research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3,4a,7,7,10a-penta­methyl-3-vinyl­dodeca­hydro-1H-benzo[f]chromen-9-ol isolated from Sideritis perfoliata

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Sinop University, 57010 Sinop, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Chemistry, Faculty of Arts and Sciences, Gaziosmanpaşa University, 60240 Tokat, Turkey, and eDepartment of Chemistry, Faculty of Natural Sciences, Çankırı Karatekin University, 18100 Çankırı, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 19 July 2016; accepted 29 August 2016; online 5 September 2016)

The asymmetric unit of the title compound, C20H34O2, contains two crystallographically independent mol­ecules (1 and 2) with similar conformations. In both mol­ecules, the cyclo­hexane rings adopt a chair conformation, while the oxane rings are also puckered. In the crystal, O—H⋯O hydrogen bonds connect adjacent mol­ecules, forming C(6) helical chains located around a 21 screw axis and running along the crystallographic a axis. The packing of these chains is governed only by van der Waals inter­actions. Semi-empirical PM3 quantum chemical calculations are in a satisfactory agreement with the structural results of the X-ray structure analysis. The absolute structure was indeterminate in the present experiment.

1. Chemical context

The Sideritis genus belonging to the Lamiaceae family is represented by more than 150 species in the world (Duman 2000[Duman, H. (2000). Sideritis L, in Flora of Turkey and East Aegean Islands (Supplement 2), Vol. 11, pp. 201-205. Edinburgh: University Press.]). Sideritis species have been reported to have a broad spectrum of biological activities such as anti-inflammatory, anti-oxidant, anti-ulcerogenic, analgesic, anti­microbial, anti­proliferative, anti-HIV and anti­feedant activities (González-Burgos et al. 2011[González-Burgos, E., Carretero, M. E. & Gómez-Serranillos, M. P. (2011). J. Ethnopharmacol. 135, 209-225.]), and they have been consumed as teas, as flavoring agents, for therapeutic purposes, etc. In particular, Sideritis teas have been used for gastrointestinal disorders such as stomach ache and indigestion, to alleviate common colds, fever, flu and sore throats (Topçu et al. 2002[Topçu, G., Gören, A. C., Kıliç, T., Kemal Yıldız, Y. & Tümen, G. (2002). Nat. Prod. Lett. 16, 33-37.]). Phytochemical investigations of the species have revealed the presence of terpenes (Fraga et al. 2003[Fraga, B. M., Reina, M., Luis, J. G. & Rodriguez, M. L. (2003). Z. Naturforsch. Teil C, 58, 621-625.]), flavonoids, essential oils and other secondary metabolites (Barberan et al. 1985[Barberan, F. A. T., Nuñez, J. M. & Tomas, F. (1985). Phytochemistry, 24, 1285-1288.]). As part of our studies in this area, we now describe the isolation and structure of the title compound, (I).

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the asymmetric unit contains two crystallographically independent mol­ecules, 1 and 2, with a similar conformations. In mol­ecule 1, the cyclo­hexane ring (C1–C6) attached to the OH group and the central cyclo­hexane ring (C1/C6/C9–C12) each adopt a chair conformation with puckering parameters QT = 0.536 (3) Å, θ = 0.0 (3), φ = 270 (81)° and QT = 0.584 (3) Å, θ = 4.4 (3), φ = 59 (4)°, respectively. The oxane ring (O2/C11/C12/C15–C17) is also puckered, with puckering parameters QT = 0.551 (3) Å, θ = 12.1 (3) and φ = 133.5 (16)°. The equivalent rings in mol­ecule 2 (C21–C16, C21/C26/C29–C32 and O4/C31/C32/C35–C37) have as puckering parameters QT = 0.534 (3) Å, θ = 1.9 (3), φ = 296 (11)°, QT = 0.583 (3) Å, θ = 5.0 (3), φ = 72 (3)° and QT = 0.554 (3) Å, θ = 11.9 (3), φ = 127.2 (15)°, respectively. Bond lengths and angles are within normal range, comparable with each other and with those reported for similar structures in the literature (e.g., Evans et al., 2011[Evans, G. B. & Gainsford, G. J. (2011). Acta Cryst. E67, o2870.]).

[Figure 1]
Figure 1
A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. The minor component of the disorder is not shown for clarity.

3. Supra­molecular features

Inter­molecular O—H. . . O hydrogen bonds connect adjacent mol­ecules, forming C(6) helical chains located around a 21 screw axis running along the crystallographic a axis (Table 1[link] and Fig. 2[link]). The crystal packing of these chains is governed only by van der Waals inter­actions. The two asymmetric molecules lead to pseudo-41 symmetry in space group P212121.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3 0.80 (4) 1.99 (4) 2.784 (3) 170 (4)
O3—H3O⋯O1i 0.81 (4) 2.00 (4) 2.804 (3) 169 (4)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

4. Theoretical calculations

PM3 (parameterized model number 3) is a semi-empirical method for the quantum calculation of the mol­ecular electronic structure in computational chemistry. It is based on the neglect of differential diatomic overlap integral approximation. The semi-empirical PM3 parameterization used in the MOPAC program is widely used to derive charges, dipole moments and bond lengths. The computed quantum chemical descriptors include bond lengths, bond angles, torsion angles, atom charges, HOMO and LUMO energy levels, dipole moment, polarizability, etc. In the present case, the geometry of the mol­ecule of the title compound was calculated with a semi-empirical PM3 method (Stewart, 1985[Stewart, J. J. P. (1985). MOPAC. QCPE Program 445. Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN 47405, USA.]). A spatial view is included in the Supporting information.

The calculated net charges at atoms O1 and O2 are −0.257 and −0.309 e, respectively. The total energy and dipole moment of the title mol­ecule are −3514.7 eV and 1.695 Debye. The HOMO and LUMO energy levels are −10.36 and 2.71 eV, respectively.

Calculated values for the geometrical parameter are consistent with those obtained by the X-ray structure determination, within the error limits (see Table S1 in the Supporting information), with the sole exception of the angles in the meth­oxy groups. This may be ascribed to the steric inter­actions between adjacent mol­ecules in the crystal structure.

5. Synthesis and crystallization

The aerial part of the plant material (5 g) was extracted with ethyl acetate (3 × 20 mL). After removal of the solvent by rotary evaporator, the extract was subjected to column chromatography (2.5 × 70 cm); sephadex LH-20 (50 g) was used as a stationary phase and methanol was used as a mobile phase with a 0.25 ml min−1 flow rate. 16 fractions, each of which was 150 mL, were collected. Similar fractions were combined according to the TLC profile. Further purification was carried out with silica gel column chromatography to isolate the title compound. Colourless prisms were recrystallized from ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bound to oxygen were found from difference Fourier maps and their positional parameters were refined with Uiso fixed at 1.5 times Ueq(O). H atoms bound to carbon were positioned geometrically and allowed to ride on their parent atoms with Uiso = 1.2Ueq(C) (C—H = 0.93 Å for aromatic, 0.97 Å for methyl­ene and 0.98 Å for methine) and with Uiso = 1.5Ueq(C) (C—H = 0.96 Å) for methyl H atoms. The absolute structure was indeterminate in the present experiment.

Table 2
Experimental details

Crystal data
Chemical formula C20H34O2
Mr 306.47
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 7.1114 (4), 16.3899 (12), 32.812 (2)
V3) 3824.4 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.14 × 0.11 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.635, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 36728, 9449, 5384
Rint 0.074
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.130, 1.02
No. of reflections 9449
No. of parameters 413
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.23
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4144 Friedel pairs
Absolute structure parameter 0.4 (15)
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

3,4a,7,7,10a-Pentamethyl-3-vinyldodecahydro-1H-benzo[f]chromen-9-ol top
Crystal data top
C20H34O2F(000) = 1360
Mr = 306.47Dx = 1.065 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7578 reflections
a = 7.1114 (4) Åθ = 2.9–25.0°
b = 16.3899 (12) ŵ = 0.07 mm1
c = 32.812 (2) ÅT = 296 K
V = 3824.4 (4) Å3Prism, colourless
Z = 80.14 × 0.11 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
5384 reflections with I > 2σ(I)
φ and ω scansRint = 0.074
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
θmax = 28.3°, θmin = 2.9°
Tmin = 0.635, Tmax = 0.746h = 89
36728 measured reflectionsk = 1921
9449 independent reflectionsl = 4342
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0617P)2 + 0.0101P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.060(Δ/σ)max < 0.001
wR(F2) = 0.130Δρmax = 0.17 e Å3
S = 1.02Δρmin = 0.23 e Å3
9449 reflectionsAbsolute structure: Flack (1983), 4144 Friedel pairs
413 parametersAbsolute structure parameter: 0.4 (15)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0636 (3)0.76038 (13)0.54574 (6)0.0525 (8)
O20.4700 (3)0.53531 (14)0.71395 (6)0.0656 (8)
C10.2450 (3)0.70848 (15)0.65200 (7)0.0323 (8)
C20.1533 (4)0.69891 (16)0.60996 (8)0.0388 (9)
C30.1457 (4)0.77677 (17)0.58487 (8)0.0400 (9)
O30.3152 (3)0.65702 (13)0.50623 (6)0.0548 (8)
C40.3381 (4)0.81502 (18)0.58077 (8)0.0461 (10)
O40.7389 (3)0.33641 (12)0.38715 (6)0.0558 (7)
C50.4396 (4)0.83089 (17)0.62121 (8)0.0440 (10)
C60.4392 (3)0.75033 (16)0.64591 (8)0.0358 (8)
C70.6443 (5)0.8531 (2)0.61049 (11)0.0723 (12)
C80.3532 (5)0.90435 (19)0.64330 (10)0.0639 (11)
C90.5515 (4)0.75220 (19)0.68563 (9)0.0510 (10)
C100.5874 (4)0.6660 (2)0.70119 (9)0.0576 (11)
C110.4068 (4)0.61840 (17)0.70812 (8)0.0467 (10)
C120.2877 (4)0.62125 (16)0.66896 (7)0.0367 (8)
C130.1074 (4)0.75550 (18)0.67990 (8)0.0460 (10)
C140.3115 (5)0.6485 (2)0.74714 (8)0.0598 (11)
C150.1228 (5)0.56256 (17)0.67286 (9)0.0531 (11)
C160.1983 (6)0.47707 (19)0.67885 (10)0.0679 (14)
C170.3343 (6)0.4701 (2)0.71481 (10)0.0713 (14)
C180.4553 (8)0.3932 (3)0.71083 (15)0.118 (2)
C190.2373 (8)0.4663 (2)0.75573 (12)0.0880 (16)
C200.0645 (9)0.4471 (3)0.76331 (15)0.128 (3)
C210.5044 (3)0.44774 (15)0.47669 (7)0.0333 (8)
C220.4083 (4)0.53118 (15)0.47366 (8)0.0388 (9)
C230.3984 (4)0.57841 (16)0.51329 (8)0.0424 (9)
C240.5903 (4)0.58643 (18)0.53327 (9)0.0519 (10)
C250.6949 (4)0.50615 (19)0.53944 (8)0.0492 (10)
C260.6985 (3)0.46057 (16)0.49801 (8)0.0378 (9)
C270.6092 (6)0.4573 (2)0.57489 (9)0.0747 (15)
C280.8980 (5)0.5281 (3)0.55159 (12)0.0800 (16)
C290.8158 (4)0.38262 (18)0.49711 (9)0.0502 (10)
C300.8551 (4)0.35654 (18)0.45324 (9)0.0514 (10)
C310.6751 (4)0.34233 (16)0.42919 (8)0.0419 (9)
C320.5496 (4)0.41801 (15)0.43262 (8)0.0356 (8)
C330.3720 (4)0.38850 (17)0.49895 (8)0.0453 (10)
C340.5885 (5)0.26093 (16)0.44237 (9)0.0542 (10)
C350.3826 (4)0.40988 (18)0.40359 (8)0.0478 (10)
C360.4571 (5)0.4026 (2)0.36037 (9)0.0619 (11)
C370.6014 (5)0.3344 (2)0.35483 (9)0.0637 (11)
C380.7165 (7)0.3489 (3)0.31656 (11)0.0987 (18)
C390.5169 (7)0.2505 (2)0.35154 (12)0.0843 (16)
C400.3428 (8)0.2309 (3)0.34365 (15)0.122 (2)
H1O0.125 (6)0.727 (2)0.5337 (12)0.0980*
H2A0.222300.658000.594700.0470*
H2B0.026100.678800.613700.0470*
H30.064200.815600.599100.0480*
H4A0.325200.866400.566400.0550*
H4B0.416000.779500.564200.0550*
H60.508900.712100.628600.0430*
H7A0.709300.869800.634700.1080*
H7B0.645000.896900.591100.1080*
H7C0.706000.806400.599000.1080*
H8A0.403100.907600.670400.0960*
H8B0.219100.898000.644600.0960*
H8C0.383300.953400.628700.0960*
H9A0.670600.779500.681100.0610*
H9B0.482400.782800.706000.0610*
H10A0.664700.637000.681600.0690*
H10B0.656800.668900.726600.0690*
H120.368300.596400.648200.0440*
H13A0.176400.781300.701500.0690*
H13B0.017700.718200.691300.0690*
H13C0.042700.796300.664200.0690*
H14A0.185700.627300.748400.0900*
H14B0.307400.707100.747100.0900*
H14C0.381400.630000.770400.0900*
H15A0.045100.577900.695900.0640*
H15B0.046000.564700.648400.0640*
H16A0.262600.460100.654200.0820*
H16B0.093700.440100.683200.0820*
H18A0.541100.390300.733400.1780*
H18B0.524900.395300.685800.1780*
H18C0.375700.345900.710800.1780*
H190.310900.479400.778200.1050*
H20A0.016000.433300.742100.1540*
H20B0.020700.446900.790000.1540*
H3O0.376 (6)0.680 (2)0.4887 (11)0.0840*
H22A0.475300.563900.453800.0470*
H22B0.281400.523300.463600.0470*
H230.316500.548300.532000.0510*
H24A0.574500.612500.559600.0620*
H24B0.667600.622100.516600.0620*
H260.765900.497800.479800.0450*
H27A0.671400.405500.577000.1120*
H27B0.477600.448800.569900.1120*
H27C0.625200.487100.599800.1120*
H28A0.963900.479500.559500.1200*
H28B0.895800.565600.574000.1200*
H28C0.960800.552900.528800.1200*
H29A0.749000.339400.511200.0600*
H29B0.933900.391800.511200.0600*
H30A0.928900.398400.439800.0620*
H30B0.928700.306700.453400.0620*
H320.625500.462100.420900.0430*
H33A0.444500.345900.511400.0680*
H33B0.285500.365100.479800.0680*
H33C0.303300.417500.519500.0680*
H34A0.546400.264900.470100.0820*
H34B0.483600.248300.425100.0820*
H34C0.681100.218600.440200.0820*
H35A0.309500.361900.410500.0570*
H35B0.301800.457400.405900.0570*
H36A0.514500.454000.352700.0740*
H36B0.352300.392900.342100.0740*
H38A0.775000.401600.318000.1480*
H38B0.635600.346700.293200.1480*
H38C0.811500.307600.314300.1480*
H390.599000.207100.355700.1010*
H40A0.253800.271500.339200.1460*
H40B0.307700.176300.342400.1460*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0556 (13)0.0615 (14)0.0404 (12)0.0157 (11)0.0096 (10)0.0025 (10)
O20.0720 (15)0.0624 (15)0.0625 (14)0.0127 (13)0.0031 (12)0.0215 (12)
C10.0288 (13)0.0360 (15)0.0321 (14)0.0008 (11)0.0022 (11)0.0020 (11)
C20.0342 (15)0.0406 (15)0.0417 (15)0.0004 (12)0.0010 (12)0.0001 (12)
C30.0392 (15)0.0447 (16)0.0361 (15)0.0083 (13)0.0022 (12)0.0010 (12)
O30.0585 (14)0.0481 (13)0.0578 (13)0.0106 (11)0.0178 (11)0.0004 (10)
C40.0497 (18)0.0437 (17)0.0450 (16)0.0072 (14)0.0078 (14)0.0109 (13)
O40.0561 (13)0.0539 (12)0.0575 (13)0.0036 (10)0.0109 (11)0.0072 (11)
C50.0401 (16)0.0412 (17)0.0506 (17)0.0040 (13)0.0038 (13)0.0035 (13)
C60.0280 (13)0.0409 (15)0.0385 (14)0.0009 (12)0.0045 (12)0.0010 (12)
C70.054 (2)0.084 (2)0.079 (2)0.0273 (19)0.0005 (18)0.027 (2)
C80.079 (2)0.0426 (18)0.070 (2)0.0066 (17)0.0012 (19)0.0047 (16)
C90.0372 (16)0.065 (2)0.0509 (17)0.0135 (15)0.0063 (14)0.0059 (15)
C100.0403 (17)0.078 (2)0.0545 (18)0.0012 (17)0.0152 (14)0.0132 (17)
C110.0520 (18)0.0482 (17)0.0399 (16)0.0053 (15)0.0018 (14)0.0093 (13)
C120.0416 (16)0.0395 (15)0.0289 (13)0.0033 (12)0.0036 (12)0.0004 (11)
C130.0369 (15)0.0509 (18)0.0501 (17)0.0036 (14)0.0101 (13)0.0013 (14)
C140.076 (2)0.068 (2)0.0355 (16)0.0062 (18)0.0027 (16)0.0003 (15)
C150.066 (2)0.0467 (18)0.0465 (17)0.0170 (16)0.0032 (16)0.0043 (14)
C160.102 (3)0.0448 (19)0.057 (2)0.0143 (19)0.012 (2)0.0058 (15)
C170.103 (3)0.051 (2)0.060 (2)0.008 (2)0.005 (2)0.0181 (17)
C180.167 (5)0.063 (3)0.125 (4)0.036 (3)0.021 (4)0.027 (3)
C190.133 (4)0.065 (2)0.066 (2)0.013 (3)0.010 (3)0.022 (2)
C200.178 (6)0.118 (4)0.089 (3)0.063 (4)0.041 (4)0.004 (3)
C210.0268 (13)0.0368 (15)0.0363 (14)0.0016 (11)0.0019 (11)0.0078 (12)
C220.0325 (14)0.0433 (16)0.0407 (15)0.0019 (13)0.0002 (12)0.0056 (12)
C230.0424 (16)0.0436 (17)0.0413 (15)0.0005 (14)0.0107 (13)0.0045 (12)
C240.0532 (18)0.0572 (19)0.0453 (17)0.0051 (16)0.0053 (15)0.0095 (14)
C250.0435 (17)0.062 (2)0.0420 (17)0.0046 (15)0.0106 (15)0.0011 (14)
C260.0284 (14)0.0431 (16)0.0418 (15)0.0043 (12)0.0025 (12)0.0077 (12)
C270.096 (3)0.088 (3)0.0400 (18)0.006 (2)0.0099 (19)0.0103 (18)
C280.062 (2)0.094 (3)0.084 (3)0.003 (2)0.029 (2)0.026 (2)
C290.0309 (15)0.0564 (19)0.0633 (19)0.0026 (13)0.0155 (15)0.0046 (16)
C300.0325 (15)0.0507 (18)0.071 (2)0.0104 (13)0.0004 (15)0.0047 (15)
C310.0389 (15)0.0390 (16)0.0478 (16)0.0028 (13)0.0039 (13)0.0008 (13)
C320.0338 (14)0.0329 (14)0.0402 (14)0.0008 (12)0.0008 (12)0.0067 (12)
C330.0374 (16)0.0485 (17)0.0501 (17)0.0068 (13)0.0023 (13)0.0112 (14)
C340.0558 (18)0.0378 (16)0.069 (2)0.0038 (15)0.0042 (16)0.0059 (14)
C350.0494 (18)0.0487 (17)0.0452 (16)0.0060 (14)0.0115 (14)0.0012 (13)
C360.078 (2)0.064 (2)0.0438 (18)0.0015 (19)0.0134 (16)0.0016 (15)
C370.081 (2)0.063 (2)0.0471 (18)0.002 (2)0.0030 (18)0.0111 (16)
C380.128 (4)0.110 (3)0.058 (2)0.000 (3)0.029 (2)0.012 (2)
C390.110 (3)0.070 (3)0.073 (2)0.001 (2)0.013 (2)0.023 (2)
C400.137 (4)0.100 (4)0.129 (4)0.030 (3)0.050 (4)0.018 (3)
Geometric parameters (Å, º) top
O1—C31.436 (3)C18—H18A0.9600
O2—C111.447 (4)C19—H190.9300
O2—C171.440 (4)C20—H20A0.9300
O1—H1O0.80 (4)C20—H20B0.9300
C1—C61.555 (3)C21—C261.562 (3)
C1—C121.564 (4)C21—C321.559 (3)
C1—C21.534 (4)C21—C221.532 (3)
C1—C131.546 (4)C21—C331.537 (4)
C2—C31.520 (4)C22—C231.515 (4)
C3—C41.511 (4)C23—C241.520 (4)
O3—C231.437 (3)C24—C251.525 (4)
C4—C51.533 (4)C25—C271.538 (4)
O4—C371.443 (4)C25—C281.541 (5)
O4—C311.455 (3)C25—C261.551 (4)
C5—C71.541 (5)C26—C291.526 (4)
C5—C61.549 (4)C29—C301.527 (4)
C5—C81.534 (4)C30—C311.522 (4)
C6—C91.529 (4)C31—C321.532 (4)
C9—C101.524 (4)C31—C341.532 (4)
C10—C111.520 (4)C32—C351.528 (4)
C11—C121.540 (4)C35—C361.519 (4)
C11—C141.530 (4)C36—C371.528 (5)
C12—C151.522 (4)C37—C391.505 (5)
C15—C161.513 (4)C37—C381.518 (5)
C16—C171.530 (5)C39—C401.305 (7)
C17—C191.511 (6)C22—H22A0.9700
C17—C181.532 (6)C22—H22B0.9700
C19—C201.293 (8)C23—H230.9800
C2—H2A0.9700C24—H24A0.9700
C2—H2B0.9700C24—H24B0.9700
O3—H3O0.81 (4)C26—H260.9800
C3—H30.9800C27—H27A0.9600
C4—H4B0.9700C27—H27B0.9600
C4—H4A0.9700C27—H27C0.9600
C6—H60.9800C28—H28A0.9600
C7—H7B0.9600C28—H28B0.9600
C7—H7A0.9600C28—H28C0.9600
C7—H7C0.9600C29—H29A0.9700
C8—H8B0.9600C29—H29B0.9700
C8—H8A0.9600C30—H30A0.9700
C8—H8C0.9600C30—H30B0.9700
C9—H9B0.9700C32—H320.9800
C9—H9A0.9700C33—H33A0.9600
C10—H10B0.9700C33—H33B0.9600
C10—H10A0.9700C33—H33C0.9600
C12—H120.9800C34—H34A0.9600
C13—H13C0.9600C34—H34B0.9600
C13—H13A0.9600C34—H34C0.9600
C13—H13B0.9600C35—H35A0.9700
C14—H14C0.9600C35—H35B0.9700
C14—H14A0.9600C36—H36A0.9700
C14—H14B0.9600C36—H36B0.9700
C15—H15A0.9700C38—H38A0.9600
C15—H15B0.9700C38—H38B0.9600
C16—H16A0.9700C38—H38C0.9600
C16—H16B0.9700C39—H390.9300
C18—H18C0.9600C40—H40A0.9300
C18—H18B0.9600C40—H40B0.9300
C11—O2—C17119.5 (2)H20A—C20—H20B120.00
C3—O1—H1O110 (3)C19—C20—H20A120.00
C2—C1—C6107.9 (2)C22—C21—C26107.7 (2)
C2—C1—C12108.0 (2)C22—C21—C32108.10 (19)
C6—C1—C12106.05 (19)C26—C21—C32105.98 (19)
C6—C1—C13114.7 (2)C26—C21—C33114.4 (2)
C12—C1—C13111.6 (2)C32—C21—C33111.7 (2)
C2—C1—C13108.3 (2)C22—C21—C33108.8 (2)
C1—C2—C3114.6 (2)C21—C22—C23114.9 (2)
O1—C3—C2110.0 (2)O3—C23—C22109.8 (2)
O1—C3—C4111.5 (2)O3—C23—C24111.2 (2)
C2—C3—C4111.4 (2)C22—C23—C24111.9 (2)
C3—C4—C5114.8 (2)C23—C24—C25114.9 (2)
C31—O4—C37119.1 (2)C24—C25—C27110.9 (2)
C4—C5—C7106.7 (2)C24—C25—C28106.9 (3)
C4—C5—C8110.7 (2)C26—C25—C27114.7 (2)
C6—C5—C8114.9 (2)C26—C25—C28108.9 (2)
C7—C5—C8107.5 (2)C27—C25—C28107.3 (3)
C4—C5—C6107.9 (2)C24—C25—C26107.9 (2)
C6—C5—C7108.8 (2)C21—C26—C25116.3 (2)
C1—C6—C5116.4 (2)C25—C26—C29115.4 (2)
C5—C6—C9115.3 (2)C21—C26—C29111.2 (2)
C1—C6—C9111.3 (2)C26—C29—C30110.6 (2)
C6—C9—C10110.8 (2)C29—C30—C31112.2 (2)
C9—C10—C11112.6 (2)O4—C31—C32107.8 (2)
O2—C11—C12108.1 (2)O4—C31—C34109.6 (2)
O2—C11—C14109.3 (2)O4—C31—C30103.9 (2)
C10—C11—C14109.5 (2)C30—C31—C34109.0 (2)
C12—C11—C14116.4 (2)C32—C31—C34116.8 (2)
O2—C11—C10103.9 (2)C30—C31—C32109.2 (2)
C10—C11—C12108.9 (2)C21—C32—C31116.2 (2)
C1—C12—C11115.6 (2)C21—C32—C35116.4 (2)
C1—C12—C15117.3 (2)C31—C32—C35109.7 (2)
C11—C12—C15109.5 (2)C32—C35—C36108.5 (2)
C12—C15—C16108.8 (3)C35—C36—C37113.8 (3)
C15—C16—C17113.2 (3)O4—C37—C38103.8 (3)
O2—C17—C19110.7 (3)O4—C37—C39110.1 (3)
C16—C17—C18110.5 (3)C36—C37—C38110.2 (3)
O2—C17—C18103.5 (3)C36—C37—C39114.1 (3)
C18—C17—C19107.4 (3)C38—C37—C39107.4 (3)
C16—C17—C19113.6 (4)O4—C37—C36110.5 (2)
O2—C17—C16110.7 (3)C37—C39—C40128.2 (4)
C17—C19—C20128.0 (4)C21—C22—H22A109.00
C1—C2—H2A109.00C21—C22—H22B109.00
C3—C2—H2A109.00C23—C22—H22A108.00
C3—C2—H2B109.00C23—C22—H22B108.00
C1—C2—H2B108.00H22A—C22—H22B108.00
H2A—C2—H2B108.00O3—C23—H23108.00
C2—C3—H3108.00C22—C23—H23108.00
C4—C3—H3108.00C24—C23—H23108.00
O1—C3—H3108.00C23—C24—H24A109.00
C23—O3—H3O108 (3)C23—C24—H24B109.00
C3—C4—H4B109.00C25—C24—H24A109.00
C5—C4—H4A109.00C25—C24—H24B109.00
H4A—C4—H4B108.00H24A—C24—H24B108.00
C5—C4—H4B109.00C21—C26—H26104.00
C3—C4—H4A109.00C25—C26—H26104.00
C9—C6—H6104.00C29—C26—H26104.00
C1—C6—H6104.00C25—C27—H27A109.00
C5—C6—H6104.00C25—C27—H27B109.00
C5—C7—H7B109.00C25—C27—H27C109.00
C5—C7—H7A109.00H27A—C27—H27B109.00
H7A—C7—H7C109.00H27A—C27—H27C110.00
C5—C7—H7C109.00H27B—C27—H27C110.00
H7A—C7—H7B109.00C25—C28—H28A110.00
H7B—C7—H7C110.00C25—C28—H28B109.00
C5—C8—H8B109.00C25—C28—H28C109.00
C5—C8—H8C109.00H28A—C28—H28B109.00
H8A—C8—H8C109.00H28A—C28—H28C110.00
H8B—C8—H8C110.00H28B—C28—H28C109.00
H8A—C8—H8B109.00C26—C29—H29A110.00
C5—C8—H8A109.00C26—C29—H29B110.00
C6—C9—H9B109.00C30—C29—H29A110.00
C10—C9—H9B109.00C30—C29—H29B110.00
H9A—C9—H9B108.00H29A—C29—H29B108.00
C6—C9—H9A110.00C29—C30—H30A109.00
C10—C9—H9A109.00C29—C30—H30B109.00
C11—C10—H10A109.00C31—C30—H30A109.00
C9—C10—H10A109.00C31—C30—H30B109.00
C9—C10—H10B109.00H30A—C30—H30B108.00
H10A—C10—H10B108.00C21—C32—H32104.00
C11—C10—H10B109.00C31—C32—H32104.00
C11—C12—H12104.00C35—C32—H32104.00
C1—C12—H12104.00C21—C33—H33A109.00
C15—C12—H12104.00C21—C33—H33B110.00
C1—C13—H13A109.00C21—C33—H33C109.00
H13A—C13—H13B109.00H33A—C33—H33B109.00
C1—C13—H13B110.00H33A—C33—H33C110.00
H13B—C13—H13C110.00H33B—C33—H33C109.00
C1—C13—H13C109.00C31—C34—H34A110.00
H13A—C13—H13C109.00C31—C34—H34B109.00
C11—C14—H14B110.00C31—C34—H34C109.00
C11—C14—H14A109.00H34A—C34—H34B109.00
H14A—C14—H14C109.00H34A—C34—H34C109.00
C11—C14—H14C110.00H34B—C34—H34C110.00
H14A—C14—H14B109.00C32—C35—H35A110.00
H14B—C14—H14C109.00C32—C35—H35B110.00
C12—C15—H15B110.00C36—C35—H35A110.00
C16—C15—H15A110.00C36—C35—H35B110.00
H15A—C15—H15B108.00H35A—C35—H35B108.00
C16—C15—H15B110.00C35—C36—H36A109.00
C12—C15—H15A110.00C35—C36—H36B109.00
C15—C16—H16A109.00C37—C36—H36A109.00
C17—C16—H16A109.00C37—C36—H36B109.00
C17—C16—H16B109.00H36A—C36—H36B108.00
H16A—C16—H16B108.00C37—C38—H38A110.00
C15—C16—H16B109.00C37—C38—H38B109.00
C17—C18—H18C109.00C37—C38—H38C109.00
C17—C18—H18A109.00H38A—C38—H38B109.00
C17—C18—H18B109.00H38A—C38—H38C109.00
H18B—C18—H18C109.00H38B—C38—H38C110.00
H18A—C18—H18B110.00C37—C39—H39116.00
H18A—C18—H18C110.00C40—C39—H39116.00
C20—C19—H19116.00C39—C40—H40A120.00
C17—C19—H19116.00C39—C40—H40B120.00
C19—C20—H20B120.00H40A—C40—H40B120.00
C17—O2—C11—C10169.9 (2)C15—C16—C17—C1978.7 (4)
C17—O2—C11—C1254.3 (3)C15—C16—C17—C18160.6 (3)
C17—O2—C11—C1473.2 (3)C15—C16—C17—O246.6 (4)
C11—O2—C17—C1978.7 (4)C18—C17—C19—C20102.8 (5)
C11—O2—C17—C1648.2 (4)O2—C17—C19—C20145.0 (4)
C11—O2—C17—C18166.6 (3)C16—C17—C19—C2019.7 (5)
C12—C1—C2—C3165.9 (2)C32—C21—C22—C23165.4 (2)
C13—C1—C6—C568.4 (3)C33—C21—C26—C2568.0 (3)
C13—C1—C2—C373.1 (3)C33—C21—C22—C2373.2 (3)
C6—C1—C2—C351.7 (3)C26—C21—C22—C2351.3 (3)
C2—C1—C12—C1557.2 (3)C22—C21—C32—C3558.3 (3)
C13—C1—C6—C966.6 (3)C33—C21—C26—C2966.8 (3)
C2—C1—C12—C11171.2 (2)C22—C21—C32—C31170.2 (2)
C12—C1—C6—C957.1 (3)C32—C21—C26—C2956.7 (3)
C13—C1—C12—C1561.8 (3)C33—C21—C32—C3561.3 (3)
C6—C1—C12—C1155.8 (3)C26—C21—C32—C3155.0 (3)
C6—C1—C12—C15172.6 (2)C26—C21—C32—C35173.5 (2)
C13—C1—C12—C1169.8 (3)C33—C21—C32—C3170.2 (3)
C12—C1—C6—C5168.0 (2)C32—C21—C26—C25168.5 (2)
C2—C1—C6—C9172.6 (2)C22—C21—C26—C29172.2 (2)
C2—C1—C6—C552.5 (3)C22—C21—C26—C2553.0 (3)
C1—C2—C3—C453.9 (3)C21—C22—C23—C2452.8 (3)
C1—C2—C3—O1178.0 (2)C21—C22—C23—O3176.9 (2)
O1—C3—C4—C5177.3 (2)O3—C23—C24—C25176.2 (2)
C2—C3—C4—C554.1 (3)C22—C23—C24—C2553.0 (3)
C3—C4—C5—C874.5 (3)C23—C24—C25—C28168.7 (3)
C3—C4—C5—C7168.9 (2)C23—C24—C25—C2774.6 (3)
C3—C4—C5—C652.1 (3)C23—C24—C25—C2651.8 (3)
C37—O4—C31—C3255.5 (3)C27—C25—C26—C2170.9 (3)
C37—O4—C31—C30171.2 (2)C27—C25—C26—C2962.1 (3)
C37—O4—C31—C3472.5 (3)C24—C25—C26—C29173.8 (2)
C31—O4—C37—C38166.7 (3)C28—C25—C26—C2958.2 (3)
C31—O4—C37—C3978.5 (3)C28—C25—C26—C21168.9 (3)
C31—O4—C37—C3648.5 (3)C24—C25—C26—C2153.3 (3)
C7—C5—C6—C1167.9 (2)C25—C26—C29—C30164.0 (2)
C7—C5—C6—C958.9 (3)C21—C26—C29—C3060.8 (3)
C4—C5—C6—C9174.3 (2)C26—C29—C30—C3158.3 (3)
C8—C5—C6—C171.5 (3)C29—C30—C31—C3253.0 (3)
C8—C5—C6—C961.6 (3)C29—C30—C31—C3475.5 (3)
C4—C5—C6—C152.5 (3)C29—C30—C31—O4167.8 (2)
C5—C6—C9—C10164.3 (2)O4—C31—C32—C3559.4 (3)
C1—C6—C9—C1060.3 (3)C34—C31—C32—C2170.2 (3)
C6—C9—C10—C1157.8 (3)C30—C31—C32—C2153.9 (3)
C9—C10—C11—C1475.3 (3)C30—C31—C32—C35171.6 (2)
C9—C10—C11—C1253.1 (3)O4—C31—C32—C21166.0 (2)
C9—C10—C11—O2168.1 (2)C34—C31—C32—C3564.4 (3)
C10—C11—C12—C154.3 (3)C31—C32—C35—C3660.3 (3)
C10—C11—C12—C15170.6 (2)C21—C32—C35—C36165.2 (2)
O2—C11—C12—C1558.3 (3)C32—C35—C36—C3753.9 (3)
C14—C11—C12—C1565.0 (3)C35—C36—C37—O446.2 (4)
C14—C11—C12—C170.1 (3)C35—C36—C37—C38160.4 (3)
O2—C11—C12—C1166.5 (2)C35—C36—C37—C3978.6 (3)
C11—C12—C15—C1660.5 (3)O4—C37—C39—C40142.0 (4)
C1—C12—C15—C16165.3 (2)C36—C37—C39—C4017.0 (6)
C12—C15—C16—C1754.8 (4)C38—C37—C39—C40105.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O30.80 (4)1.99 (4)2.784 (3)170 (4)
O3—H3O···O1i0.81 (4)2.00 (4)2.804 (3)169 (4)
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Acknowledgements

The authors are indebted to the X-ray laboratory of Sinop University Scientific and Technological Applied and Research Center, Sinop, Turkey, for use of the X-ray diffractometer.

References

First citationBarberan, F. A. T., Nuñez, J. M. & Tomas, F. (1985). Phytochemistry, 24, 1285–1288.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuman, H. (2000). Sideritis L, in Flora of Turkey and East Aegean Islands (Supplement 2), Vol. 11, pp. 201–205. Edinburgh: University Press.  Google Scholar
First citationEvans, G. B. & Gainsford, G. J. (2011). Acta Cryst. E67, o2870.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFraga, B. M., Reina, M., Luis, J. G. & Rodriguez, M. L. (2003). Z. Naturforsch. Teil C, 58, 621–625.  CAS Google Scholar
First citationGonzález-Burgos, E., Carretero, M. E. & Gómez-Serranillos, M. P. (2011). J. Ethnopharmacol. 135, 209–225.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, J. J. P. (1985). MOPAC. QCPE Program 445. Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN 47405, USA.  Google Scholar
First citationTopçu, G., Gören, A. C., Kıliç, T., Kemal Yıldız, Y. & Tümen, G. (2002). Nat. Prod. Lett. 16, 33–37.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds