research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A non-solvated form of [(Z)-O-methyl-N-(2-methyl­phen­yl)­thio­carbamato-κS](tri­phenyl­phosphane-κP)gold(I): crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aResearch Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 September 2016; accepted 10 September 2016; online 16 September 2016)

The title compound, [Au(C9H10NOS)(C18H15P)], features a near linear P—Au—S arrangement defined by phosphane P and thiol­ate S atoms with the minor distortion from the ideal [P—Au—S is 177.61 (2)°] being traced in part to the close intra­molecular approach of an O atom [Au⋯O = 3.040 (2) Å]. The packing features supra­molecular layers lying parallel to (011) sustained by a combination of C—H⋯π and ππ [inter-centroid distance = 3.8033 (17) Å] inter­actions. The mol­ecular structure and packing are compared with those determined for a previously reported hemi-methanol solvate [Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). CrystEngComm, 10, 548–564]. Relatively minor differences are noted in the conformations of the rings in the Au-containing mol­ecules. A Hirshfeld surface analysis confirms the similarity in the packing with the most notable differences relating to the formation of C—H⋯S contacts between the constituents of the solvate.

1. Chemical context

Triorganophosphanegold(I) carbonimido­thio­ates, i.e. mol­ecules of the general formula R3PAu[SC(OR′)=NR′′ for R, R′ and R′′ = alkyl, aryl, were first described in 1993 as were the crystal and mol­ecular structures of archetypal Ph3PAu[SC(OMe)=NPh (Hall et al., 1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]). Since then, approximately 70 crystal structures, including those of bident­ate phosphanes and bipodal analogues, have been described in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The inter­est in phosphanegold(I) carbonimido­thio­ates stems from two distinct considerations related to their relatively facile synthesis, their long-term stability and their readiness to crystallize, namely crystal engineering and evaluation for biological activity. In the former and reflecting their propensity to form diffraction-quality crystals, an unprecedented comprehensive series of compounds, R3PAu[SC(OMe)=NC6H4NO2-p] (R = Et, Cy and Ph), and bidentate phosphane analogues, Ph2P–(CH2)n–PPh2 for n = 1–4 and for when the bridge is ferrocenyl, enabled correlations between the formation of Au⋯Au (aurophilic) inter­actions and solid-state luminescence responses (Ho et al., 2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]). In another series of compounds where the diphosphane ligand was held constant, i.e. [(Ph2P(CH2)4PPh2){AuSC(OR′)=NC6H4Y-p}2] for R′ = Me, Et or iPr and Y = H, NO2 or Me, the packing was assessed in terms of delineating the influence of R′ and Y substituents (Ho & Tiekink, 2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]). In yet another systematic series of compounds, i.e. of the general formula R3PAu[SC(OMe)=NR′′], for R = Ph, o-tol, m-tol or p-tol, and R′′ = Ph, o-tol, m-tol, p-tol or C6H4NO2-p, it was possible to assess the impact of steric and electronic effects upon the formation of intra­molecular Au⋯O or Au⋯π(N-bound ring) inter­actions (Kuan et al., 2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). Over and above these studies, phosphanegold(I) carbonimido­thio­ates exhibit promising biological potential in the context of anti-cancer activity (Yeo, Ooi et al., 2013[Yeo, C. I., Ooi, K. K., Akim, A. Md., Ang, K. P., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). J. Inorg. Biochem. 127, 24-38.]; Ooi et al., 2015[Ooi, K. K., Yeo, C. I., Ang, K.-P., Akim, A. Md., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Biol. Inorg. Chem. 20, 855-873.]) and anti-microbial activity (Yeo, Sim et al., 2013[Yeo, C. I., Sim, J.-H., Khoo, C.-H., Goh, Z.-J., Ang, K.-P., Cheah, Y.-K., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Gold Bull. 46, 145-152.]). Just as systematic variations in the substituents influences the mol­ecular packing, this also influences biological effects so that, for example, different apoptotic mechanisms of cell death are induced when the O-bound R′ is varied. It was in fact during biological investigations that the title compound, Ph3PAu[SC(OMe)=N(o-tol)] (I)[link], was prepared once again, having been previously characterized as a 1:1 hemi-methanol solvate (I·0.5MeOH; Kuan et al., 2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). Herein, the crystal and mol­ecular structures of (I)[link] are described along with Hirshfeld surface analyses of both (I)[link] and (I·0.5MeOH).

[Scheme 1]

2. Structural commentary

The gold(I) atom in (I)[link], Fig. 1[link], exists within the anti­cipated linear geometry defined by thiol­ate-S1 and phosphane-P1 atoms. Support for the `thiol­ate-S1' assignment comes about by the elongation of the C1—S1 bond to 1.768 (3) Å, Table 1[link], c.f. 1.6700 (14) Å, and contraction of the C1—N1 bond in (I)[link] to 1.260 (3) Å, c.f. 1.3350 (15) Å in the structure of the non-coordinating mol­ecule, i.e. S=C(OMe)N(H)(o-tol) (Kuan et al., 2005[Kuan, F. S., Tadbuppa, P. & Tiekink, E. R. T. (2005). Z. Kristallogr. New Cryst. Struct. 220, 393-394.]). The small deviation from linearity about the gold(I) atom [P—Au—S = 177.61 (2)°] may be related to the close approach of the O1 atom, Au⋯O1 is 3.040 (2)°, as the carbonimido­thio­ate ligand is orientated to place the oxygen atom in close proximity to the gold atom, Fig. 1[link]. There are also significant differences in key angles between the coordinating and non-coordinating forms of the ligand, especially about the C1 atom. These reflect the reorganization of π-electron density manifested in the C=N and C=S bonds, respectively. Thus, the widest angles in the anion involve C=N and those in the free mol­ecule, involve C=S. A relatively large change is noted for the C1—N1—C2 angles, i.e. 121.4 (2) and 127.11 (12)°, respectively, for the coordinating and non-coord­inating ligands, which is a result of the presence of the acidic proton in the latter. In terms of conformation of the anion in (I)[link], the central residue comprising the S1, O1, N1 and C1 atom is strictly planar (r.m.s. deviation of the fitted atoms = 0.0091 Å), with the pendent C2 and C9 atoms lying 0.035 (4) and 0.198 (4) Å out of this plane, respectively. The dihedral angle between the central residue and the N-bound aryl ring is 85.08 (7)°, indicating a nearly perpendicular arrangement; in the free ligand the comparable angle is 51.84 (6)° (Kuan et al., 2005[Kuan, F. S., Tadbuppa, P. & Tiekink, E. R. T. (2005). Z. Kristallogr. New Cryst. Struct. 220, 393-394.]).

Table 1
Selected geometric data (Å, °) for (I)[link] and (I·0.5MeOH)a

Parameter (I) (I·0.5MeOH)
Au—S1 2.3114 (6) 2.3009 (17)
Au—P1 2.2529 (6) 2.2558 (15)
C1—S1 1.768 (3) 1.751 (7)
C1—O1 1.359 (3) 1.356 (9)
C1—N1 1.260 (3) 1.260 (8)
Au⋯O1 3.040 (2) 3.093 (5)
S1—Au—P1 177.61 (2) 175.52 (6)
Au—S1—C1 103.14 (9) 105.0 (2)
C1—O1—C9 114.9 (2) 116.3 (5)
C1—N1—C2 121.4 (2) 121.2 (6)
S1—C1—O1 113.38 (18) 113.5 (4)
S1—C1—N1 125.9 (2) 126.0 (6)
O1—C1—N1 120.7 (2) 120.5 (6)
Note: (a) Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]).
[Figure 1]
Figure 1
Mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Salient geometric parameters for (I·0.5MeOH) (Kuan et al., 2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]) are also included in Table 1[link]. From these data, it is apparent there are no great variations between the structures with perhaps the exception of the Au—S1 bond length in (I)[link] being 0.01 Å longer than in (I·0.5MeOH). In terms of angles, the angle subtended at the S1 atom is about 2° tighter in (I)[link]. The intra­molecular Au⋯O1 separation is 0.05 Å shorter in (I)[link] but the deviation from linearity is less, reflecting the weak nature of this inter­action.

Fig. 2[link] shows an overlay diagram for (I)[link] and I in (I·0.5MeOH). From this it can be seen there is evidently a close overlap of all but the aryl rings that display orientational differences.

[Figure 2]
Figure 2
Overlay diagram of (I)[link] (red image) and I in (I·0.5MeOH) (blue). The mol­ecules have been overlapped so that the S1, O1 and N1 atoms are coincident.

3. Supra­molecular features

In the crystal of (I)[link], the most prominent points of contact between mol­ecules are of the type C—H⋯π and ππ, Table 2[link]. Thus, centrosymmetrically related o-tolyl residues associate via pairs of methyl-C—H⋯π(o-tol) inter­actions, and centrosymmetrically related phosphane ligands are connected via face-to-face ππ inter­actions involving one of the P-bound phenyl rings only. The result is the formation of supra­molecular layers lying parallel to (011) as illustrated in Fig. 3[link]a. The layers stack with no directional inter­actions between them, Fig. 3[link]b.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the (C2–C7) and (C22–C27) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8CCg1i 0.98 2.73 3.481 (3) 134
Cg2⋯Cg2ii 3.8033 (17)
Symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
Mol­ecular packing in (I)[link]: (a) a view of the supra­molecular layer sustained by C—H⋯π and ππ contacts, shown as purple and orange dashed lines, respectively, and (b) a view of the unit-cell contents shown in projection down the a axis, highlighting the stacking of (011) layers.

The packing of (I·0.5MeOH) is also characterized by supra­molecular layers. These are sustained by ππ inter­actions of 3.687 (4) Å between centrosymmetrically related mol­ecules in a face-to-face fashion, as for (I)[link], and by phenyl- and o-tolyl-C—H⋯π(P-phen­yl) inter­actions. The layers stack along the b axis devoid of specific inter­actions between successive layers. This arrangement defines columns along the a axis in which reside the disordered methanol mol­ecules, Fig. 4[link]. The partially occupied methanol mol­ecules in (I·0.5MeOH), disordered over a centre of inversion, are connected to the host framework via methyl-C—H⋯S inter­actions.

[Figure 4]
Figure 4
Mol­ecular packing in (I·0.5MeOH): a view of the unit-cell contents shown in projection down the a axis. The C—H⋯S, C—H⋯π and ππ contacts are shown as orange, purple and blue dashed lines, respectively. The methanol mol­ecules are highlighted in space-filling mode.

4. Analysis of the Hirshfeld surfaces

Hirshfeld surface analysis and fingerprint plots were undertaken to study the inter­molecular contacts and topological differences between (I)[link] and its methanol hemi-solvate, (I·0.5MeOH). Briefly, the inter­nal (di) and external (de) distances of atomic surface points to the nearest nucleus were computed for the mol­ecules in both (I)[link] and (I·0.5MeOH) (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The resulting normalized contact distances (dnorm) were mapped on the Hirshfeld surface in the range −1.04 to 1.91 Å. The contact distances shorter than the sum of van der Waals radii are highlighted in red while distances equal to or longer than the sum of van der Waals radii are shown in white and blue, respectively (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The combination of di and de in inter­vals of 0.01 Å result in the two-dimensional fingerprint plots, where the different colours on the fingerprint plots represent the probability of occurrence, ranging from blue (few points) through green to red (many points) (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). All analyses were performed using Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]).

The number of Hirshfeld surfaces that are unique in a given crystal structure depends on the number of independent mol­ecules in the asymmetric unit (Fabbiani et al., 2007[Fabbiani, F. P. A., Leech, C. K., Shankland, K., Johnston, A., Fernandes, P., Florence, A. J. & Shankland, N. (2007). Acta Cryst. C63, o659-o663.]). For this reason, the Hirshfeld surfaces for (I·0.5MeOH) were modelled separately for (I)[link] and for MeOH, while the Hirshfeld surface of (I·0.5MeOH), as a whole, were also included for a thorough comparison of the mol­ecular packing in (I)[link] and (I·0.5MeOH).

Fig. 5[link]a and 5b show the front and back views of Hirshfeld surfaces for (I)[link], (I·0.5MeOH) as well as for I in (I·0.5MeOH) which are displayed in approximately the same orientation. Despite the presence of additional solvent mol­ecule in (I·0.5MeOH), both this and (I)[link] are governed by similar inter­molecular contacts as can be observed through the appearance of several red spots on the Hirshfeld surfaces of both structures. These are mainly attributed to H⋯H, C⋯H/H⋯C and S⋯H/H⋯S contacts. However, a close inspection of the Hirshfeld surface of I in (I·0.5MeOH) reveals a stark difference as compared to (I)[link], in that evidence is found for a close contact through a S⋯H inter­action with the solvent MeOH mol­ecule as readily seen from the intense red spot in Fig. 5[link]a – right. Apart from this contact, I in (I·0.5MeOH) also forms weak inter­action, as demonstrated by the less intense red spot in Fig. 5[link]b – right, through O⋯H with another mol­ecule of I but beyond the sum of their van der Waals radii (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Figure 5]
Figure 5
Comparison between (I)[link], (I·0.5MeOH) and I in (I·0.5MeOH) of (a) the front view of the complete Hirshfeld surface, (b) the back view of the complete Hirshfeld surface, (c) the front view of the curvedness and (d) the back view of the curvedness.

In view that the conformational flexibility highlighted in Fig. 2[link], the mapping of curvedness over the Hirshfeld surface was undertaken in order to correlate these with some physico­chemical properties. Fig. 5[link]c and 5d show the front and back views of the curvedness for (I)[link], (I·0.5MeOH) and I in (I·0.5MeOH). From these views, it is clear (I)[link] exhibits a relatively broad region of curvedness surface, Fig. 5[link]c – left. It is presumably for this reason that (I)[link] has a relatively greater surface area, indicating a more compact conformation, i.e. having a lower volume, and is more densely packed than I in (I·0.5MeOH), see data in Table 3[link]. Inter­estingly, it seems the mol­ecular shape exerts a great influence over the inter­molecular inter­actions and the density of the resultant crystal structures, Table 3[link]. The packing efficiency of (I)[link] is also greater than that of (I·0.5MeOH), suggesting that the incorporation of methanol in the mol­ecular packing of (I·0.5MeOH) is not directed by the need to fill otherwise free space in (I)[link].

Table 3
Physiochemical properties for (I)[link], (I·0.5MeOH), and I and MeOH in (I·0.5MeOH)

Parameter (I) (I·0.5MeOH)  
    I MeOH
Volume, V3) 590.16 637.63 591.04
Surface area, A2) 514.76 543.39 512.10
A:V−1) 0.87 0.85 0.87
Globularity, G 0.661 0.659 0.665
Asphericity, Ω 0.159 0.100 0.138
Density (g cm−1) 1.767 1.658
Packing index (%) 68.2 67.3

The complete two-dimensional fingerprint plots for (I)[link], (I·0.5MeOH) and, for additional comparison, I in (I·0.5MeOH), along with the decomposed two-dimensional plots for the indicated inter­actions are presented in Fig. 6[link], while the percentage contributions are represented graphically in Fig. 7[link]. As mentioned previously, mol­ecules of (I)[link] in its unsolvated and solvated forms are governed by similar inter­molecular close contacts which mainly comprise non-hydrogen-bond inter­actions. Specifically, H⋯H, being the most dominant inter­action among all, ca 57.3% in (I)[link] and 55.4% in (I·0.5MeOH), forms a forceps-like fingerprint in (I)[link], by contrast to the distinctive spike of (I·0.5MeOH), Fig. 6[link]b. It is noted there is not much to distinguish the fingerprint patterns due to C⋯H/H⋯C, Fig. 6[link]c. This observation is vindicated by the near equivalence of the sums of the de + di distances of ∼2.70 Å for (I)[link] and ∼2.64 Å for (I·0.5MeOH) and with the relative contributions of approximately 23.3 and 23.8% to the overall surface areas, respectively. However, a marked difference is observed in the corresponding pincers-like fingerprint plots due to S⋯H/H⋯S interactions, Fig. 6[link]d. Thus, the plot for (I)[link] displays a sum of inter­molecular contact distance de + di of ∼2.88 Å, originating from weak phenyl-C–H⋯S contacts. For the solvate, a mixed inter­action mode is evident from the asymmetric fingerprint plot indicating inter­actions between two chemically and crystallographically distinct mol­ecules, i.e. the relatively strong solvent⋯solute methyl-C—H⋯S inter­action with the sum of de + di distances being ∼2.42 Å coupled with a weak meth­oxy-C—H⋯S contact with de + di = ∼3.1 Å. Such inter­actions contribute roughly 3.2% (S⋯H–solvent) and 1.1% (S⋯H–meth­oxy) to the total 4.3% to the overall Hirshfeld surface of I in (I·0.5MeOH) compared to a ∼7.5% contribution in (I)[link]. Mol­ecule (I)[link] does not forms any meaningful contacts through O⋯H/H⋯O owing to their long contact distances despite these contacts constituting approximately 2.4% of the overall contacts on the Hirshfeld surface, Fig. 6[link]e. Upon crystallization with methanol solvent, the overall contribution increases to 6.4% with the sum of de + di of ∼2.50 Å which is considered longer than typical O⋯H inter­actions with distances of ∼2.14 Å (Gavezzotti, 2016[Gavezzotti, A. (2016). New J. Chem. 40, 6848-6853.]).

[Figure 6]
Figure 6
Comparison between (I)[link], (I·0.5MeOH) and I in (I·0.5MeOH) of (a) the full fingerprint plots, and delineated two-dimensional plots associated with (b) H⋯H, (c) C⋯H/H⋯C, (d) S⋯H/H⋯S and (e) O⋯H/H⋯O contacts.
[Figure 7]
Figure 7
Percentage contribution of different close contacts to the Hirshfeld surface of forms (I)[link], (I·0.5MeOH), I in (I·0.5MeOH) and MeOH in (I·0.5MeOH).

5. Database survey

As mentioned in the Chemical context, there are over 70 mol­ecular structures in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) based on the general formula R3PAu[SC(OR′)=NR′′ for R, R′ and R′′ = alkyl, aryl. The present structural pair, (I)[link] and (I·0.5MeOH) represents the second example of solvatomorphism, with the prototype compound Ph3PAu[SC(OMe)=NPh (Hall et al., 1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]) being also found in a chloro­form solvate (Kuan et al., 2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). The common feature of all four mol­ecules is the presence of intra­molecular Au⋯O inter­actions. Very recently, a polymorph of Ph3PAu[SC(OEt)=NPh has been reported (Yeo et al., 2016[Yeo, C. I., Tan, S. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016). Z. Kristallogr. DOI: 10.1515/zkri-2016-1988.]) in which there has been a dramatic conformational change compared with the previously described form (Hall & Tiekink, 1993[Hall, V. J. & Tiekink, E. R. T. (1993). Z. Kristallogr.-New Cryst. Struct. 208, 313-315.]). While the latter features the normally observed Au⋯O inter­action, the new form features intra­molecular Au⋯π (Caracelli et al., 2013[Caracelli, I., Zukerman-Schpector, J. & Tiekink, E. R. T. (2013). Gold Bull. 46, 81-89.]) inter­actions. It was suggested that the crystallization conditions determined the conformation with that featuring the Au⋯π inter­actions being the thermodynamic outcome (Yeo et al., 2015[Yeo, C. I., Khoo, C.-H., Chu, W.-C., Chen, B.-J., Chu, P.-L., Sim, J.-H., Cheah, Y.-K., Ahmad, J., Halim, S. N. A., Seng, H.-L., Ng, S., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2015). RSC Adv. 5, 41401-41411.], 2016[Yeo, C. I., Tan, S. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016). Z. Kristallogr. DOI: 10.1515/zkri-2016-1988.]).

6. Synthesis and crystallization

IR spectra were obtained on a Perkin–Elmer Spectrum 400 FT Mid-IR/Far-IR spectrophotometer from 4000 to 400 cm−1; abbreviation: s, strong. The 1H NMR spectrum was recorded in CDCl3 on a Bruker Avance 400 MHz NMR spectrometer with chemical shifts relative to tetra­methyl­silane; abbreviations for NMR assignments: s, singlet; d, doublet; t, triplet; m, multiplet.

Preparation of (I)[link]: NaOH (Merck; 0.20 mmol, 0.008 g) in MeOH (Merck; 1 ml) was added to a suspension of Ph3PAuCl (0.20 mmol, 0.100 g) in MeOH (Merck; 10 ml), followed by addition of the thio­carbamide, MeOC(=S)N(H)(o-tol) (0.20 mmol, 0.036 g), prepared following literature precedents (Ho et al., 2005[Ho, S. Y., Bettens, R. P. A., Dakternieks, D., Duthie, A. & Tiekink, E. R. T. (2005). CrystEngComm, 7, 682-689.]), in MeOH (10 ml). The resulting mixture was stirred for 2 h at 323 K. The solution was left for slow evaporation at room temperature, yielding colourless blocks after 2 weeks. Yield: 0.109 g (85%). M.p. 389–391 K.

IR (cm−1): 1435 (s) (C=N), 1132 (s) (C—O), 1100 (s) (C—S). 1H NMR (400 MHz, CDCl3, 298 K): δ 7.53–7.39 (m, br, 15H, Ph3P), 6.86 (d, 1H, o-tol-H4, J = 6.24 Hz), 6.85 (t, 1H, o-tol-H3, J = 6.16 Hz), 6.73 (d, 1H, o-tol-H1, J = 7.70 Hz), 6.54 (t, 1H, o-tol-H2, J = 7.16 Hz), 3.93 (s, 3H, OMe), 2.11 (s, 3H, o-tol-Me) p.p.m.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C). Owing to poor agreement, a number of reflections, i.e. (0 [\overline{11}] 4), (9 [\overline{11}] 5), ([\overline{3}] 3 12), ([\overline{3}] [\overline{13}] 7), ([\overline{10}] 11 2), ([\overline{6}] 10 1), ([\overline{5}] [\overline{8}] 4), (7 [\overline{8}] 6), ([\overline{6}] [\overline{10}] 9), (4 [\overline{14}] 2), ([\overline{5}] [\overline{5}] 14), ([\overline{9}] [\overline{2}] 15), (6 [\overline{7}] 7) and (5 8 5), were omitted from the final cycles of refinement. The maximum and minimum residual electron density peaks of 0.97 and 1.14 e Å−3, respectively, were located 0.80 and 0.85 Å from the Au atom.

Table 4
Experimental details

Crystal data
Chemical formula [Au(C9H10NOS)(C18H15P)]
Mr 639.47
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.3884 (8), 10.0610 (8), 13.3572 (11)
α, β, γ (°) 96.194 (1), 102.487 (1), 99.443 (1)
V3) 1201.60 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.30
Crystal size (mm) 0.30 × 0.11 × 0.09
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttongen, Germany.])
Tmin, Tmax 0.368, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 18394, 7189, 6714
Rint 0.031
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.055, 1.04
No. of reflections 7189
No. of parameters 291
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.97, −1.14
Computer programs: SMART and SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

[(Z)-O-Methyl-N-(2-methylphenyl)thiocarbamato-κS](triphenylphosphane-κP)gold(I) top
Crystal data top
[Au(C9H10NOS)(C18H15P)]Z = 2
Mr = 639.47F(000) = 624
Triclinic, P1Dx = 1.767 Mg m3
a = 9.3884 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0610 (8) ÅCell parameters from 9945 reflections
c = 13.3572 (11) Åθ = 2.3–30.6°
α = 96.194 (1)°µ = 6.30 mm1
β = 102.487 (1)°T = 100 K
γ = 99.443 (1)°Block, colourless
V = 1201.60 (17) Å30.30 × 0.11 × 0.09 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7189 independent reflections
Radiation source: fine-focus sealed tube6714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 30.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.368, Tmax = 0.746k = 1414
18394 measured reflectionsl = 1819
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0186P)2 + 1.2573P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
7189 reflectionsΔρmax = 0.97 e Å3
291 parametersΔρmin = 1.14 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.62037 (2)0.84221 (2)0.31176 (2)0.01464 (3)
S10.47523 (7)0.98235 (6)0.23056 (5)0.01606 (12)
P10.76792 (7)0.70692 (7)0.38621 (5)0.01288 (12)
O10.3113 (2)0.73724 (19)0.17215 (15)0.0192 (4)
N10.2275 (3)0.8941 (2)0.07556 (17)0.0173 (4)
C10.3230 (3)0.8657 (3)0.1480 (2)0.0155 (5)
C20.2349 (3)1.0288 (3)0.05179 (19)0.0142 (5)
C30.1468 (3)1.1117 (3)0.09059 (19)0.0146 (5)
C40.1448 (3)1.2394 (3)0.0581 (2)0.0171 (5)
H40.08521.29660.08340.020*
C50.2279 (3)1.2843 (3)0.0102 (2)0.0189 (5)
H50.22561.37140.03120.023*
C60.3149 (3)1.2004 (3)0.0478 (2)0.0185 (5)
H60.37281.23050.09410.022*
C70.3170 (3)1.0733 (3)0.0176 (2)0.0171 (5)
H70.37511.01590.04440.021*
C80.0546 (3)1.0623 (3)0.1631 (2)0.0197 (5)
H8A0.02071.11860.16610.030*
H8B0.11891.06910.23250.030*
H8C0.00550.96720.13790.030*
C90.1757 (3)0.6439 (3)0.1169 (2)0.0254 (6)
H9A0.17260.55650.14320.038*
H9B0.17310.62990.04270.038*
H9C0.08970.68220.12750.038*
C100.7737 (3)0.5607 (3)0.29563 (19)0.0141 (4)
C110.8969 (3)0.4975 (3)0.3086 (2)0.0188 (5)
H110.98030.53220.36500.023*
C120.8984 (4)0.3844 (3)0.2396 (2)0.0227 (6)
H120.98360.34350.24770.027*
C130.7749 (4)0.3316 (3)0.1588 (2)0.0248 (6)
H130.77430.25220.11310.030*
C140.6526 (4)0.3940 (3)0.1447 (2)0.0274 (6)
H140.56890.35810.08870.033*
C150.6521 (3)0.5091 (3)0.2123 (2)0.0202 (5)
H150.56870.55270.20160.024*
C160.9625 (3)0.7857 (2)0.4343 (2)0.0157 (5)
C171.0410 (3)0.7831 (3)0.5353 (2)0.0185 (5)
H170.99000.74810.58390.022*
C181.1938 (3)0.8315 (3)0.5651 (2)0.0211 (5)
H181.24670.83070.63420.025*
C191.2689 (3)0.8808 (3)0.4942 (2)0.0217 (5)
H191.37370.91090.51400.026*
C201.1911 (3)0.8863 (3)0.3940 (2)0.0232 (6)
H201.24260.92210.34590.028*
C211.0389 (3)0.8399 (3)0.3643 (2)0.0200 (5)
H210.98600.84470.29610.024*
C220.7133 (3)0.6418 (3)0.49658 (19)0.0146 (5)
C230.6720 (3)0.7323 (3)0.5671 (2)0.0180 (5)
H230.66360.82150.55270.022*
C240.6434 (3)0.6919 (3)0.6579 (2)0.0203 (5)
H240.61750.75400.70660.024*
C250.6526 (3)0.5605 (3)0.6777 (2)0.0218 (5)
H250.63330.53310.74010.026*
C260.6895 (3)0.4696 (3)0.6072 (2)0.0211 (5)
H260.69390.37950.62090.025*
C270.7205 (3)0.5091 (3)0.5160 (2)0.0166 (5)
H270.74610.44650.46760.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.01482 (5)0.01725 (5)0.01246 (5)0.00688 (3)0.00122 (3)0.00319 (3)
S10.0148 (3)0.0158 (3)0.0163 (3)0.0049 (2)0.0005 (2)0.0021 (2)
P10.0130 (3)0.0143 (3)0.0110 (3)0.0041 (2)0.0010 (2)0.0018 (2)
O10.0209 (10)0.0144 (9)0.0202 (9)0.0052 (7)0.0014 (8)0.0038 (7)
N10.0172 (11)0.0163 (10)0.0164 (10)0.0045 (8)0.0009 (8)0.0019 (8)
C10.0175 (12)0.0149 (11)0.0136 (11)0.0054 (9)0.0019 (9)0.0005 (9)
C20.0130 (11)0.0151 (11)0.0114 (10)0.0026 (9)0.0029 (9)0.0008 (9)
C30.0145 (11)0.0173 (11)0.0096 (10)0.0018 (9)0.0002 (9)0.0004 (9)
C40.0205 (13)0.0151 (11)0.0153 (11)0.0051 (10)0.0027 (10)0.0017 (9)
C50.0212 (13)0.0167 (12)0.0174 (12)0.0006 (10)0.0027 (10)0.0046 (10)
C60.0173 (12)0.0225 (13)0.0159 (12)0.0019 (10)0.0051 (10)0.0038 (10)
C70.0135 (11)0.0202 (12)0.0166 (12)0.0048 (10)0.0011 (9)0.0006 (10)
C80.0215 (13)0.0206 (12)0.0159 (12)0.0016 (10)0.0040 (10)0.0021 (10)
C90.0283 (15)0.0145 (12)0.0278 (15)0.0001 (11)0.0035 (12)0.0067 (11)
C100.0150 (11)0.0165 (11)0.0110 (10)0.0025 (9)0.0036 (9)0.0021 (9)
C110.0203 (13)0.0209 (12)0.0153 (12)0.0076 (10)0.0029 (10)0.0005 (10)
C120.0295 (15)0.0221 (13)0.0215 (13)0.0125 (12)0.0106 (12)0.0045 (11)
C130.0360 (17)0.0183 (13)0.0184 (13)0.0025 (12)0.0077 (12)0.0037 (10)
C140.0290 (16)0.0279 (15)0.0175 (13)0.0040 (12)0.0000 (12)0.0049 (11)
C150.0139 (12)0.0267 (14)0.0183 (12)0.0014 (10)0.0026 (10)0.0026 (10)
C160.0189 (12)0.0112 (10)0.0151 (11)0.0038 (9)0.0003 (10)0.0004 (9)
C170.0174 (12)0.0191 (12)0.0173 (12)0.0018 (10)0.0020 (10)0.0027 (10)
C180.0157 (12)0.0208 (13)0.0214 (13)0.0006 (10)0.0036 (10)0.0022 (10)
C190.0147 (12)0.0192 (12)0.0276 (14)0.0016 (10)0.0039 (11)0.0027 (11)
C200.0238 (14)0.0206 (13)0.0256 (14)0.0014 (11)0.0123 (12)0.0016 (11)
C210.0216 (13)0.0194 (12)0.0183 (12)0.0037 (10)0.0030 (10)0.0038 (10)
C220.0140 (11)0.0157 (11)0.0135 (11)0.0029 (9)0.0021 (9)0.0014 (9)
C230.0178 (12)0.0174 (12)0.0174 (12)0.0031 (10)0.0026 (10)0.0005 (9)
C240.0187 (13)0.0247 (13)0.0160 (12)0.0032 (11)0.0041 (10)0.0014 (10)
C250.0176 (13)0.0326 (15)0.0160 (12)0.0038 (11)0.0051 (10)0.0062 (11)
C260.0217 (13)0.0199 (13)0.0237 (14)0.0038 (10)0.0077 (11)0.0066 (10)
C270.0167 (12)0.0162 (11)0.0166 (12)0.0051 (9)0.0025 (10)0.0014 (9)
Geometric parameters (Å, º) top
Au—P12.2529 (6)C11—H110.9500
Au—S12.3114 (6)C12—C131.387 (4)
S1—C11.768 (3)C12—H120.9500
P1—C161.812 (3)C13—C141.384 (5)
P1—C221.814 (3)C13—H130.9500
P1—C101.817 (3)C14—C151.391 (4)
O1—C11.359 (3)C14—H140.9500
O1—C91.449 (3)C15—H150.9500
N1—C11.260 (3)C16—C171.396 (4)
N1—C21.419 (3)C16—C211.399 (4)
C2—C71.392 (4)C17—C181.391 (4)
C2—C31.403 (4)C17—H170.9500
C3—C41.402 (4)C18—C191.383 (4)
C3—C81.503 (4)C18—H180.9500
C4—C51.388 (4)C19—C201.391 (4)
C4—H40.9500C19—H190.9500
C5—C61.394 (4)C20—C211.384 (4)
C5—H50.9500C20—H200.9500
C6—C71.383 (4)C21—H210.9500
C6—H60.9500C22—C271.396 (4)
C7—H70.9500C22—C231.398 (4)
C8—H8A0.9800C23—C241.386 (4)
C8—H8B0.9800C23—H230.9500
C8—H8C0.9800C24—C251.388 (4)
C9—H9A0.9800C24—H240.9500
C9—H9B0.9800C25—C261.379 (4)
C9—H9C0.9800C25—H250.9500
C10—C111.396 (4)C26—C271.396 (4)
C10—C151.394 (4)C26—H260.9500
C11—C121.389 (4)C27—H270.9500
P1—Au—S1177.61 (2)C13—C12—C11119.7 (3)
C1—S1—Au103.14 (9)C13—C12—H12120.2
C16—P1—C22104.74 (12)C11—C12—H12120.2
C16—P1—C10102.91 (12)C14—C13—C12120.2 (3)
C22—P1—C10107.07 (12)C14—C13—H13119.9
C16—P1—Au115.26 (8)C12—C13—H13119.9
C22—P1—Au113.63 (9)C13—C14—C15120.2 (3)
C10—P1—Au112.28 (9)C13—C14—H14119.9
C1—O1—C9114.9 (2)C15—C14—H14119.9
C1—N1—C2121.4 (2)C14—C15—C10120.1 (3)
N1—C1—O1120.7 (2)C14—C15—H15120.0
N1—C1—S1125.9 (2)C10—C15—H15120.0
O1—C1—S1113.38 (18)C17—C16—C21119.2 (3)
C7—C2—C3120.2 (2)C17—C16—P1122.4 (2)
C7—C2—N1120.3 (2)C21—C16—P1118.1 (2)
C3—C2—N1119.2 (2)C18—C17—C16120.2 (3)
C4—C3—C2118.3 (2)C18—C17—H17119.9
C4—C3—C8121.4 (2)C16—C17—H17119.9
C2—C3—C8120.4 (2)C19—C18—C17120.1 (3)
C5—C4—C3121.5 (2)C19—C18—H18120.0
C5—C4—H4119.3C17—C18—H18120.0
C3—C4—H4119.3C18—C19—C20120.1 (3)
C4—C5—C6119.3 (2)C18—C19—H19119.9
C4—C5—H5120.3C20—C19—H19119.9
C6—C5—H5120.3C21—C20—C19120.0 (3)
C7—C6—C5120.1 (2)C21—C20—H20120.0
C7—C6—H6120.0C19—C20—H20120.0
C5—C6—H6120.0C20—C21—C16120.4 (3)
C6—C7—C2120.6 (2)C20—C21—H21119.8
C6—C7—H7119.7C16—C21—H21119.8
C2—C7—H7119.7C27—C22—C23119.9 (2)
C3—C8—H8A109.5C27—C22—P1122.34 (19)
C3—C8—H8B109.5C23—C22—P1117.6 (2)
H8A—C8—H8B109.5C24—C23—C22120.0 (3)
C3—C8—H8C109.5C24—C23—H23120.0
H8A—C8—H8C109.5C22—C23—H23120.0
H8B—C8—H8C109.5C25—C24—C23119.9 (3)
O1—C9—H9A109.5C25—C24—H24120.0
O1—C9—H9B109.5C23—C24—H24120.0
H9A—C9—H9B109.5C26—C25—C24120.4 (3)
O1—C9—H9C109.5C26—C25—H25119.8
H9A—C9—H9C109.5C24—C25—H25119.8
H9B—C9—H9C109.5C25—C26—C27120.5 (3)
C11—C10—C15119.2 (2)C25—C26—H26119.8
C11—C10—P1121.3 (2)C27—C26—H26119.8
C15—C10—P1119.5 (2)C22—C27—C26119.3 (2)
C12—C11—C10120.6 (3)C22—C27—H27120.4
C12—C11—H11119.7C26—C27—H27120.4
C10—C11—H11119.7
C2—N1—C1—O1177.6 (2)C11—C10—C15—C141.7 (4)
C2—N1—C1—S10.8 (4)P1—C10—C15—C14177.5 (2)
C9—O1—C1—N16.4 (4)C22—P1—C16—C172.7 (2)
C9—O1—C1—S1170.9 (2)C10—P1—C16—C17109.1 (2)
Au—S1—C1—N1167.2 (2)Au—P1—C16—C17128.3 (2)
Au—S1—C1—O115.8 (2)C22—P1—C16—C21176.7 (2)
C1—N1—C2—C788.2 (3)C10—P1—C16—C2164.9 (2)
C1—N1—C2—C398.3 (3)Au—P1—C16—C2157.6 (2)
C7—C2—C3—C40.4 (4)C21—C16—C17—C181.2 (4)
N1—C2—C3—C4173.9 (2)P1—C16—C17—C18172.8 (2)
C7—C2—C3—C8178.3 (2)C16—C17—C18—C190.9 (4)
N1—C2—C3—C84.7 (4)C17—C18—C19—C202.2 (4)
C2—C3—C4—C50.3 (4)C18—C19—C20—C211.4 (4)
C8—C3—C4—C5178.9 (2)C19—C20—C21—C160.7 (4)
C3—C4—C5—C60.3 (4)C17—C16—C21—C202.0 (4)
C4—C5—C6—C70.5 (4)P1—C16—C21—C20172.3 (2)
C5—C6—C7—C21.2 (4)C16—P1—C22—C2792.1 (2)
C3—C2—C7—C61.1 (4)C10—P1—C22—C2716.8 (3)
N1—C2—C7—C6174.6 (2)Au—P1—C22—C27141.3 (2)
C16—P1—C10—C1128.4 (2)C16—P1—C22—C2383.8 (2)
C22—P1—C10—C1181.7 (2)C10—P1—C22—C23167.4 (2)
Au—P1—C10—C11152.94 (19)Au—P1—C22—C2342.8 (2)
C16—P1—C10—C15152.5 (2)C27—C22—C23—C242.3 (4)
C22—P1—C10—C1597.5 (2)P1—C22—C23—C24173.7 (2)
Au—P1—C10—C1527.9 (2)C22—C23—C24—C251.4 (4)
C15—C10—C11—C120.2 (4)C23—C24—C25—C260.2 (4)
P1—C10—C11—C12178.9 (2)C24—C25—C26—C271.0 (4)
C10—C11—C12—C131.8 (4)C23—C22—C27—C261.5 (4)
C11—C12—C13—C142.3 (5)P1—C22—C27—C26174.3 (2)
C12—C13—C14—C150.8 (5)C25—C26—C27—C220.1 (4)
C13—C14—C15—C101.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the (C2–C7) and (C22–C27) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8C···Cg1i0.982.733.481 (3)134
Cg2—–···Cg2ii3.8033 (17)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1, z+1.
Selected geometric data (Å, °) for (I) and (I·MeOH)a top
Parameter(I)(I·MeOH)
Au—S12.3114 (6)2.3009 (17)
Au—P12.2529 (6)2.2558 (15)
C1—S11.768 (3)1.751 (7)
C1—O11.359 (3)1.356 (9)
C1—N11.260 (3)1.260 (8)
Au···O13.040 (2)3.093 (5)
S1—Au—P1177.61 (2)175.52 (6)
Au—S1—C1103.14 (9)105.0 (2)
C1—O1—C9114.9 (2)116.3 (5)
C1—N1—C2121.4 (2)121.2 (6)
S1—C1—O1113.38 (18)113.5 (4)
S1—C1—N1125.9 (2)126.0 (6)
O1—C1—N1120.7 (2)120.5 (6)
Note: (a) Kuan et al. (2008).
Physiochemical properties for (I), (I·MeOH), and I and MeOH in (I·MeOH) top
Parameter(I)(I·MeOH)
IMeOH
Volume, V3)590.16637.63591.04
Surface area, A2)514.76543.39512.10
A:V-1)0.870.850.87
Globularity, G0.6610.6590.665
Asphericity, Ω0.1590.1000.138
Density (g cm-1)1.7671.658
Packing index (%)68.267.3
 

Acknowledgements

Intensity data were provided by the University of Malaya Crystallographic Laboratory.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaracelli, I., Zukerman-Schpector, J. & Tiekink, E. R. T. (2013). Gold Bull. 46, 81–89.  Web of Science CrossRef CAS Google Scholar
First citationFabbiani, F. P. A., Leech, C. K., Shankland, K., Johnston, A., Fernandes, P., Florence, A. J. & Shankland, N. (2007). Acta Cryst. C63, o659–o663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGavezzotti, A. (2016). New J. Chem. 40, 6848–6853.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHall, V. J. & Tiekink, E. R. T. (1993). Z. Kristallogr.-New Cryst. Struct. 208, 313–315.  Google Scholar
First citationHo, S. Y., Bettens, R. P. A., Dakternieks, D., Duthie, A. & Tiekink, E. R. T. (2005). CrystEngComm, 7, 682–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Tadbuppa, P. & Tiekink, E. R. T. (2005). Z. Kristallogr. New Cryst. Struct. 220, 393–394.  CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOoi, K. K., Yeo, C. I., Ang, K.-P., Akim, A. Md., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Biol. Inorg. Chem. 20, 855–873.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttongen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationYeo, C. I., Khoo, C.-H., Chu, W.-C., Chen, B.-J., Chu, P.-L., Sim, J.-H., Cheah, Y.-K., Ahmad, J., Halim, S. N. A., Seng, H.-L., Ng, S., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2015). RSC Adv. 5, 41401–41411.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeo, C. I., Ooi, K. K., Akim, A. Md., Ang, K. P., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). J. Inorg. Biochem. 127, 24–38.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYeo, C. I., Sim, J.-H., Khoo, C.-H., Goh, Z.-J., Ang, K.-P., Cheah, Y.-K., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). Gold Bull. 46, 145–152.  Web of Science CrossRef CAS Google Scholar
First citationYeo, C. I., Tan, S. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016). Z. Kristallogr. DOI: 10.1515/zkri-2016-1988.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds