436 (4)C17A—H19A0.9900
C4—C51.385 (5)C17B—C18B1.526 (11)
C4—C91.393 (5)C17B—H18B0.9900
C5—C61.384 (5)C17B—H19B0.9900
C5—H10.9500C18A—C19A1.509 (18)
C6—C71.372 (6)C18A—H20A0.9900
C6—H20.9500C18A—H21A0.9900
C7—C81.381 (6)C18B—C19B1.508 (15)
C7—H30.9500C18B—H20B0.9900
C8—C91.382 (5)C18B—H21B0.9900
C8—H40.9500C19A—C20A1.53 (2)
C9—H50.9500C19A—H22A0.9900
C10—N11.458 (4)C19A—H23A0.9900
C10—C111.476 (6)C19B—C20B1.511 (13)
C10—C151.507 (4)C19B—H22B0.9900
C10—H61.0000C19B—H23B0.9900
C11—C121.536 (6)C20A—C21A1.525 (12)
C11—H80.9900C20A—H24A0.9900
C11—H70.9900C20A—H25A0.9900
C12—C131.510 (6)C20B—C21B1.524 (8)
C12—H100.9900C20B—H24B0.9900
C12—H90.9900C20B—H25B0.9900
C13—C141.480 (7)C21A—H26A0.9900
C13—H120.9900C21A—H27A0.9900
C13—H110.9900C21B—H26B0.9900
C14—C151.520 (5)C21B—H27B0.9900
C14—H130.9900N1—Yb2.320 (2)
C14—H140.9900N2—Yb2.310 (2)
C15—H150.9900Yb—N2i2.310 (2)
C15—H160.9900Yb—N2ii2.310 (2)
C16A—C17A1.398 (8)Yb—N1i2.320 (2)
C16A—N21.459 (4)Yb—N1ii2.320 (2)
C16A—C21A1.477 (8)Yb—C1ii2.714 (3)
C16A—H17A1.0000Yb—C1i2.714 (3)
C16B—C21B1.412 (6)
N1—C1—N2116.7 (3)C19A—C18A—H21A109.7
N1—C1—C2122.6 (3)C17A—C18A—H21A109.7
N2—C1—C2120.6 (3)H20A—C18A—H21A108.2
N1—C1—Yb58.68 (15)C19B—C18B—C17B109.9 (7)
N2—C1—Yb58.25 (15)C19B—C18B—H20B109.7
C2—C1—Yb174.4 (2)C17B—C18B—H20B109.7
C3—C2—C1175.2 (3)C19B—C18B—H21B109.7
C2—C3—C4176.7 (4)C17B—C18B—H21B109.7
C5—C4—C9119.4 (3)H20B—C18B—H21B108.2
C5—C4—C3119.6 (3)C18A—C19A—C20A111.7 (10)
C9—C4—C3120.9 (3)C18A—C19A—H22A109.3
C6—C5—C4120.5 (4)C20A—C19A—H22A109.3
C6—C5—H1119.8C18A—C19A—H23A109.3
C4—C5—H1119.8C20A—C19A—H23A109.3
C7—C6—C5119.7 (4)H22A—C19A—H23A107.9
C7—C6—H2120.2C18B—C19B—C20B112.3 (8)
C5—C6—H2120.2C18B—C19B—H22B109.1
C6—C7—C8120.5 (4)C20B—C19B—H22B109.1
C6—C7—H3119.7C18B—C19B—H23B109.1
C8—C7—H3119.7C20B—C19B—H23B109.1
C9—C8—C7120.2 (4)H22B—C19B—H23B107.9
C9—C8—H4119.9C21A—C20A—C19A108.8 (10)
C7—C8—H4119.9C21A—C20A—H24A109.9
C8—C9—C4119.7 (4)C19A—C20A—H24A109.9
C8—C9—H5120.2C21A—C20A—H25A109.9
C4—C9—H5120.2C19A—C20A—H25A109.9
N1—C10—C11112.1 (3)H24A—C20A—H25A108.3
N1—C10—C15109.9 (3)C19B—C20B—C21B110.1 (6)
C11—C10—C15111.3 (3)C19B—C20B—H24B109.6
N1—C10—H6107.8C21B—C20B—H24B109.6
C11—C10—H6107.8C19B—C20B—H25B109.6
C15—C10—H6107.8C21B—C20B—H25B109.6
C10—C11—C12111.1 (4)H24B—C20B—H25B108.1
C10—C11—H8109.4C16A—C21A—C20A112.0 (7)
C12—C11—H8109.4C16A—C21A—H26A109.2
C10—C11—H7109.4C20A—C21A—H26A109.2
C12—C11—H7109.4C16A—C21A—H27A109.2
H8—C11—H7108.0C20A—C21A—H27A109.2
C13—C12—C11109.9 (4)H26A—C21A—H27A107.9
C13—C12—H10109.7C16B—C21B—C20B115.1 (5)
C11—C12—H10109.7C16B—C21B—H26B108.5
C13—C12—H9109.7C20B—C21B—H26B108.5
C11—C12—H9109.7C16B—C21B—H27B108.5
H10—C12—H9108.2C20B—C21B—H27B108.5
C14—C13—C12110.7 (4)H26B—C21B—H27B107.5
C14—C13—H12109.5C1—N1—C10120.5 (3)
C12—C13—H12109.5C1—N1—Yb92.22 (18)
C14—C13—H11109.5C10—N1—Yb147.1 (2)
C12—C13—H11109.5C1—N2—C16B120.6 (2)
H12—C13—H11108.1C1—N2—C16A120.6 (2)
C13—C14—C15111.2 (4)C1—N2—Yb92.59 (18)
C13—C14—H13109.4C16B—N2—Yb145.21 (19)
C15—C14—H13109.4C16A—N2—Yb145.21 (19)
C13—C14—H14109.4N2i—Yb—N2ii105.17 (7)
C15—C14—H14109.4N2i—Yb—N2105.17 (7)
H13—C14—H14108.0N2ii—Yb—N2105.17 (7)
C10—C15—C14111.8 (3)N2i—Yb—N1i58.20 (9)
C10—C15—H15109.3N2ii—Yb—N1i156.22 (8)
C14—C15—H15109.3N2—Yb—N1i96.18 (9)
C10—C15—H16109.3N2i—Yb—N1ii96.18 (9)
C14—C15—H16109.3N2ii—Yb—N1ii58.19 (9)
H15—C15—H16107.9N2—Yb—N1ii156.22 (8)
C17A—C16A—N2115.6 (4)N1i—Yb—N1ii104.02 (8)
C17A—C16A—C21A119.3 (5)N2i—Yb—N1156.22 (8)
N2—C16A—C21A109.1 (3)N2ii—Yb—N196.18 (8)
C17A—C16A—H17A103.5N2—Yb—N158.19 (9)
N2—C16A—H17A103.5N1i—Yb—N1104.02 (8)
C21A—C16A—H17A103.5N1ii—Yb—N1104.02 (8)
C21B—C16B—N2117.4 (4)N2i—Yb—C1ii103.62 (8)
C21B—C16B—C17B107.5 (4)N2ii—Yb—C1ii29.16 (9)
N2—C16B—C17B108.2 (3)N2—Yb—C1ii131.74 (9)
C21B—C16B—H17B107.8N1i—Yb—C1ii131.99 (9)
N2—C16B—H17B107.8N1ii—Yb—C1ii29.10 (9)
C17B—C16B—H17B107.8N1—Yb—C1ii100.12 (8)
C16A—C17A—C18A112.0 (6)N2i—Yb—C1i29.16 (9)
C16A—C17A—H18A109.2N2ii—Yb—C1i131.74 (9)
C18A—C17A—H18A109.2N2—Yb—C1i103.62 (8)
C16A—C17A—H19A109.2N1i—Yb—C1i29.10 (9)
C18A—C17A—H19A109.2N1ii—Yb—C1i100.12 (8)
H18A—C17A—H19A107.9N1—Yb—C1i131.99 (9)
C18B—C17B—C16B112.2 (6)C1ii—Yb—C1i119.946 (6)
C18B—C17B—H18B109.2N2i—Yb—C1131.74 (9)
C16B—C17B—H18B109.2N2ii—Yb—C1103.62 (8)
C18B—C17B—H19B109.2N2—Yb—C129.16 (9)
C16B—C17B—H19B109.2N1i—Yb—C1100.12 (8)
H18B—C17B—H19B107.9N1ii—Yb—C1131.98 (9)
C19A—C18A—C17A110.0 (8)N1—Yb—C129.10 (9)
C19A—C18A—H20A109.7C1ii—Yb—C1119.947 (6)
C17A—C18A—H20A109.7C1i—Yb—C1119.945 (6)
C9—C4—C5—C61.4 (5)N2—C16B—C21B—C20B178.3 (4)
C3—C4—C5—C6178.4 (3)C17B—C16B—C21B—C20B56.2 (6)
C4—C5—C6—C70.2 (6)C19B—C20B—C21B—C16B59.6 (8)
C5—C6—C7—C81.7 (7)N2—C1—N1—C10171.7 (3)
C6—C7—C8—C91.7 (7)C2—C1—N1—C109.7 (4)
C7—C8—C9—C40.0 (6)Yb—C1—N1—C10176.7 (3)
C5—C4—C9—C81.5 (6)N2—C1—N1—Yb4.9 (3)
C3—C4—C9—C8178.5 (3)C2—C1—N1—Yb173.6 (3)
N1—C10—C11—C12179.1 (3)C11—C10—N1—C1104.2 (4)
C15—C10—C11—C1255.5 (5)C15—C10—N1—C1131.5 (3)
C10—C11—C12—C1357.3 (7)C11—C10—N1—Yb81.9 (5)
C11—C12—C13—C1457.7 (7)C15—C10—N1—Yb42.4 (6)
C12—C13—C14—C1556.7 (6)N1—C1—N2—C16B174.1 (3)
N1—C10—C15—C14179.0 (4)C2—C1—N2—C16B4.5 (4)
C11—C10—C15—C1454.2 (5)Yb—C1—N2—C16B169.2 (3)
C13—C14—C15—C1054.7 (5)N1—C1—N2—C16A174.1 (3)
N2—C16A—C17A—C18A178.9 (6)C2—C1—N2—C16A4.5 (4)
C21A—C16A—C17A—C18A47.8 (9)Yb—C1—N2—C16A169.2 (3)
C21B—C16B—C17B—C18B53.7 (7)N1—C1—N2—Yb5.0 (3)
N2—C16B—C17B—C18B178.6 (6)C2—C1—N2—Yb173.6 (3)
C16A—C17A—C18A—C19A51.2 (11)C21B—C16B—N2—C182.5 (4)
C16B—C17B—C18B—C19B52.9 (11)C17B—C16B—N2—C1155.7 (3)
C17A—C18A—C19A—C20A57.9 (14)C21B—C16B—N2—Yb78.2 (5)
C17B—C18B—C19B—C20B55.0 (12)C17B—C16B—N2—Yb43.5 (5)
C18A—C19A—C20A—C21A57.1 (14)C17A—C16A—N2—C174.5 (5)
C18B—C19B—C20B—C21B55.8 (11)C21A—C16A—N2—C1147.7 (4)
C17A—C16A—C21A—C20A47.8 (9)C17A—C16A—N2—Yb124.7 (5)
N2—C16A—C21A—C20A176.2 (7)C21A—C16A—N2—Yb13.1 (6)
C19A—C20A—C21A—C16A49.3 (12)
Symmetry codes: (i) y+1, xy+2, z; (ii) x+y1, x+1, z.
 

Acknowledgements

This work was financially supported by the Otto-von-Guericke-Universität Magdeburg. SW holds a PhD studentship from the China Scholarship Council (CSC). FMS is grateful to the Ministry of Higher Educational Scientific Research (MHESR), Egypt, and the Germany Academic Exchange Service (DAAD), Germany, for a PhD scholarship within the German Egyptian Research Long-Term Scholarship (GERLS) program.

References

First citationBrandenburg, K. (1999). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationCollins, S. (2011). Coord. Chem. Rev. 255, 118–138.  Web of Science CrossRef CAS Google Scholar
First citationDeacon, G. B., Junk, P. C., Wang, J. & Werner, D. (2014). Inorg. Chem. 53, 12553–12563.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDevi, A. (2013). Coord. Chem. Rev. 257, 3332–3384.  Web of Science CrossRef CAS Google Scholar
First citationDröse, P., Blaurock, S., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2011). Z. Anorg. Allg. Chem. 637, 186–189.  Google Scholar
First citationDröse, P., Hrib, C. G., Blaurock, S. & Edelmann, F. T. (2010a). Acta Cryst. E66, m1474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDröse, P., Hrib, C. G. & Edelmann, F. T. (2010b). J. Organomet. Chem. 695, 1953–1956.  Google Scholar
First citationEdelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253–2268.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEdelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657–7672.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEdelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55–374.  CAS Google Scholar
First citationFreeman, J. H. & Smith, M. L. (1958). J. Inorg. Nucl. Chem. 7, 224–227.  CrossRef CAS Web of Science Google Scholar
First citationKühling, M., Wickleder, C., Ferguson, M. J., Hrib, C. G., McDonald, R., Suta, M., Hilfert, L., Takats, J. & Edelmann, F. T. (2015). New J. Chem. 39, 7617–7625.  Google Scholar
First citationLamberts, W., Lueken, H. & Hessner, B. (1987). Inorg. Chim. Acta, 134, 155–157.  CSD CrossRef CAS Web of Science Google Scholar
First citationLueken, H., Lamberts, W. & Hannibal, P. (1987). Inorg. Chim. Acta, 132, 111–118.  CSD CrossRef CAS Web of Science Google Scholar
First citationLueken, H., Schmitz, J., Lamberts, W., Hannibal, P. & Handrick, K. (1989). Inorg. Chim. Acta, 156, 119–124.  CSD CrossRef CAS Web of Science Google Scholar
First citationMaginn, R. E., Manastyrskyj, S. & Dubeck, M. (1963). J. Am. Chem. Soc. 85, 672–676.  CrossRef CAS Web of Science Google Scholar
First citationOng, T.-G., O'Brien, J. S., Korobkov, I. & Richeson, D. S. (2006). Organometallics, 25, 4728–4730.  Web of Science CSD CrossRef CAS Google Scholar
First citationRichter, J., Feiling, J., Schmidt, H.-G., Noltemeyer, M., Brüser, W. & Edelmann, F. T. (2004). Z. Anorg. Allg. Chem. 630, 1269–1275.  Web of Science CSD CrossRef CAS Google Scholar
First citationRowley, C. N., DiLabio, G. A. & Barry, S. T. (2005). Inorg. Chem. 44, 1983–1991.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchumann, H., Keitsch, M. R., Winterfeld, J., Mühle, S. & Molander, G. A. (1998). J. Organomet. Chem. 559, 181–190.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeidel, W. W., Dachtler, W. & Pape, T. (2012). Z. Anorg. Allg. Chem. 638, 116–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSienkiewicz, P., Bielawski, K., Bielawska, A. & Pałka, J. (2005). Environ. Toxicol. Pharmacol. 20, 118–124.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSroor, F. M., Hrib, C. G., Hilfert, L., Busse, S. & Edelmann, F. T. (2015a). New J. Chem. 39, 7595–7601.  Web of Science CSD CrossRef CAS Google Scholar
First citationSroor, F. M., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2013). Z. Anorg. Allg. Chem. 639, 2390–2394.  Web of Science CSD CrossRef CAS Google Scholar
First citationSroor, F. M., Hrib, C. G., Hilfert, L., Hartenstein, L., Roesky, P. W. & Edelmann, F. T. (2015b). J. Organomet. Chem. 799–800, 160–165.  Web of Science CSD CrossRef CAS Google Scholar
First citationSroor, F. M., Hrib, C. G., Hilfert, L., Jones, P. G. & Edelmann, F. T. (2015c). J. Organomet. Chem. 785, 1–10.  Web of Science CSD CrossRef CAS Google Scholar
First citationSroor, F. M., Hrib, C. G., Liebing, P., Hilfert, L., Busse, S. & Edelmann, F. T. (2016). Dalton Trans. doi: 10.1039/C6DT01974A.  Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWeingärtner, W. & Maas, G. (2012). Eur. J. Org. Chem. pp. 6372–6382.  Google Scholar
First citationXu, X., Gao, J., Cheng, D., Li, J., Qiang, G. & Guo, H. (2008). Adv. Synth. Catal. 350, 61–64.  Web of Science CrossRef CAS Google Scholar
First citationXu, L., Wang, Y.-C., Zhang, W.-X. & Xi, Z. (2013). Dalton Trans. 42, 16466–16469.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds