research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of μ-4-oxidobenzoato-κ2O1:O4-bis­­[bis­­(1,10-phenanthroline-κ2N,N′)copper(II)] bis­­(4-hy­dr­oxy­benzoate) 7.5-hydrate

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmaceutical and Chemical Engineering, Taizhou University, People's Republic of China
*Correspondence e-mail: sujr_tzu@foxmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 July 2016; accepted 31 August 2016; online 5 September 2016)

The title hydrated complex, [Cu2(C7H4O3)(C12H8N2)4](C7H5O3)2·7.5H2O, is composed of dinuclear CuII complex cations, noncoordinating 4-hy­droxy­benzoate anions and water mol­ecules of crystallization. In the dinuclear complex cation, the CuII ions are bridged by a 4-oxidobenzoate ligand and thus each metal ion is five-coordinated by two chelating 1,10-phenanthroline (phen) mol­ecules and one anionic O atom in a distorted trigonal-bipyramid geometry. In the crystal, aromatic ππ stacking occurs between phen rings of neighbouring dinuclear CuII complex cations, forming two-dimensional supra­molecular systems parallel to (100).

1. Chemical context

In some biological systems, ππ stacking between aromatic rings is correlated with the elctron-transfer process (Deisenhofer & Michel, 1989[Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.]). To study the effect of ππ stacking, the title complex, (I)[link], incorporating 1,10-phenanthroline (phen), has been prepared and its crystal structure is presented here.

[Scheme 1]

2. Structural commentary

The crystal structure of (I)[link] is composed of dinuclear CuII complex cations, noncoordinating 4-hy­droxy­benzoate anions and solvent water mol­ecules, as shown in Fig. 1[link]. The mol­ecular structure of the dinuclear CuII complex cation is shown in Fig. 2[link]. Two CuII atoms (Cu1 and Cu2) are bridged by one 4-oxidobenzoate anion through oxido and carb­oxy O atoms (O53 and O51, respectively), with a Cu1—O53 bond length of 1.941 (3) Å and a Cu2—O51 bond length of 1.979 (3) Å. Each CuII atom is five-coordinated, displaying a distorted trigonal-bipyramidal geometry (Table 1[link]). The Cu1 atom is coordinated by two chelating phen rings (N1, N2, N3 and N4) inter­secting at an angle of 71.35 (5)°. The out-of-plane Cu1—N1 and Cu—N3 bond lengths are 2.002 (3) and 2.027 (3) Å, respectively, which are shorter than the in-plane Cu1—N2 and Cu1—N4 bond lengths [2.051 (4) and 2.158 (4) Å, respectively]. The N1—Cu1—N3 bond angle is 176.67 (15)°. The coordination parameters of the Cu2 atom are similar to those of the Cu1 atom. The CuII atoms display apparently different coordination patterns from the CuII complex coordinated by phen and 4-hy­droxy­benzoate ligands (Su et al., 2005[Su, J.-R., Gu, J.-M. & Xu, D.-J. (2005). Acta Cryst. E61, m244-m246.]), in which the reported complex is mononuclear, with the CuII ion being six-coordinated by one chelating phen ligand and two chelating 4-hy­droxy­benzoate anions through the carb­oxylate O atoms, resulting in an elongated octa­hedral geometry.

Table 1
Selected geometric parameters (Å, °)

Cu1—O53 1.941 (3) Cu2—O51 1.979 (3)
Cu1—N1 2.002 (3) Cu2—N5 2.010 (4)
Cu1—N2 2.051 (4) Cu2—N6 2.197 (4)
Cu1—N3 2.027 (3) Cu2—N7 2.013 (4)
Cu1—N4 2.158 (4) Cu2—N8 2.079 (4)
       
N1—Cu1—N3 176.67 (15) N5—Cu2—N7 173.07 (16)
O53—Cu1—N2 155.19 (14) O51—Cu2—N5 96.10 (15)
O53—Cu1—N4 101.39 (14) O51—Cu2—N7 89.77 (15)
N2—Cu1—N4 103.05 (15) O51—Cu2—N8 152.80 (15)
O53—Cu1—N1 89.92 (14) N5—Cu2—N8 94.96 (16)
O53—Cu1—N3 93.37 (14) N7—Cu2—N8 81.32 (17)
N1—Cu1—N2 81.74 (14) O51—Cu2—N6 101.29 (16)
N3—Cu1—N2 95.05 (15) N5—Cu2—N6 79.62 (16)
N1—Cu1—N4 100.08 (14) N7—Cu2—N6 95.64 (16)
N3—Cu1—N4 79.74 (15) N8—Cu2—N6 105.12 (16)
[Figure 1]
Figure 1
The structures of the molecular entities of (I)[link], shown with 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
The mol­ecular structure of the dinuclear CuII complex cation in (I)[link], shown with 30% probability displacement ellipsoids. H atoms have been omitted for clarity. Dashed lines indicate hydrogen bonds.

3. Supra­molecular features

In the crystal of (I)[link], ππ stacking inter­actions occur between neighbouring phen ligands and generate a two-dimensional supra­molecular system in the (100) plane, as shown in Fig. 3[link]. The N1- and N3vii-phen [symmetry code: (vii) x, −y + [{1\over 2}], z + [{1\over 2}]] ligands are nearly parallel, the dihedral angle being 5.00 (11)° and the shortest distance between the centroids of the aromatic rings (N1- and N3vii-rings) being 3.647 (3) Å. These findings indicate ππ stacking between the N1- and N3vii-phen ligands of neighbouring complexes. The same is true for the N5- and C41viii-phen [symmetry code: (viii) x, −y − [{1\over 2}], z + [{1\over 2}]] ligands, the dihedral angle being 8.48 (13)° and the shortest distance between the centroids of the aromatic rings (N5- and C41viii-rings) being 3.671 (3) Å.

[Figure 3]
Figure 3
The ππ stacking (dashed lines) between neighbouring dinuclear CuII complex cations, forming a two-dimensional supra­molecular system parallel to (100). H atoms have been omitted for clarity. [Symmetry codes: (vii) x, −y + [{1\over 2}], z + [{1\over 2}]; (viii) x, −y − [{1\over 2}], z + [{1\over 2}].]

The mol­ecular packing of (I)[link], as shown in Fig. 4[link], displays alternating layers along the a axis, one layer consisting of dinuclear CuII complex cations (complex-layer), the other consisting of noncoordinating 4-hy­droxy­benzoate anions and solvent water mol­ecules (solvent-layer). Abundant hydrogen-bonding inter­actions occur within the solvent-layer and among the solvent- and complex-layers (Table 2[link]). The H atoms on O6W, O7W and O8W were not assigned in the structure, the separations [O6W⋯O7W = 2.729 (8) Å and O8W⋯O73 2.88 (2) Å] suggest inter­molecular hydrogen bonding between atoms O6W and O7W, and between O8W and O73.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O53 0.97 1.90 2.819 (5) 157
O1W—H1B⋯O61i 1.00 1.76 2.758 (5) 169
O2W—H2A⋯O61i 0.97 1.75 2.708 (5) 169
O2W—H2B⋯O4Wii 0.83 2.04 2.843 (6) 160
O3W—H3A⋯O62iii 1.00 1.69 2.685 (5) 172
O3W—H3B⋯O62 1.00 1.84 2.731 (7) 147
O4W—H4A⋯O1W 1.01 1.79 2.756 (6) 160
O4W—H4B⋯O3W 0.86 1.94 2.750 (7) 157
O5W—H5A⋯O72 0.96 1.87 2.818 (8) 169
O5W—H5B⋯O6Wiv 0.97 1.84 2.779 (7) 164
O73—H73⋯O8W 0.82 2.15 2.88 (2) 148
O63—H63⋯O2W 0.82 1.85 2.638 (5) 161
C3—H3⋯O1Wi 0.93 2.59 3.240 (6) 127
C8—H8⋯O6W 0.93 2.48 3.371 (8) 162
C14—H14⋯O72 0.93 2.50 3.388 (10) 159
C21—H21⋯O4Wii 0.93 2.58 3.230 (8) 128
C25—H25⋯O52 0.93 2.47 3.033 (6) 119
C33—H33⋯O62v 0.93 2.55 3.247 (8) 132
C38—H38⋯O61iii 0.93 2.37 3.298 (8) 172
C65—H65⋯O63vi 0.93 2.49 3.410 (6) 172
C73—H71⋯O7Wiv 0.93 2.58 3.413 (13) 149
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+1, -y+1, -z.
[Figure 4]
Figure 4
A packing diagram showing alternating layers along the a axis, one layer consisting of dinuclear CuII complex cations, the other consisting of noncoordinating 4-hydroxybenzoate dianions and solvent water mol­ecules. H atoms have been omitted for clarity.

4. Synthesis and crystallization

Each reagent was available commercially and was of analytical grade. CuCl2·2H2O (0.17 g, 1 mmol), 4-hy­droxy­benzoic acid (0.28 g, 2 mmol), 1,10-phenanthroline (0.20 g, 1 mmol) and NaOH (0.16 g, 4 mmol) were dissolved in 20 ml water. The resulting solution was refluxed for 4 h and was then cooled to room temperature and filtered. Dark-green single crystals were obtained from the filtrate after five weeks.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The disordered water O8W atom was refined isotropically with a fixed occupacy of 0.5. Aromatic and hy­droxy H atoms were placed in calculated positions, with C—H = 0.93 Å and O—H = 0.82 Å, and were included in the final cycles of refinement in riding mode, with Uiso(H) = 1.2 and 1.5Ueq(parent), respectively. Water H atoms were located in difference Fourier map, and were refined with fixed positions and a fixed isotropic displacement parameter of 0.1 Å2. The H atoms of the water molecules O6W, O7W and O8W were not assigned. The peak corresponding to the maximum electron density in the difference Fourier map was close (1.01 Å) to atom O8W.

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(C7H4O3)(C12H8N2)4](C7H5O3)2·7.5H2O
Mr 1393.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 22.6830 (11), 16.6644 (6), 16.8388 (6)
β (°) 91.026 (3)
V3) 6364.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.75
Crystal size (mm) 0.45 × 0.40 × 0.30
 
Data collection
Diffractometer Xcalibur Atlas Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.929, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 27049, 11598, 7651
Rint 0.048
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.201, 1.03
No. of reflections 11598
No. of parameters 861
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.90, −0.56
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

µ-4-Oxidobenzoato-κ2O1:O4-bis[bis(1,10-phenanthroline-κ2N,N')copper(II)] bis(4-hydroxybenzoate) 7.5-hydrate top
Crystal data top
[Cu2(C7H4O3)(C12H8N2)4](C7H5O3)2·7.5H2OF(000) = 2884
Mr = 1393.33Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 22.6830 (11) ÅCell parameters from 5425 reflections
b = 16.6644 (6) Åθ = 3.2–29.4°
c = 16.8388 (6) ŵ = 0.75 mm1
β = 91.026 (3)°T = 296 K
V = 6364.0 (4) Å3Block, dark green
Z = 40.45 × 0.40 × 0.30 mm
Data collection top
Xcalibur Atlas Gemini ultra
diffractometer
11598 independent reflections
Radiation source: Enhance (Mo) X-ray Source7651 reflections with I > 2σ(I)
Detector resolution: 10.3592 pixels mm-1Rint = 0.048
ω scansθmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 2724
Tmin = 0.929, Tmax = 1.000k = 1620
27049 measured reflectionsl = 1620
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.201 w = 1/[σ2(Fo2) + (0.0916P)2 + 7.0203P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
11598 reflectionsΔρmax = 0.90 e Å3
861 parametersΔρmin = 0.56 e Å3
Special details top

Experimental. Absorption correction: CrysAlis PRO, Agilent Technologies, Version 1.171.35.11 (release 16-05-2011 CrysAlis171 .NET) (compiled May 16 2011,17:55:39) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.28079 (2)0.31771 (3)0.36174 (3)0.03912 (18)
Cu20.21227 (3)0.25364 (4)0.35545 (3)0.04569 (19)
O510.25057 (16)0.1490 (2)0.3772 (2)0.0555 (9)
O520.16596 (18)0.0964 (2)0.3379 (2)0.0705 (11)
O530.32159 (14)0.21783 (19)0.34046 (17)0.0449 (8)
C510.2467 (2)0.0085 (3)0.3632 (3)0.0442 (11)
C520.2127 (2)0.0605 (3)0.3706 (3)0.0453 (11)
H520.17230.05540.37760.054*
C530.2368 (2)0.1362 (3)0.3678 (2)0.0423 (11)
H530.21300.18070.37620.051*
C540.2969 (2)0.1473 (3)0.3527 (2)0.0403 (11)
C550.3326 (2)0.0770 (3)0.3476 (3)0.0450 (11)
H550.37290.08180.34030.054*
C560.3070 (2)0.0013 (3)0.3535 (3)0.0474 (12)
H560.33100.04390.35090.057*
C570.2179 (2)0.0904 (3)0.3594 (2)0.0468 (12)
N10.30647 (16)0.3111 (2)0.4759 (2)0.0388 (9)
N20.21591 (17)0.3878 (2)0.4091 (2)0.0425 (9)
N30.25177 (17)0.3299 (2)0.2478 (2)0.0416 (9)
N40.34316 (17)0.4048 (2)0.3191 (2)0.0409 (9)
N50.15784 (18)0.2504 (2)0.4483 (2)0.0439 (9)
N60.2601 (2)0.3322 (2)0.4393 (2)0.0531 (11)
N70.26698 (18)0.2714 (2)0.2643 (2)0.0471 (10)
N80.15934 (19)0.3302 (2)0.2877 (2)0.0475 (10)
C10.3531 (2)0.2736 (3)0.5068 (3)0.0452 (11)
H10.37790.24560.47320.054*
C20.3660 (2)0.2747 (3)0.5880 (3)0.0480 (12)
H20.39900.24770.60790.058*
C30.3305 (2)0.3153 (3)0.6377 (3)0.0517 (13)
H30.33910.31610.69190.062*
C40.2808 (2)0.3563 (3)0.6076 (3)0.0454 (11)
C50.2391 (3)0.3988 (3)0.6544 (3)0.0596 (15)
H50.24520.40200.70910.071*
C60.1913 (3)0.4342 (3)0.6214 (3)0.0579 (14)
H60.16420.45930.65390.069*
C70.1815 (2)0.4341 (3)0.5370 (3)0.0477 (12)
C80.1348 (2)0.4741 (3)0.4984 (4)0.0622 (15)
H80.10730.50280.52730.075*
C90.1304 (3)0.4703 (4)0.4179 (4)0.0681 (16)
H90.09990.49700.39130.082*
C100.1714 (2)0.4265 (3)0.3746 (3)0.0560 (13)
H100.16730.42440.31960.067*
C110.2211 (2)0.3924 (3)0.4898 (3)0.0389 (10)
C120.2711 (2)0.3523 (3)0.5256 (2)0.0380 (10)
C130.2056 (2)0.2941 (3)0.2141 (3)0.0513 (12)
H130.18170.26210.24530.062*
C140.1915 (3)0.3025 (4)0.1335 (3)0.0605 (14)
H140.15870.27670.11160.073*
C150.2262 (3)0.3486 (4)0.0876 (3)0.0611 (15)
H150.21680.35510.03400.073*
C160.2755 (2)0.3862 (3)0.1196 (3)0.0510 (13)
C170.3165 (3)0.4348 (4)0.0758 (3)0.0648 (16)
H170.31040.44120.02140.078*
C180.3629 (3)0.4709 (4)0.1108 (3)0.0683 (17)
H180.38890.50040.08010.082*
C190.3732 (2)0.4649 (3)0.1948 (3)0.0546 (13)
C200.4194 (3)0.5043 (3)0.2362 (4)0.0666 (16)
H200.44520.53760.20930.080*
C210.4259 (2)0.4930 (3)0.3147 (4)0.0627 (15)
H210.45610.51890.34260.075*
C220.3875 (2)0.4429 (3)0.3546 (3)0.0509 (12)
H220.39330.43570.40890.061*
C230.3358 (2)0.4162 (3)0.2396 (3)0.0416 (11)
C240.2863 (2)0.3766 (3)0.2021 (2)0.0422 (11)
C250.1075 (2)0.2109 (3)0.4523 (3)0.0552 (13)
H250.09480.18150.40830.066*
C260.0724 (3)0.2114 (4)0.5202 (3)0.0637 (15)
H260.03720.18280.52080.076*
C270.0901 (3)0.2538 (4)0.5846 (3)0.0639 (16)
H270.06710.25480.62970.077*
C280.1432 (3)0.2959 (3)0.5833 (3)0.0558 (14)
C290.1664 (3)0.3405 (4)0.6497 (3)0.0697 (18)
H290.14490.34370.69600.084*
C300.2190 (4)0.3780 (4)0.6459 (3)0.0734 (19)
H300.23370.40470.69060.088*
C310.2526 (3)0.3777 (3)0.5754 (3)0.0567 (14)
C320.3070 (3)0.4161 (4)0.5678 (4)0.079 (2)
H320.32330.44430.61060.095*
C330.3362 (3)0.4122 (4)0.4980 (5)0.082 (2)
H330.37250.43740.49250.098*
C340.3107 (3)0.3700 (4)0.4355 (4)0.0733 (17)
H340.33070.36840.38780.088*
C350.2311 (2)0.3354 (3)0.5093 (3)0.0482 (12)
C360.1758 (2)0.2933 (3)0.5137 (3)0.0470 (12)
C370.3202 (2)0.2411 (3)0.2541 (3)0.0568 (14)
H370.33620.20740.29290.068*
C380.3530 (3)0.2579 (4)0.1875 (4)0.0665 (16)
H380.39040.23590.18260.080*
C390.3308 (3)0.3062 (4)0.1292 (4)0.0655 (15)
H390.35300.31750.08470.079*
C400.2741 (3)0.3392 (3)0.1368 (3)0.0550 (13)
C410.2453 (3)0.3883 (3)0.0788 (3)0.0635 (15)
H410.26370.39840.03090.076*
C420.1923 (3)0.4201 (4)0.0919 (3)0.0692 (17)
H420.17550.45360.05360.083*
C430.1599 (3)0.4042 (3)0.1637 (3)0.0569 (14)
C440.1043 (3)0.4333 (4)0.1801 (4)0.0706 (17)
H440.08550.46800.14470.085*
C450.0771 (3)0.4111 (4)0.2480 (4)0.0736 (18)
H450.03970.43040.25940.088*
C460.1062 (2)0.3589 (3)0.3002 (3)0.0599 (14)
H460.08720.34360.34620.072*
C470.1866 (2)0.3534 (3)0.2202 (3)0.0461 (11)
C480.2441 (2)0.3208 (3)0.2068 (3)0.0470 (12)
O610.51842 (17)0.1737 (2)0.1530 (2)0.0586 (9)
O620.5244 (2)0.0993 (2)0.0439 (2)0.0754 (12)
O630.5268 (2)0.4457 (2)0.1098 (2)0.0846 (14)
H630.53520.43510.15610.127*
C610.5215 (2)0.2393 (3)0.0278 (3)0.0455 (11)
C620.5337 (3)0.2353 (3)0.0539 (3)0.0571 (14)
H620.54050.18540.07710.068*
C630.5359 (3)0.3023 (3)0.1005 (3)0.0603 (14)
H63A0.54470.29800.15450.072*
C640.5248 (3)0.3771 (3)0.0665 (3)0.0582 (14)
C650.5116 (3)0.3817 (3)0.0132 (3)0.0624 (15)
H650.50360.43140.03610.075*
C660.5101 (3)0.3140 (3)0.0599 (3)0.0553 (13)
H660.50120.31860.11380.066*
C670.5211 (2)0.1660 (3)0.0794 (3)0.0497 (12)
O730.0847 (3)0.1727 (5)0.4492 (4)0.159 (3)
H730.09010.12400.44880.238*
O710.0240 (3)0.3687 (4)0.1367 (4)0.135 (2)
O720.0528 (3)0.2498 (4)0.0767 (5)0.125 (2)
C710.0508 (3)0.2611 (5)0.2203 (7)0.104 (3)
C720.0645 (4)0.1836 (6)0.2302 (6)0.110 (3)
H720.06740.15080.18580.132*
C730.0747 (4)0.1501 (6)0.3063 (6)0.121 (3)
H710.08300.09560.31140.145*
C740.0723 (4)0.1985 (6)0.3739 (7)0.110 (3)
C750.0613 (4)0.2808 (7)0.3649 (7)0.118 (3)
H750.06220.31460.40890.141*
C760.0485 (4)0.3131 (7)0.2862 (6)0.115 (3)
H760.03900.36700.27950.138*
C770.0414 (4)0.2948 (7)0.1392 (6)0.109 (3)
O1W0.42849 (17)0.2505 (2)0.2640 (2)0.0635 (10)
O2W0.5730 (2)0.4352 (2)0.2543 (2)0.0740 (11)
O3W0.4390 (2)0.0531 (2)0.0588 (3)0.0781 (12)
O4W0.4567 (2)0.0978 (2)0.2146 (2)0.0856 (14)
O5W0.0116 (2)0.1084 (3)0.0453 (3)0.0922 (14)
O6W0.0242 (2)0.5351 (3)0.6151 (3)0.1036 (16)
O7W0.0604 (3)0.5505 (5)0.7698 (4)0.153 (3)
O8W0.0634 (10)0.0074 (14)0.4893 (13)0.227 (8)*0.5
H1A0.39870.23330.30130.100*
H1B0.46020.27360.29960.100*
H2A0.55170.40180.29090.100*
H2B0.57140.48510.25670.100*
H3A0.45490.00300.05760.100*
H3B0.47250.08480.03770.100*
H4A0.45640.15560.23170.100*
H4B0.44750.09700.16500.100*
H5A0.01370.15240.05980.100*
H5B0.00420.05640.06020.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0415 (3)0.0474 (3)0.0285 (3)0.0009 (2)0.0005 (2)0.0004 (2)
Cu20.0418 (4)0.0512 (4)0.0442 (3)0.0054 (3)0.0042 (3)0.0018 (3)
O510.054 (2)0.053 (2)0.059 (2)0.0086 (18)0.0087 (17)0.0072 (18)
O520.061 (3)0.074 (3)0.076 (3)0.020 (2)0.023 (2)0.018 (2)
O530.049 (2)0.0449 (18)0.0413 (17)0.0024 (15)0.0074 (14)0.0023 (15)
C510.052 (3)0.046 (3)0.034 (2)0.006 (2)0.004 (2)0.000 (2)
C520.039 (3)0.060 (3)0.038 (2)0.002 (2)0.005 (2)0.002 (2)
C530.044 (3)0.049 (3)0.035 (2)0.001 (2)0.0104 (19)0.002 (2)
C540.052 (3)0.048 (3)0.0215 (19)0.014 (2)0.0012 (18)0.0006 (19)
C550.037 (3)0.050 (3)0.047 (3)0.003 (2)0.009 (2)0.006 (2)
C560.050 (3)0.047 (3)0.045 (3)0.001 (2)0.006 (2)0.006 (2)
C570.048 (3)0.070 (3)0.023 (2)0.001 (3)0.004 (2)0.001 (2)
N10.037 (2)0.049 (2)0.0297 (18)0.0019 (17)0.0010 (15)0.0002 (16)
N20.040 (2)0.053 (2)0.0348 (19)0.0025 (18)0.0009 (16)0.0042 (18)
N30.041 (2)0.054 (2)0.0300 (18)0.0006 (18)0.0007 (16)0.0032 (17)
N40.043 (2)0.045 (2)0.0343 (19)0.0016 (18)0.0009 (16)0.0006 (17)
N50.038 (2)0.050 (2)0.044 (2)0.0034 (18)0.0007 (17)0.0018 (18)
N60.053 (3)0.053 (2)0.053 (2)0.005 (2)0.001 (2)0.004 (2)
N70.045 (2)0.052 (2)0.045 (2)0.0036 (19)0.0054 (18)0.0035 (19)
N80.049 (3)0.046 (2)0.048 (2)0.0048 (19)0.0017 (19)0.0075 (19)
C10.042 (3)0.048 (3)0.045 (3)0.004 (2)0.002 (2)0.001 (2)
C20.041 (3)0.056 (3)0.047 (3)0.002 (2)0.009 (2)0.007 (2)
C30.059 (3)0.064 (3)0.032 (2)0.009 (3)0.007 (2)0.008 (2)
C40.055 (3)0.048 (3)0.033 (2)0.008 (2)0.000 (2)0.004 (2)
C50.085 (4)0.063 (3)0.031 (2)0.000 (3)0.012 (3)0.005 (2)
C60.067 (4)0.054 (3)0.053 (3)0.006 (3)0.023 (3)0.009 (3)
C70.048 (3)0.048 (3)0.048 (3)0.000 (2)0.012 (2)0.001 (2)
C80.050 (3)0.058 (3)0.079 (4)0.011 (3)0.011 (3)0.004 (3)
C90.051 (4)0.069 (4)0.085 (4)0.019 (3)0.008 (3)0.002 (3)
C100.052 (3)0.066 (3)0.050 (3)0.004 (3)0.008 (2)0.005 (3)
C110.039 (3)0.039 (2)0.039 (2)0.003 (2)0.0034 (19)0.003 (2)
C120.040 (3)0.040 (2)0.034 (2)0.005 (2)0.0043 (19)0.003 (2)
C130.051 (3)0.061 (3)0.041 (3)0.008 (3)0.005 (2)0.006 (2)
C140.057 (4)0.077 (4)0.047 (3)0.007 (3)0.013 (3)0.011 (3)
C150.071 (4)0.079 (4)0.033 (3)0.016 (3)0.015 (3)0.005 (3)
C160.058 (3)0.060 (3)0.035 (2)0.016 (3)0.005 (2)0.001 (2)
C170.085 (5)0.071 (4)0.039 (3)0.023 (3)0.010 (3)0.020 (3)
C180.074 (4)0.068 (4)0.064 (4)0.007 (3)0.026 (3)0.030 (3)
C190.052 (3)0.049 (3)0.063 (3)0.007 (2)0.010 (3)0.019 (3)
C200.047 (3)0.060 (3)0.093 (5)0.006 (3)0.018 (3)0.024 (3)
C210.045 (3)0.063 (3)0.080 (4)0.010 (3)0.001 (3)0.005 (3)
C220.046 (3)0.053 (3)0.053 (3)0.000 (2)0.005 (2)0.000 (2)
C230.040 (3)0.040 (2)0.044 (3)0.008 (2)0.005 (2)0.008 (2)
C240.050 (3)0.045 (3)0.032 (2)0.012 (2)0.002 (2)0.001 (2)
C250.045 (3)0.066 (3)0.056 (3)0.005 (3)0.001 (2)0.004 (3)
C260.047 (3)0.082 (4)0.062 (4)0.008 (3)0.007 (3)0.008 (3)
C270.061 (4)0.078 (4)0.053 (3)0.025 (3)0.018 (3)0.013 (3)
C280.073 (4)0.056 (3)0.038 (3)0.021 (3)0.002 (2)0.007 (2)
C290.115 (6)0.058 (3)0.037 (3)0.019 (4)0.007 (3)0.002 (3)
C300.125 (6)0.053 (3)0.042 (3)0.001 (4)0.018 (3)0.002 (3)
C310.081 (4)0.042 (3)0.046 (3)0.007 (3)0.018 (3)0.001 (2)
C320.101 (6)0.062 (4)0.074 (4)0.006 (4)0.038 (4)0.003 (3)
C330.069 (4)0.077 (4)0.098 (5)0.023 (4)0.026 (4)0.002 (4)
C340.058 (4)0.076 (4)0.085 (4)0.010 (3)0.005 (3)0.010 (3)
C350.053 (3)0.041 (3)0.050 (3)0.007 (2)0.010 (2)0.004 (2)
C360.058 (3)0.045 (3)0.038 (2)0.013 (2)0.001 (2)0.001 (2)
C370.043 (3)0.065 (3)0.062 (3)0.009 (3)0.004 (3)0.001 (3)
C380.051 (4)0.077 (4)0.072 (4)0.003 (3)0.016 (3)0.008 (3)
C390.062 (4)0.068 (4)0.067 (4)0.009 (3)0.021 (3)0.006 (3)
C400.058 (4)0.057 (3)0.050 (3)0.015 (3)0.008 (2)0.002 (3)
C410.075 (4)0.062 (3)0.054 (3)0.012 (3)0.005 (3)0.003 (3)
C420.088 (5)0.068 (4)0.052 (3)0.009 (3)0.013 (3)0.011 (3)
C430.059 (4)0.049 (3)0.062 (3)0.002 (3)0.015 (3)0.000 (3)
C440.067 (4)0.072 (4)0.072 (4)0.014 (3)0.017 (3)0.007 (3)
C450.056 (4)0.077 (4)0.086 (4)0.027 (3)0.011 (3)0.008 (4)
C460.049 (3)0.070 (4)0.061 (3)0.010 (3)0.005 (3)0.009 (3)
C470.052 (3)0.042 (3)0.044 (3)0.002 (2)0.005 (2)0.006 (2)
C480.054 (3)0.041 (3)0.046 (3)0.005 (2)0.002 (2)0.007 (2)
O610.064 (3)0.052 (2)0.059 (2)0.0041 (18)0.0006 (18)0.0072 (18)
O620.106 (4)0.038 (2)0.083 (3)0.005 (2)0.003 (2)0.002 (2)
O630.138 (4)0.050 (2)0.066 (3)0.016 (2)0.007 (2)0.010 (2)
C610.041 (3)0.041 (3)0.055 (3)0.000 (2)0.005 (2)0.002 (2)
C620.068 (4)0.038 (3)0.065 (3)0.000 (2)0.001 (3)0.005 (3)
C630.072 (4)0.060 (3)0.048 (3)0.002 (3)0.003 (3)0.003 (3)
C640.077 (4)0.042 (3)0.056 (3)0.007 (3)0.004 (3)0.001 (3)
C650.091 (5)0.040 (3)0.057 (3)0.006 (3)0.000 (3)0.003 (3)
C660.068 (4)0.047 (3)0.051 (3)0.003 (3)0.000 (3)0.007 (2)
C670.041 (3)0.041 (3)0.067 (4)0.001 (2)0.003 (2)0.004 (3)
O730.125 (6)0.246 (9)0.106 (5)0.083 (6)0.012 (4)0.027 (5)
O710.131 (6)0.113 (5)0.160 (6)0.001 (4)0.008 (4)0.019 (4)
O720.098 (5)0.127 (5)0.148 (6)0.019 (4)0.044 (4)0.001 (4)
C710.056 (5)0.095 (6)0.160 (9)0.008 (4)0.017 (5)0.029 (6)
C720.087 (6)0.109 (7)0.135 (8)0.004 (5)0.017 (5)0.013 (6)
C730.102 (7)0.127 (7)0.132 (8)0.027 (6)0.026 (6)0.043 (7)
C740.078 (6)0.115 (7)0.137 (8)0.009 (5)0.006 (5)0.001 (7)
C750.075 (6)0.131 (8)0.147 (9)0.004 (5)0.019 (5)0.037 (7)
C760.088 (6)0.154 (9)0.103 (7)0.018 (6)0.027 (5)0.010 (7)
C770.066 (5)0.133 (8)0.128 (8)0.020 (5)0.019 (5)0.015 (7)
O1W0.055 (2)0.078 (3)0.058 (2)0.0063 (19)0.0042 (18)0.0151 (19)
O2W0.090 (3)0.066 (2)0.066 (2)0.008 (2)0.017 (2)0.001 (2)
O3W0.089 (3)0.055 (2)0.089 (3)0.007 (2)0.001 (2)0.011 (2)
O4W0.112 (4)0.069 (3)0.075 (3)0.035 (3)0.009 (3)0.002 (2)
O5W0.079 (3)0.077 (3)0.120 (4)0.003 (2)0.010 (3)0.004 (3)
O6W0.082 (4)0.095 (3)0.134 (4)0.008 (3)0.004 (3)0.020 (3)
O7W0.136 (6)0.208 (7)0.115 (5)0.034 (5)0.030 (4)0.005 (5)
Geometric parameters (Å, º) top
Cu1—O531.941 (3)C25—C261.406 (8)
Cu1—N12.002 (3)C25—H250.9300
Cu1—N22.051 (4)C26—C271.349 (8)
Cu1—N32.027 (3)C26—H260.9300
Cu1—N42.158 (4)C27—C281.394 (8)
Cu2—O511.979 (3)C27—H270.9300
Cu2—N52.010 (4)C28—C361.399 (7)
Cu2—N62.197 (4)C28—C291.435 (8)
Cu2—N72.013 (4)C29—C301.349 (9)
Cu2—N82.079 (4)C29—H290.9300
O51—C571.259 (6)C30—C311.422 (9)
O52—C571.230 (6)C30—H300.9300
O53—C541.320 (5)C31—C351.397 (7)
C51—C521.392 (7)C31—C321.399 (9)
C51—C561.392 (7)C32—C331.361 (10)
C51—C571.514 (7)C32—H320.9300
C52—C531.375 (7)C33—C341.384 (8)
C52—H520.9300C33—H330.9300
C53—C541.402 (7)C34—H340.9300
C53—H530.9300C35—C361.439 (7)
C54—C551.427 (7)C37—C381.384 (8)
C55—C561.393 (7)C37—H370.9300
C55—H550.9300C38—C391.359 (8)
C56—H560.9300C38—H380.9300
N1—C11.327 (6)C39—C401.406 (8)
N1—C121.356 (6)C39—H390.9300
N2—C101.323 (6)C40—C481.405 (7)
N2—C111.363 (5)C40—C411.423 (8)
N3—C131.324 (6)C41—C421.336 (9)
N3—C241.354 (6)C41—H410.9300
N4—C221.324 (6)C42—C431.450 (8)
N4—C231.361 (5)C42—H420.9300
N5—C251.320 (6)C43—C441.384 (8)
N5—C361.369 (6)C43—C471.403 (7)
N6—C341.313 (7)C44—C451.359 (9)
N6—C351.362 (7)C44—H440.9300
N7—C371.323 (6)C45—C461.395 (8)
N7—C481.367 (6)C45—H450.9300
N8—C461.316 (6)C46—H460.9300
N8—C471.360 (6)C47—C481.434 (7)
C1—C21.393 (6)O61—C671.246 (6)
C1—H10.9300O62—C671.263 (6)
C2—C31.354 (7)O63—C641.357 (6)
C2—H20.9300O63—H630.8200
C3—C41.406 (7)C61—C661.379 (7)
C3—H30.9300C61—C621.399 (7)
C4—C121.396 (6)C61—C671.500 (7)
C4—C51.430 (7)C62—C631.365 (7)
C5—C61.345 (8)C62—H620.9300
C5—H50.9300C63—C641.392 (7)
C6—C71.436 (7)C63—H63A0.9300
C6—H60.9300C64—C651.372 (7)
C7—C111.396 (6)C65—C661.375 (7)
C7—C81.402 (7)C65—H650.9300
C8—C91.359 (8)C66—H660.9300
C8—H80.9300O73—C741.363 (11)
C9—C101.397 (8)O73—H730.8200
C9—H90.9300O71—C771.294 (12)
C10—H100.9300O72—C771.321 (12)
C11—C121.439 (6)C71—C721.339 (11)
C13—C141.396 (7)C71—C761.410 (12)
C13—H130.9300C71—C771.487 (13)
C14—C151.352 (8)C72—C731.412 (13)
C14—H140.9300C72—H720.9300
C15—C161.382 (8)C73—C741.397 (12)
C15—H150.9300C73—H710.9300
C16—C241.417 (6)C74—C751.403 (13)
C16—C171.445 (8)C75—C761.454 (13)
C17—C181.341 (9)C75—H750.9300
C17—H170.9300C76—H760.9300
C18—C191.432 (8)O1W—H1A0.97
C18—H180.9300O1W—H1B1.00
C19—C231.404 (7)O2W—H2A0.97
C19—C201.410 (8)O2W—H2B0.83
C20—C211.342 (8)O3W—H3A1.00
C20—H200.9300O3W—H3B1.00
C21—C221.388 (7)O4W—H4A1.01
C21—H210.9300O4W—H4B0.86
C22—H220.9300O5W—H5A0.96
C23—C241.437 (7)O5W—H5B0.97
N1—Cu1—N3176.67 (15)N4—C22—C21123.3 (5)
O53—Cu1—N2155.19 (14)N4—C22—H22118.3
O53—Cu1—N4101.39 (14)C21—C22—H22118.3
N2—Cu1—N4103.05 (15)N4—C23—C19123.0 (4)
O53—Cu1—N189.92 (14)N4—C23—C24116.7 (4)
O53—Cu1—N393.37 (14)C19—C23—C24120.3 (4)
N1—Cu1—N281.74 (14)N3—C24—C16122.0 (4)
N3—Cu1—N295.05 (15)N3—C24—C23118.1 (4)
N1—Cu1—N4100.08 (14)C16—C24—C23119.9 (4)
N3—Cu1—N479.74 (15)N5—C25—C26122.8 (5)
N5—Cu2—N7173.07 (16)N5—C25—H25118.6
O51—Cu2—N596.10 (15)C26—C25—H25118.6
O51—Cu2—N789.77 (15)C27—C26—C25119.5 (6)
O51—Cu2—N8152.80 (15)C27—C26—H26120.3
N5—Cu2—N894.96 (16)C25—C26—H26120.3
N7—Cu2—N881.32 (17)C26—C27—C28119.7 (5)
O51—Cu2—N6101.29 (16)C26—C27—H27120.1
N5—Cu2—N679.62 (16)C28—C27—H27120.1
N7—Cu2—N695.64 (16)C27—C28—C36117.9 (5)
N8—Cu2—N6105.12 (16)C27—C28—C29123.7 (5)
C57—O51—Cu2112.6 (3)C36—C28—C29118.5 (6)
C54—O53—Cu1122.0 (3)C30—C29—C28121.1 (6)
C52—C51—C56117.5 (4)C30—C29—H29119.5
C52—C51—C57120.7 (4)C28—C29—H29119.5
C56—C51—C57121.7 (4)C29—C30—C31121.6 (5)
C53—C52—C51122.2 (4)C29—C30—H30119.2
C53—C52—H52118.9C31—C30—H30119.2
C51—C52—H52118.9C35—C31—C32117.0 (6)
C52—C53—C54121.0 (4)C35—C31—C30118.9 (6)
C52—C53—H53119.5C32—C31—C30124.1 (6)
C54—C53—H53119.5C33—C32—C31120.0 (6)
O53—C54—C53124.2 (4)C33—C32—H32120.0
O53—C54—C55118.6 (4)C31—C32—H32120.0
C53—C54—C55117.2 (4)C32—C33—C34118.6 (6)
C56—C55—C54120.2 (4)C32—C33—H33120.7
C56—C55—H55119.9C34—C33—H33120.7
C54—C55—H55119.9N6—C34—C33124.1 (6)
C51—C56—C55121.7 (5)N6—C34—H34117.9
C51—C56—H56119.1C33—C34—H34117.9
C55—C56—H56119.1N6—C35—C31122.8 (5)
O52—C57—O51124.3 (5)N6—C35—C36117.3 (4)
O52—C57—C51119.7 (5)C31—C35—C36119.8 (5)
O51—C57—C51115.9 (4)N5—C36—C28122.4 (5)
C1—N1—C12118.2 (4)N5—C36—C35117.5 (4)
C1—N1—Cu1128.2 (3)C28—C36—C35120.1 (5)
C12—N1—Cu1113.5 (3)N7—C37—C38122.2 (5)
C10—N2—C11117.5 (4)N7—C37—H37118.9
C10—N2—Cu1130.8 (3)C38—C37—H37118.9
C11—N2—Cu1111.7 (3)C39—C38—C37120.5 (6)
C13—N3—C24118.5 (4)C39—C38—H38119.8
C13—N3—Cu1127.0 (3)C37—C38—H38119.8
C24—N3—Cu1114.4 (3)C38—C39—C40119.6 (5)
C22—N4—C23117.1 (4)C38—C39—H39120.2
C22—N4—Cu1132.1 (3)C40—C39—H39120.2
C23—N4—Cu1110.6 (3)C48—C40—C39116.6 (5)
C25—N5—C36117.7 (4)C48—C40—C41118.5 (5)
C25—N5—Cu2126.7 (3)C39—C40—C41124.9 (5)
C36—N5—Cu2115.6 (3)C42—C41—C40121.2 (5)
C34—N6—C35117.4 (5)C42—C41—H41119.4
C34—N6—Cu2132.7 (4)C40—C41—H41119.4
C35—N6—Cu2109.8 (3)C41—C42—C43122.4 (5)
C37—N7—C48118.3 (4)C41—C42—H42118.8
C37—N7—Cu2128.3 (4)C43—C42—H42118.8
C48—N7—Cu2113.4 (3)C44—C43—C47117.3 (5)
C46—N8—C47117.5 (4)C44—C43—C42125.5 (5)
C46—N8—Cu2131.0 (4)C47—C43—C42117.2 (5)
C47—N8—Cu2111.5 (3)C45—C44—C43120.2 (5)
N1—C1—C2122.1 (4)C45—C44—H44119.9
N1—C1—H1119.0C43—C44—H44119.9
C2—C1—H1119.0C44—C45—C46118.8 (6)
C3—C2—C1119.8 (5)C44—C45—H45120.6
C3—C2—H2120.1C46—C45—H45120.6
C1—C2—H2120.1N8—C46—C45123.4 (6)
C2—C3—C4120.1 (4)N8—C46—H46118.3
C2—C3—H3119.9C45—C46—H46118.3
C4—C3—H3119.9N8—C47—C43122.8 (5)
C12—C4—C3116.5 (4)N8—C47—C48116.9 (4)
C12—C4—C5118.3 (5)C43—C47—C48120.3 (5)
C3—C4—C5125.2 (4)N7—C48—C40122.8 (5)
C6—C5—C4121.7 (5)N7—C48—C47116.8 (4)
C6—C5—H5119.1C40—C48—C47120.3 (5)
C4—C5—H5119.1C64—O63—H63109.5
C5—C6—C7121.2 (5)C66—C61—C62117.5 (4)
C5—C6—H6119.4C66—C61—C67120.5 (5)
C7—C6—H6119.4C62—C61—C67122.0 (4)
C11—C7—C8117.5 (5)C63—C62—C61122.0 (5)
C11—C7—C6118.3 (5)C63—C62—H62119.0
C8—C7—C6124.2 (5)C61—C62—H62119.0
C9—C8—C7118.8 (5)C62—C63—C64119.5 (5)
C9—C8—H8120.6C62—C63—H63A120.3
C7—C8—H8120.6C64—C63—H63A120.3
C8—C9—C10120.4 (5)O63—C64—C65118.8 (5)
C8—C9—H9119.8O63—C64—C63122.0 (5)
C10—C9—H9119.8C65—C64—C63119.1 (5)
N2—C10—C9122.4 (5)C64—C65—C66121.0 (5)
N2—C10—H10118.8C64—C65—H65119.5
C9—C10—H10118.8C66—C65—H65119.5
N2—C11—C7123.4 (4)C65—C66—C61120.9 (5)
N2—C11—C12116.4 (4)C65—C66—H66119.6
C7—C11—C12120.2 (4)C61—C66—H66119.6
N1—C12—C4123.3 (4)O61—C67—O62124.3 (5)
N1—C12—C11116.6 (4)O61—C67—C61119.5 (4)
C4—C12—C11120.1 (4)O62—C67—C61116.2 (5)
N3—C13—C14122.5 (5)C74—O73—H73109.5
N3—C13—H13118.8C72—C71—C76120.4 (10)
C14—C13—H13118.8C72—C71—C77120.5 (11)
C15—C14—C13119.2 (5)C76—C71—C77119.0 (9)
C15—C14—H14120.4C71—C72—C73121.9 (10)
C13—C14—H14120.4C71—C72—H72119.0
C14—C15—C16120.7 (5)C73—C72—H72119.0
C14—C15—H15119.7C74—C73—C72120.2 (9)
C16—C15—H15119.7C74—C73—H71119.9
C15—C16—C24117.1 (5)C72—C73—H71119.9
C15—C16—C17125.4 (5)O73—C74—C73124.4 (10)
C24—C16—C17117.5 (5)O73—C74—C75116.3 (10)
C18—C17—C16122.4 (5)C73—C74—C75119.1 (10)
C18—C17—H17118.8C74—C75—C76119.5 (9)
C16—C17—H17118.8C74—C75—H75120.2
C17—C18—C19121.0 (5)C76—C75—H75120.2
C17—C18—H18119.5C71—C76—C75118.7 (10)
C19—C18—H18119.5C71—C76—H76120.7
C23—C19—C20117.0 (5)C75—C76—H76120.7
C23—C19—C18118.8 (5)O71—C77—O72125.2 (9)
C20—C19—C18124.1 (5)O71—C77—C71115.3 (10)
C21—C20—C19119.3 (5)O72—C77—C71119.4 (10)
C21—C20—H20120.3H1A—O1W—H1B103
C19—C20—H20120.3H2A—O2W—H2B121
C20—C21—C22120.1 (5)H3A—O3W—H3B102
C20—C21—H21119.9H4A—O4W—H4B107
C22—C21—H21119.9H5A—O5W—H5B114
C56—C51—C52—C530.5 (7)C26—C27—C28—C29178.1 (5)
C57—C51—C52—C53174.7 (4)C27—C28—C29—C30177.7 (5)
C51—C52—C53—C543.8 (7)C36—C28—C29—C301.2 (8)
Cu1—O53—C54—C5312.0 (5)C28—C29—C30—C312.5 (9)
Cu1—O53—C54—C55170.4 (3)C29—C30—C31—C351.9 (8)
C52—C53—C54—O53172.1 (4)C29—C30—C31—C32179.4 (6)
C52—C53—C54—C555.6 (6)C35—C31—C32—C330.9 (9)
O53—C54—C55—C56174.6 (4)C30—C31—C32—C33179.7 (6)
C53—C54—C55—C563.2 (6)C31—C32—C33—C340.2 (10)
C52—C51—C56—C552.9 (7)C35—N6—C34—C330.3 (9)
C57—C51—C56—C55172.2 (4)Cu2—N6—C34—C33174.4 (5)
C54—C55—C56—C511.0 (7)C32—C33—C34—N60.9 (10)
Cu2—O51—C57—O526.4 (6)C34—N6—C35—C310.9 (7)
Cu2—O51—C57—C51171.7 (3)Cu2—N6—C35—C31176.8 (4)
C52—C51—C57—O5222.8 (6)C34—N6—C35—C36179.5 (5)
C56—C51—C57—O52152.2 (5)Cu2—N6—C35—C363.6 (5)
C52—C51—C57—O51158.9 (4)C32—C31—C35—N61.6 (7)
C56—C51—C57—O5126.1 (6)C30—C31—C35—N6179.6 (5)
C12—N1—C1—C20.8 (7)C32—C31—C35—C36178.8 (5)
Cu1—N1—C1—C2179.3 (3)C30—C31—C35—C360.0 (7)
N1—C1—C2—C30.2 (7)C25—N5—C36—C280.4 (7)
C1—C2—C3—C40.1 (8)Cu2—N5—C36—C28179.0 (4)
C2—C3—C4—C120.1 (7)C25—N5—C36—C35179.3 (4)
C2—C3—C4—C5177.8 (5)Cu2—N5—C36—C350.2 (5)
C12—C4—C5—C60.3 (8)C27—C28—C36—N50.8 (7)
C3—C4—C5—C6177.6 (5)C29—C28—C36—N5178.2 (4)
C4—C5—C6—C72.9 (9)C27—C28—C36—C35179.7 (4)
C5—C6—C7—C113.4 (8)C29—C28—C36—C350.7 (7)
C5—C6—C7—C8175.8 (5)N6—C35—C36—N52.7 (6)
C11—C7—C8—C90.1 (8)C31—C35—C36—N5177.7 (4)
C6—C7—C8—C9179.3 (5)N6—C35—C36—C28178.4 (4)
C7—C8—C9—C100.7 (9)C31—C35—C36—C281.2 (7)
C11—N2—C10—C90.6 (8)C48—N7—C37—C380.0 (8)
Cu1—N2—C10—C9178.5 (4)Cu2—N7—C37—C38179.3 (4)
C8—C9—C10—N20.5 (9)N7—C37—C38—C390.7 (9)
C10—N2—C11—C71.5 (7)C37—C38—C39—C400.1 (9)
Cu1—N2—C11—C7177.8 (4)C38—C39—C40—C481.5 (8)
C10—N2—C11—C12177.7 (4)C38—C39—C40—C41177.8 (5)
Cu1—N2—C11—C123.0 (5)C48—C40—C41—C423.6 (8)
C8—C7—C11—N21.2 (7)C39—C40—C41—C42177.2 (6)
C6—C7—C11—N2179.5 (4)C40—C41—C42—C432.6 (9)
C8—C7—C11—C12177.9 (4)C41—C42—C43—C44178.2 (6)
C6—C7—C11—C121.3 (7)C41—C42—C43—C470.1 (8)
C1—N1—C12—C41.0 (7)C47—C43—C44—C451.4 (9)
Cu1—N1—C12—C4179.8 (3)C42—C43—C44—C45176.9 (6)
C1—N1—C12—C11179.8 (4)C43—C44—C45—C460.0 (9)
Cu1—N1—C12—C111.1 (5)C47—N8—C46—C450.1 (8)
C3—C4—C12—N10.7 (7)Cu2—N8—C46—C45179.2 (4)
C5—C4—C12—N1177.4 (4)C44—C45—C46—N80.7 (9)
C3—C4—C12—C11179.9 (4)C46—N8—C47—C431.6 (7)
C5—C4—C12—C111.8 (7)Cu2—N8—C47—C43179.1 (4)
N2—C11—C12—N12.8 (6)C46—N8—C47—C48179.2 (4)
C7—C11—C12—N1178.0 (4)Cu2—N8—C47—C481.5 (5)
N2—C11—C12—C4178.0 (4)C44—C43—C47—N82.3 (7)
C7—C11—C12—C41.2 (7)C42—C43—C47—N8176.1 (5)
C24—N3—C13—C140.2 (8)C44—C43—C47—C48179.7 (5)
Cu1—N3—C13—C14175.7 (4)C42—C43—C47—C481.4 (7)
N3—C13—C14—C150.2 (8)C37—N7—C48—C401.5 (7)
C13—C14—C15—C160.9 (9)Cu2—N7—C48—C40177.9 (4)
C14—C15—C16—C242.4 (8)C37—N7—C48—C47179.3 (4)
C14—C15—C16—C17178.1 (5)Cu2—N7—C48—C471.3 (5)
C15—C16—C17—C18178.6 (6)C39—C40—C48—N72.2 (7)
C24—C16—C17—C180.9 (8)C41—C40—C48—N7177.1 (4)
C16—C17—C18—C191.9 (9)C39—C40—C48—C47178.6 (4)
C17—C18—C19—C233.8 (8)C41—C40—C48—C472.1 (7)
C17—C18—C19—C20176.9 (6)N8—C47—C48—N71.9 (6)
C23—C19—C20—C210.7 (8)C43—C47—C48—N7179.6 (4)
C18—C19—C20—C21178.5 (5)N8—C47—C48—C40177.3 (4)
C19—C20—C21—C220.3 (9)C43—C47—C48—C400.3 (7)
C23—N4—C22—C210.1 (7)C66—C61—C62—C631.7 (8)
Cu1—N4—C22—C21174.9 (4)C67—C61—C62—C63178.0 (5)
C20—C21—C22—N40.7 (9)C61—C62—C63—C641.0 (9)
C22—N4—C23—C191.0 (7)C62—C63—C64—O63179.5 (6)
Cu1—N4—C23—C19174.9 (4)C62—C63—C64—C650.3 (9)
C22—N4—C23—C24178.1 (4)O63—C64—C65—C66178.9 (6)
Cu1—N4—C23—C246.0 (5)C63—C64—C65—C660.9 (9)
C20—C19—C23—N41.4 (7)C64—C65—C66—C610.2 (9)
C18—C19—C23—N4177.9 (5)C62—C61—C66—C651.0 (8)
C20—C19—C23—C24177.7 (5)C67—C61—C66—C65178.6 (5)
C18—C19—C23—C243.0 (7)C66—C61—C67—O619.9 (8)
C13—N3—C24—C161.8 (7)C62—C61—C67—O61169.7 (5)
Cu1—N3—C24—C16174.6 (3)C66—C61—C67—O62171.1 (5)
C13—N3—C24—C23179.0 (4)C62—C61—C67—O629.2 (8)
Cu1—N3—C24—C234.6 (5)C76—C71—C72—C732.7 (13)
C15—C16—C24—N32.9 (7)C77—C71—C72—C73178.8 (8)
C17—C16—C24—N3177.6 (4)C71—C72—C73—C741.9 (14)
C15—C16—C24—C23177.9 (5)C72—C73—C74—O73176.2 (8)
C17—C16—C24—C231.6 (7)C72—C73—C74—C751.7 (14)
N4—C23—C24—N31.3 (6)O73—C74—C75—C76179.2 (8)
C19—C23—C24—N3179.6 (4)C73—C74—C75—C764.3 (13)
N4—C23—C24—C16179.5 (4)C72—C71—C76—C750.0 (12)
C19—C23—C24—C160.3 (7)C77—C71—C76—C75176.2 (7)
C36—N5—C25—C260.0 (7)C74—C75—C76—C713.5 (12)
Cu2—N5—C25—C26179.4 (4)C72—C71—C77—O71174.9 (8)
N5—C25—C26—C270.1 (9)C76—C71—C77—O718.9 (11)
C25—C26—C27—C280.5 (8)C72—C71—C77—O727.1 (12)
C26—C27—C28—C360.9 (8)C76—C71—C77—O72169.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O530.971.902.819 (5)157
O1W—H1B···O61i1.001.762.758 (5)169
O2W—H2A···O61i0.971.752.708 (5)169
O2W—H2B···O4Wii0.832.042.843 (6)160
O3W—H3A···O62iii1.001.692.685 (5)172
O3W—H3B···O621.001.842.731 (7)147
O4W—H4A···O1W1.011.792.756 (6)160
O4W—H4B···O3W0.861.942.750 (7)157
O5W—H5A···O720.961.872.818 (8)169
O5W—H5B···O6Wiv0.971.842.779 (7)164
O73—H73···O8W0.822.152.88 (2)148
O63—H63···O2W0.821.852.638 (5)161
C3—H3···O1Wi0.932.593.240 (6)127
C8—H8···O6W0.932.483.371 (8)162
C14—H14···O720.932.503.388 (10)159
C21—H21···O4Wii0.932.583.230 (8)128
C25—H25···O520.932.473.033 (6)119
C33—H33···O62v0.932.553.247 (8)132
C38—H38···O61iii0.932.373.298 (8)172
C65—H65···O63vi0.932.493.410 (6)172
C73—H71···O7Wiv0.932.583.413 (13)149
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y+1/2, z1/2; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1, z.
 

Acknowledgements

This project was supported by Startup fund for scientific research, Taizhou University.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDeisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2170.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSu, J.-R., Gu, J.-M. & Xu, D.-J. (2005). Acta Cryst. E61, m244–m246.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds