research communications
[N-Benzyl-N-(2-phenylethyl)dithiocarbamato-κ2S,S′]triphenyltin(IV) and [bis(2-methoxyethyl)dithiocarbamato-κ2S,S′]triphenyltin(IV): crystal structures and Hirshfeld surface analysis
aBiomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, bEnvironmental Health and Industrial Safety Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and dResearch Centre for Chemical Crystallography, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my
The crystal and molecular structures of two triphenyltin dithiocarbamates, [Sn(C6H5)3(C16H16NS2)], (I), and [Sn(C6H5)3(C7H14NO2S2)], (II), are described. In (I), the dithiocarbamate ligand coordinates the SnIV atom in an asymmetric manner, leading to a highly distorted trigonal–bipyramidal coordination geometry defined by a C3S2 donor set with the weakly bound S atom approximately trans to one of the ipso-C atoms. A similar structure is found in (II), but the dithiocarbamate ligand coordinates in an even more asymmetric fashion. The packing in (I) features supramolecular chains along the c axis sustained by C—H⋯π interactions; chains pack with no directional interactions between them. In (II), supramolecular layers are formed, similarly sustained by C—H⋯π interactions; these stack along the b axis. An analysis of the Hirshfeld surfaces for (I) and (II) confirms the presence of the C—H⋯π interactions but also reveals the overall dominance of H⋯H contacts in the respective crystals.
1. Chemical context
Among the varied motivations for investigating organotin dithiocarbamate compounds, i.e. RnSn(S2CNRR′)4–n where R, R′ = alkyl, aryl, most relate to their biological activities and their usefulness as molecular, single-source precursors for the formation of tin sulfide nanoparticles (Tiekink, 2008). In terms of the latter, while triorganotin dithiocarbamates, i.e. with n = 3, have been examined in this context (Kana et al., 2001), di- and mono-organotin derivatives often provide more effective precursors (Ramasamy et al., 2013). By contrast, significant interest in the biological effects of triorganotin dithiocarbamates continues. Hence, a wide variety of biological applications of triorganotin dithiocarbamates, i.e. directly related to the title compounds, have been investigated. Thus, anti-bacterial (Muthalib et al., 2015), larvicidal (Song et al., 2004), including against mosquito larvae (Basu Baul et al., 2005), insecticidal (Awang et al., 2012; Safari et al., 2013) and anti-leishmanial activities (Ali et al., 2014) have been investigated. However, most activity has been directed towards evaluating their potential as anti-cancer agents (Tiekink, 2008; Khan et al., 2014, 2015). It was in this context and during on-going structural studies of organotin dithiocarbamates (Muthalib et al., 2014; Mohamad et al., 2016) that the title compounds were synthesized. Herein, the crystal and molecular structures of (C6H5)3Sn[S2CN(Ben)CH2CH2Ph] (I) and (C6H5)3Sn[S2CN(CH2CH2OMe)2] (II) are reported along with a detailed analysis of the supramolecular association operating in their crystal structures by means of Hirshfeld surface analysis.
1.1. Structural commentary
The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are collected in Table 1. The tin atom is bound to three phenyl groups and to the dithiocarbamate ligand. The latter coordinates asymmetrically with Δ(Sn—S), being the difference between the Sn—Slong and Sn—Sshort bond lengths, of 0.42 Å. This asymmetry is reflected in the relatively large disparity in the associated C—S bond lengths with the bond involving the tightly bound S1 atom being significantly longer than the bond involving the S2 atom, Table 1. Such a great difference might imply a monodentate mode of coordination for the dithiocarbamate ligand and the adoption of a tetrahedral coordination geometry. However, the range of tetrahedral angles if this were the case is over 30°, i.e. from a narrow 92.98 (4)° for S1—Sn—C17 to a wide 124.31 (4)° for S1—Sn—C29. The wide angle is due to the close approach to the tin atom of S2. Further, the Sn—C17 bond length is systematically longer than the other Sn—C bond lengths, an observation ascribed to the C17 atom being approximately trans to the incoming S2 atom, Table 1. Thus, the coordination geometry is best described as being based on a C3S2 donor set. The geometry is not ideal with the value of τ of 0.57, cf. τ values of 0.0 and 1.0 for ideal square–pyramidal and trigonal–bipyramidal geometries, respectively (Addison et al., 1984), suggesting a small distortion towards trigonal–bipyramidal. Distortions from the ideal can be related to the disparate Sn—donor atom bond lengths and the acute chelate angle, Table 1.
|
The molecular structure of (II) (Fig. 2) bears many similarities with that just described for (I). The value of Δ(Sn—S) of 0.64 Å is even greater than that of (I), indicating a more asymmetric mode of coordination of the dithiocarbamate ligand. This difference is also reflected in the associated C—S bond lengths, following the same trend as for (I) but, with Δ(C—S) of 0.08 Å cf. 0.06 Å for (I). This being stated, the Sn—C14 bond length of 2.1608 (14)°, with the C14 atom being trans to the S2 atom, is the longest of all six Sn—C bonds in (I) and (II). The range of tetrahedral angles, i.e. 90.94 (4)° for S1—Sn—C14 to 119.54 (5)° for C8—Sn—C20, is slightly narrower at less than 30°. The value of τ computes to 0.58, i.e. virtually identical to that in (I).
2. Supramolecular features
Despite there being five aromatic rings in the molecule of (I), the closest face-to-face contact between rings is > 4.0 Å. The only points of contact between molecules in the molecular packing identified by PLATON (Spek, 2009) are those of the type C—H⋯π. Each of the rings of the dithiocarbamate ligand donates a hydrogen atom to a different tin-bound phenyl ring with the result that a supramolecular chain is formed along the c-axis direction, Table 2 and Fig. 3a. The chains pack without directional interactions between them, Fig. 3b.
Even though there are oxygen atoms in the molecule of (II), the supramolecular association is dominated by C—H⋯π contacts involving methyl-C—H and Sn-bound-phenyl-C—H as donors and only two of the Sn-bound phenyl rings as acceptors, as the (C14–C19) ring accepts two interactions, Table 3. The result of this association is the formation of supramolecular layers in the ac plane, Fig. 4a. The layers stack along the b axis without directional interactions between them, Fig. 4b.
3. Hirshfeld surface analysis
Crystal Explorer (Wolff et al., 2012) was used to generate Hirshfeld surfaces mapped over dnorm, shape-index and electrostatic potential. The electrostatic potentials were calculated using TONTO (Spackman et al., 2008; Jayatilaka et al., 2005) integrated into Crystal Explorer, wherein the respective experimental structure was used as the input to TONTO. Further, the electrostatic potentials were mapped on Hirshfeld surfaces using the STO-3G basis set at the Hartree–Fock level of theory over ranges ± 0.037 au. and ± 0.048 au. for (I) and (II), respectively. The contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively, enable the analysis of the intermolecular interactions through the mapping of dnorm. The combination of de and di in the form of two-dimensional fingerprint plots (McKinnon et al., 2007) provides a useful summary of intermolecular contacts in the respective crystal.
The different shapes of Hirshfeld surfaces for molecules (I) and (II) arise from the asymmetric geometries resulting from the different dithiocarbamate-bound functional groups, i.e. phenyl and methoxy groups in (I) and (II), respectively, Fig. 5. The images of the Hirshfeld surface mapped over electrostatic potential for (I) and (II) display dark-red and dark-blue regions, assigned to negative and positive potentials, respectively, and are localized near their respective functional groups. The absence of conventional hydrogen bonds in the crystals of (I) and (II) is consistent with the non-appearance of characteristic red-spots in the Hirshfeld surface mapped over dnorm (not shown). The curvature of the Hirshfeld surfaces around the phenyl rings participating as acceptors in the C—H⋯π contacts determine the strength of these interactions in the crystal packing. In the structure of (I), the surfaces around the Sn-bound phenyl (C17–C22) and (C23–C28) rings are more concave than the equivalent rings participating in C—H⋯π interactions in (II), indicating their greater influence upon packing, as seen in the shorter H⋯ring centroid separations, Tables 2 and 3. This observation is also apparent from the Hirshfeld surfaces mapped over electrostatic potential corresponding to C⋯H contacts for (I) and (II), both showing red spots in the images of Fig. 6 correlating with their functioning as π-bond acceptors. The concave appearance of the Hirshfeld surface mapped over electrostatic potential around the Sn-bound phenyl ring (C14–C19) in the structure of (II) is indicative of its participation in two C—H⋯ π interactions, i.e. with the H13 and H23 hydrogen atoms. The other C—H⋯π contact involves methyl-H7C atom as the donor and phenyl (C8–C13) ring as the acceptor. The shape-indexed Hirshfeld surfaces highlighting the C—H⋯π contacts are shown in Fig. 7.
The overall two-dimensional fingerprint plots for (I) and (II) and those delineated into H⋯H, C⋯H/H⋯C and S⋯H/H⋯S contacts (McKinnon et al., 2007) are illustrated in Fig. 8a–d, respectively; their relative contributions are summarized in Table 4. Although the distribution of points in the overall plots of (I) and (II) have almost same (de, di) ranges, i.e. between 1.2 and 2.6 Å, the densities and the areas of their distributions are different. It is evident from the data in Table 4 and the fingerprint plot delineated into H⋯H contacts in Fig. 8b that these contacts make the most significant contribution to the Hirshfeld surfaces of both (I) and (II). In the fingerprint plot of (I) delineated into H⋯H contacts (Fig. 8b), all the points are situated at the (de, di) distances greater than or equal to their van der Waals separations i.e. 2 x 1.2 Å, hence there is no propensity to form such intermolecular contacts. The peak at (de, di) distances slightly less than van der Waals separations in the fingerprint plot for (II) is due to a short interatomic H⋯H contact between symmetry-related methoxy- and dithiocarbamate hydrogen atoms [H7A⋯H5Ai = 2.36 Å; symmetry code: (i) −x, 2 − y, 1 − z]. In the fingerprint plot delineated into C⋯H/H⋯C contacts for (I), Fig. 8c, the 32.9% contribution to the Hirshfeld surface and the symmetrical distribution of points showing bending of the pattern at (de + di)min ∼2.8 Å is the result of short interatomic C⋯H/H⋯C contacts [C1⋯H32ii = 2.85 and C14⋯H27iii = 2.84 Å; symmetry codes: (ii) 1 + x, y, z; (iii) 1 − x, 2 − y, −z]. In the structure of (II), a comparatively reduced contribution from these contacts to the surface is made, i.e. 24.4%, an observation ascribed to the presence of only C—H⋯π contacts in the molecular packing, with no other short inter-atomic contacts. The negligible contribution from C⋯C contacts to the Hirshfeld surfaces indicate that despite the presence of three Sn-bound phenyl rings in the structures of both (I) and (II), and the presence of other two phenyl rings bound to the dithiocarbamate ligand in (I), the structures show no significant π–π stacking. In the structure of (II), the presence of oxygen atoms does not have any significant influence on its molecular packing although there is 4.7% contribution from O⋯H/H⋯O contacts to the Hirshfeld surface. The fingerprint plots delineated into S⋯H/H⋯S contacts for both the molecules (I) and (II), Fig. 8d, show that crowded geometries around the tin atoms prevent the sulfur atoms from forming such intermolecular contacts although these contacts have significant contributions to their respective Hirshfeld surfaces, Table 4, as well as nearly symmetrical distributions of points in their plots. This observation was also noted in an earlier study describing related organotin dithiocarbamate structures (Mohamad et al., 2016).
|
4. Database survey
According to a search of the Cambridge Structural Database (CSD; Groom et al., 2016), the dithiocarbamate ligands featuring in the present study have comparatively rare R/R′ substituents. For example, the −S2CN(Ben)CH2CH2Ph anion in (I) has only one precedent, namely in Pb[S2CN(Ben)CH2CH2Ph]2 (Sathiyaraj et al., 2012). There are eight examples of the −S2CN(CH2CH2OMe)2 anion, as in (II), being the focus of two recent systematic studies (Hogarth et al., 2009; Naeem et al., 2010).
Reflecting the interest in organotin dithiocarbamates, there are approximately 40 examples of triphenyltin dithiocarbamate structures in the CSD, all of which present the same basic structural motif as described herein for (I) and (II). The prototype compound, Ph3Sn(S2CNEt2) features the shortest Sn—S bond length of the series at 2.429 (3) Å (Hook et al., 1994). The most asymmetric mode of coordination of a dithiocarbamate ligand, i.e. with Δ(Sn—S) of 0.74 Å, is found in the structure of Ph3Sn(4-nitrophenylpiperazine-1-dithiocarbamate) (Rehman et al., 2009). On the other hand, the most symmetric mode of coordination is found in the structure of Ph3Sn(4-methoxyphenylpiperazine-1-dithiocarbamate), having Δ(Sn—S) of 0.42 Å (Zia-ur-Rehman et al., 2011), i.e. the same value as found in the structure of (I) reported herein.
5. Synthesis and crystallization
Synthesis of (I): N-Benzyl-2-phenylethylamine (2 mmol) dissolved in ethanol (10 ml) was stirred for 30 min in an ice-bath. 25% ammonia (1–2 ml) was added to generate a basic solution. After that, a cold ethanolic solution of carbon disulfide (2 mmol) was added to the solution followed by stirring for about 2 h. Then, triphenyltin(IV) chloride (2 mmol) dissolved in ethanol (30 ml) was added drop wise into the solution followed by further stirring for 2 h. The precipitate that formed was filtered off and washed with cold ethanol a few times to remove impurities. Finally, the precipitate was dried in a desiccator. Recrystallization was achieved by dissolving the compound in a chloroform and ethanol mixture (1:1 v/v): this solution was allowed to slowly evaporate at room temperature yielding colourless slabs of (I). M.p.: 419–421 K. Yield: 85%. Analysis: found C, 64.5; H, 5.3; N, 2.3; S, 9.9. C34H31NS2Sn requires: C, 64.2; H, 4.9; N, 2.2; S, 10.1. IR (cm−1): 1476 ν(C—N), 1021 ν(C—S), 502 ν(Sn—C), 448 ν(Sn—S). 1H NMR (CDCl3): 7.44–7.86 (15H, Sn—Ph), 7.16–7.39 (10H, C-Ph), 5.03 (2H, CH2Ben), 3.96 (2H, NCH2CH2), 3.04 (2H, NCH2CH2). 13C{1H} NMR (CDCl3): δ 197.8 (S2C), 126.7–142.3 (Ar), 59.8 (CH2Ben), 56.4 (NCH2CH2), 32.8 (NCH2CH2). 119Sn{1H} NMR (CDCl3): −180.2.
Compound (II) was prepared in essentially the same manner as for (I) but using bis(2-methoxyethyl)amine (5 mmol) in place of N-benzyl-2-phenylethylamine. Recrystallization was from chloroform solution to yield colourless slabs. M.p.: 366–367 K. Yield: 89%. Analysis: found C, 54.4; H, 4.4; N, 2.9; S, 12.1. C25H29NO2S2 Sn requires: C, 53.8; H, 5.2; N, 2.5; S, 11.5. IR (cm−1): 1470 ν(C—N), 994 ν(C—S), 559 ν(Sn—C), 425 ν(Sn—S). 1H NMR (CDCl3): 7.40–7.74 (15H, Sn—Ph), 4.13 (2H, OCH2), 3.72 (2H, NCH2), 3.35 (3H, CH3). 13C{1H} NMR (CDCl3): δ 197.3 (S2C), 128.6–142.4 (Ar), 70.0 (OCH2), 59.0 (NCH2), 57.1 (CH3). 119Sn{1H} NMR (CDCl3): −185.0.
6. Refinement
Crystal data, data collection and structure . Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). In the of (II), disorder was noted in the C5-chain of the dithiocarbamate ligand. Specifically, the C6 and O2 atoms were modelled over two positions in the ratio 0.569 (2):0.431 (2). The anisotropic displacement parameters for both components of the C6 and O5 atoms were constrained to be equivalent; further, those for the C6 atoms were restrained to be approximately isotropic. The 1,2 and 1,3 bond lengths of the disordered residual were restrained to be similar to those of the ordered arm of the dithiocarbamate ligand.
details are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989016014985/hb7618sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016014985/hb7618Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989016014985/hb7618IIsup3.hkl
For both compounds, data collection: CrysAlis PRO (Agilent, 2015); cell
CrysAlis PRO (Agilent, 2015); data reduction: CrysAlis PRO (Agilent, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Sn(C6H5)3(C16H16NS2)] | Z = 2 |
Mr = 636.41 | F(000) = 648 |
Triclinic, P1 | Dx = 1.457 Mg m−3 |
a = 9.5856 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.6140 (2) Å | Cell parameters from 26203 reflections |
c = 13.6795 (3) Å | θ = 4.1–31.4° |
α = 78.043 (2)° | µ = 1.05 mm−1 |
β = 77.868 (2)° | T = 139 K |
γ = 82.358 (2)° | Slab, colourless |
V = 1450.20 (5) Å3 | 0.50 × 0.30 × 0.20 mm |
Agilent Technologies SuperNova Dual diffractometer with an Atlas detector | 9103 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 8428 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.038 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 31.8°, θmin = 3.3° |
ω scan | h = −13→14 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2015) | k = −17→17 |
Tmin = 0.804, Tmax = 1.000 | l = −19→19 |
41508 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.055 | w = 1/[σ2(Fo2) + (0.0236P)2 + 0.5974P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.003 |
9103 reflections | Δρmax = 0.53 e Å−3 |
343 parameters | Δρmin = −0.61 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn | 0.11097 (2) | 0.73083 (2) | −0.11080 (2) | 0.01757 (3) | |
S1 | 0.26398 (4) | 0.60268 (3) | 0.00262 (3) | 0.02307 (7) | |
S2 | 0.14838 (4) | 0.83511 (3) | 0.05703 (3) | 0.02241 (7) | |
N1 | 0.34474 (13) | 0.69202 (11) | 0.14450 (9) | 0.0226 (2) | |
C1 | 0.25975 (14) | 0.71037 (11) | 0.07630 (10) | 0.0195 (2) | |
C2 | 0.45063 (16) | 0.58852 (14) | 0.15813 (11) | 0.0276 (3) | |
H2A | 0.5464 | 0.6161 | 0.1504 | 0.033* | |
H2B | 0.4549 | 0.5425 | 0.1040 | 0.033* | |
C3 | 0.41603 (15) | 0.50885 (13) | 0.26046 (11) | 0.0242 (3) | |
C4 | 0.51461 (16) | 0.48312 (14) | 0.32492 (12) | 0.0299 (3) | |
H4 | 0.6025 | 0.5186 | 0.3057 | 0.036* | |
C5 | 0.48559 (19) | 0.40590 (17) | 0.41719 (13) | 0.0383 (4) | |
H5 | 0.5538 | 0.3884 | 0.4607 | 0.046* | |
C6 | 0.3580 (2) | 0.35456 (16) | 0.44587 (14) | 0.0402 (4) | |
H6 | 0.3389 | 0.3007 | 0.5086 | 0.048* | |
C7 | 0.25767 (19) | 0.38180 (15) | 0.38302 (15) | 0.0390 (4) | |
H7 | 0.1689 | 0.3477 | 0.4033 | 0.047* | |
C8 | 0.28613 (17) | 0.45813 (14) | 0.29129 (13) | 0.0317 (3) | |
H8 | 0.2167 | 0.4764 | 0.2486 | 0.038* | |
C9 | 0.34155 (15) | 0.78002 (13) | 0.20882 (11) | 0.0252 (3) | |
H9A | 0.3358 | 0.8602 | 0.1667 | 0.030* | |
H9B | 0.4319 | 0.7680 | 0.2353 | 0.030* | |
C10 | 0.21466 (18) | 0.77186 (14) | 0.29854 (11) | 0.0293 (3) | |
H10A | 0.1252 | 0.7726 | 0.2731 | 0.035* | |
H10B | 0.2276 | 0.6961 | 0.3461 | 0.035* | |
C11 | 0.20107 (15) | 0.87303 (13) | 0.35476 (10) | 0.0226 (3) | |
C12 | 0.22314 (16) | 0.85318 (14) | 0.45412 (11) | 0.0268 (3) | |
H12 | 0.2495 | 0.7751 | 0.4866 | 0.032* | |
C13 | 0.20723 (17) | 0.94591 (15) | 0.50684 (11) | 0.0298 (3) | |
H13 | 0.2219 | 0.9310 | 0.5751 | 0.036* | |
C14 | 0.17019 (17) | 1.05948 (14) | 0.45984 (12) | 0.0309 (3) | |
H14 | 0.1583 | 1.1229 | 0.4958 | 0.037* | |
C15 | 0.15027 (17) | 1.08086 (14) | 0.35992 (13) | 0.0306 (3) | |
H15 | 0.1260 | 1.1593 | 0.3272 | 0.037* | |
C16 | 0.16559 (16) | 0.98869 (14) | 0.30788 (11) | 0.0273 (3) | |
H16 | 0.1518 | 1.0042 | 0.2394 | 0.033* | |
C17 | 0.11990 (14) | 0.59670 (12) | −0.20181 (10) | 0.0202 (2) | |
C18 | 0.12215 (15) | 0.62884 (12) | −0.30614 (11) | 0.0226 (3) | |
H18 | 0.1261 | 0.7095 | −0.3379 | 0.027* | |
C19 | 0.11864 (16) | 0.54453 (14) | −0.36467 (12) | 0.0280 (3) | |
H19 | 0.1215 | 0.5677 | −0.4358 | 0.034* | |
C20 | 0.11097 (17) | 0.42673 (14) | −0.31871 (13) | 0.0318 (3) | |
H20 | 0.1072 | 0.3693 | −0.3582 | 0.038* | |
C21 | 0.10880 (17) | 0.39296 (13) | −0.21536 (13) | 0.0317 (3) | |
H21 | 0.1038 | 0.3122 | −0.1840 | 0.038* | |
C22 | 0.11387 (15) | 0.47709 (12) | −0.15718 (11) | 0.0253 (3) | |
H22 | 0.1132 | 0.4530 | −0.0864 | 0.030* | |
C23 | 0.23372 (14) | 0.86620 (12) | −0.20545 (10) | 0.0196 (2) | |
C24 | 0.18559 (18) | 0.98566 (13) | −0.21328 (12) | 0.0290 (3) | |
H24 | 0.0933 | 1.0088 | −0.1776 | 0.035* | |
C25 | 0.2715 (2) | 1.07114 (15) | −0.27286 (14) | 0.0412 (4) | |
H25 | 0.2374 | 1.1524 | −0.2779 | 0.049* | |
C26 | 0.4055 (2) | 1.03887 (18) | −0.32465 (14) | 0.0444 (4) | |
H26 | 0.4642 | 1.0977 | −0.3648 | 0.053* | |
C27 | 0.45457 (18) | 0.92100 (19) | −0.31816 (15) | 0.0434 (4) | |
H27 | 0.5470 | 0.8986 | −0.3541 | 0.052* | |
C28 | 0.36913 (15) | 0.83497 (15) | −0.25919 (12) | 0.0306 (3) | |
H28 | 0.4034 | 0.7539 | −0.2554 | 0.037* | |
C29 | −0.11619 (14) | 0.77083 (11) | −0.06779 (10) | 0.0194 (2) | |
C30 | −0.18103 (15) | 0.85380 (12) | −0.00804 (12) | 0.0256 (3) | |
H30 | −0.1239 | 0.8910 | 0.0229 | 0.031* | |
C31 | −0.32861 (16) | 0.88286 (14) | 0.00684 (13) | 0.0320 (3) | |
H31 | −0.3716 | 0.9393 | 0.0482 | 0.038* | |
C32 | −0.41312 (16) | 0.82989 (14) | −0.03838 (13) | 0.0318 (3) | |
H32 | −0.5136 | 0.8511 | −0.0293 | 0.038* | |
C33 | −0.35052 (16) | 0.74601 (14) | −0.09672 (13) | 0.0318 (3) | |
H33 | −0.4082 | 0.7085 | −0.1270 | 0.038* | |
C34 | −0.20313 (15) | 0.71655 (13) | −0.11116 (12) | 0.0256 (3) | |
H34 | −0.1610 | 0.6586 | −0.1511 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.01871 (5) | 0.01729 (5) | 0.01588 (4) | −0.00169 (3) | −0.00165 (3) | −0.00279 (3) |
S1 | 0.02930 (17) | 0.01917 (15) | 0.02176 (15) | 0.00255 (12) | −0.00751 (13) | −0.00641 (12) |
S2 | 0.02570 (16) | 0.02023 (15) | 0.02146 (15) | 0.00247 (12) | −0.00597 (13) | −0.00562 (12) |
N1 | 0.0248 (5) | 0.0254 (6) | 0.0181 (5) | 0.0031 (4) | −0.0055 (4) | −0.0067 (4) |
C1 | 0.0213 (6) | 0.0199 (6) | 0.0164 (6) | −0.0022 (5) | −0.0008 (5) | −0.0034 (5) |
C2 | 0.0258 (7) | 0.0334 (8) | 0.0221 (7) | 0.0085 (6) | −0.0061 (5) | −0.0070 (6) |
C3 | 0.0267 (7) | 0.0236 (6) | 0.0234 (6) | 0.0049 (5) | −0.0075 (5) | −0.0085 (5) |
C4 | 0.0242 (7) | 0.0363 (8) | 0.0281 (7) | 0.0037 (6) | −0.0081 (6) | −0.0044 (6) |
C5 | 0.0348 (8) | 0.0473 (10) | 0.0287 (8) | 0.0094 (7) | −0.0119 (7) | −0.0003 (7) |
C6 | 0.0443 (9) | 0.0324 (8) | 0.0345 (9) | 0.0058 (7) | −0.0027 (7) | 0.0039 (7) |
C7 | 0.0360 (8) | 0.0285 (8) | 0.0507 (11) | −0.0051 (6) | −0.0076 (8) | −0.0026 (7) |
C8 | 0.0331 (8) | 0.0281 (7) | 0.0384 (9) | −0.0019 (6) | −0.0158 (7) | −0.0078 (7) |
C9 | 0.0276 (7) | 0.0302 (7) | 0.0204 (6) | −0.0024 (5) | −0.0055 (5) | −0.0095 (6) |
C10 | 0.0392 (8) | 0.0292 (7) | 0.0190 (6) | −0.0071 (6) | 0.0008 (6) | −0.0075 (6) |
C11 | 0.0238 (6) | 0.0262 (7) | 0.0173 (6) | −0.0025 (5) | −0.0016 (5) | −0.0050 (5) |
C12 | 0.0318 (7) | 0.0289 (7) | 0.0173 (6) | −0.0015 (6) | −0.0034 (5) | −0.0012 (5) |
C13 | 0.0329 (8) | 0.0406 (8) | 0.0177 (6) | −0.0091 (6) | −0.0030 (6) | −0.0078 (6) |
C14 | 0.0316 (7) | 0.0323 (8) | 0.0296 (8) | −0.0094 (6) | 0.0037 (6) | −0.0132 (6) |
C15 | 0.0322 (7) | 0.0253 (7) | 0.0315 (8) | −0.0013 (6) | −0.0025 (6) | −0.0032 (6) |
C16 | 0.0313 (7) | 0.0309 (7) | 0.0191 (6) | −0.0008 (6) | −0.0079 (5) | −0.0014 (5) |
C17 | 0.0188 (6) | 0.0201 (6) | 0.0204 (6) | −0.0017 (4) | −0.0007 (5) | −0.0043 (5) |
C18 | 0.0247 (6) | 0.0219 (6) | 0.0214 (6) | −0.0005 (5) | −0.0059 (5) | −0.0043 (5) |
C19 | 0.0280 (7) | 0.0350 (8) | 0.0239 (7) | −0.0028 (6) | −0.0057 (6) | −0.0111 (6) |
C20 | 0.0306 (7) | 0.0329 (8) | 0.0358 (8) | −0.0073 (6) | −0.0007 (6) | −0.0184 (7) |
C21 | 0.0368 (8) | 0.0213 (7) | 0.0355 (8) | −0.0087 (6) | 0.0034 (7) | −0.0082 (6) |
C22 | 0.0291 (7) | 0.0224 (6) | 0.0219 (6) | −0.0052 (5) | 0.0018 (5) | −0.0037 (5) |
C23 | 0.0213 (6) | 0.0220 (6) | 0.0163 (6) | −0.0052 (5) | −0.0045 (5) | −0.0026 (5) |
C24 | 0.0401 (8) | 0.0226 (7) | 0.0235 (7) | −0.0042 (6) | −0.0003 (6) | −0.0072 (6) |
C25 | 0.0680 (12) | 0.0241 (7) | 0.0330 (9) | −0.0168 (8) | −0.0050 (8) | −0.0051 (7) |
C26 | 0.0520 (11) | 0.0491 (11) | 0.0348 (9) | −0.0343 (9) | −0.0072 (8) | 0.0039 (8) |
C27 | 0.0230 (7) | 0.0605 (12) | 0.0408 (10) | −0.0135 (7) | −0.0005 (7) | 0.0044 (9) |
C28 | 0.0207 (6) | 0.0349 (8) | 0.0315 (8) | −0.0002 (6) | −0.0023 (6) | 0.0003 (6) |
C29 | 0.0196 (6) | 0.0180 (6) | 0.0180 (6) | −0.0014 (4) | −0.0014 (5) | 0.0003 (5) |
C30 | 0.0249 (6) | 0.0223 (6) | 0.0288 (7) | 0.0006 (5) | −0.0033 (5) | −0.0065 (6) |
C31 | 0.0257 (7) | 0.0266 (7) | 0.0391 (9) | 0.0043 (6) | 0.0012 (6) | −0.0073 (6) |
C32 | 0.0194 (6) | 0.0285 (7) | 0.0411 (9) | 0.0002 (5) | −0.0004 (6) | 0.0013 (6) |
C33 | 0.0235 (7) | 0.0336 (8) | 0.0392 (9) | −0.0053 (6) | −0.0079 (6) | −0.0050 (7) |
C34 | 0.0236 (6) | 0.0255 (7) | 0.0276 (7) | −0.0026 (5) | −0.0039 (5) | −0.0055 (6) |
Sn—C23 | 2.1309 (13) | C14—H14 | 0.9500 |
Sn—C29 | 2.1469 (13) | C15—C16 | 1.380 (2) |
Sn—C17 | 2.1696 (13) | C15—H15 | 0.9500 |
Sn—S1 | 2.4886 (4) | C16—H16 | 0.9500 |
Sn—S2 | 2.9120 (3) | C17—C18 | 1.3947 (19) |
S1—C1 | 1.7532 (13) | C17—C22 | 1.4003 (19) |
S2—C1 | 1.6902 (13) | C18—C19 | 1.3949 (19) |
N1—C1 | 1.3305 (18) | C18—H18 | 0.9500 |
N1—C9 | 1.4739 (17) | C19—C20 | 1.387 (2) |
N1—C2 | 1.4739 (17) | C19—H19 | 0.9500 |
C2—C3 | 1.508 (2) | C20—C21 | 1.383 (2) |
C2—H2A | 0.9900 | C20—H20 | 0.9500 |
C2—H2B | 0.9900 | C21—C22 | 1.393 (2) |
C3—C4 | 1.388 (2) | C21—H21 | 0.9500 |
C3—C8 | 1.395 (2) | C22—H22 | 0.9500 |
C4—C5 | 1.387 (2) | C23—C24 | 1.3922 (19) |
C4—H4 | 0.9500 | C23—C28 | 1.3932 (19) |
C5—C6 | 1.379 (3) | C24—C25 | 1.388 (2) |
C5—H5 | 0.9500 | C24—H24 | 0.9500 |
C6—C7 | 1.385 (3) | C25—C26 | 1.376 (3) |
C6—H6 | 0.9500 | C25—H25 | 0.9500 |
C7—C8 | 1.376 (2) | C26—C27 | 1.378 (3) |
C7—H7 | 0.9500 | C26—H26 | 0.9500 |
C8—H8 | 0.9500 | C27—C28 | 1.388 (2) |
C9—C10 | 1.533 (2) | C27—H27 | 0.9500 |
C9—H9A | 0.9900 | C28—H28 | 0.9500 |
C9—H9B | 0.9900 | C29—C30 | 1.3915 (18) |
C10—C11 | 1.5102 (19) | C29—C34 | 1.3952 (19) |
C10—H10A | 0.9900 | C30—C31 | 1.392 (2) |
C10—H10B | 0.9900 | C30—H30 | 0.9500 |
C11—C12 | 1.3869 (19) | C31—C32 | 1.385 (2) |
C11—C16 | 1.394 (2) | C31—H31 | 0.9500 |
C12—C13 | 1.391 (2) | C32—C33 | 1.383 (2) |
C12—H12 | 0.9500 | C32—H32 | 0.9500 |
C13—C14 | 1.378 (2) | C33—C34 | 1.391 (2) |
C13—H13 | 0.9500 | C33—H33 | 0.9500 |
C14—C15 | 1.387 (2) | C34—H34 | 0.9500 |
C23—Sn—C29 | 118.33 (5) | C13—C14—C15 | 119.82 (14) |
C23—Sn—C17 | 106.09 (5) | C13—C14—H14 | 120.1 |
C29—Sn—C17 | 101.34 (5) | C15—C14—H14 | 120.1 |
C23—Sn—S1 | 108.24 (4) | C16—C15—C14 | 120.25 (15) |
C29—Sn—S1 | 124.31 (4) | C16—C15—H15 | 119.9 |
C17—Sn—S1 | 92.98 (4) | C14—C15—H15 | 119.9 |
C23—Sn—S2 | 85.28 (3) | C15—C16—C11 | 120.67 (14) |
C29—Sn—S2 | 88.48 (4) | C15—C16—H16 | 119.7 |
C17—Sn—S2 | 158.55 (4) | C11—C16—H16 | 119.7 |
S1—Sn—S2 | 65.919 (10) | C18—C17—C22 | 118.10 (12) |
C1—S1—Sn | 93.73 (5) | C18—C17—Sn | 120.38 (10) |
C1—S2—Sn | 81.22 (5) | C22—C17—Sn | 121.39 (10) |
C1—N1—C9 | 120.43 (11) | C17—C18—C19 | 121.14 (13) |
C1—N1—C2 | 123.71 (11) | C17—C18—H18 | 119.4 |
C9—N1—C2 | 115.81 (11) | C19—C18—H18 | 119.4 |
N1—C1—S2 | 122.25 (10) | C20—C19—C18 | 119.81 (14) |
N1—C1—S1 | 119.24 (10) | C20—C19—H19 | 120.1 |
S2—C1—S1 | 118.51 (8) | C18—C19—H19 | 120.1 |
N1—C2—C3 | 112.93 (11) | C21—C20—C19 | 119.96 (14) |
N1—C2—H2A | 109.0 | C21—C20—H20 | 120.0 |
C3—C2—H2A | 109.0 | C19—C20—H20 | 120.0 |
N1—C2—H2B | 109.0 | C20—C21—C22 | 120.16 (14) |
C3—C2—H2B | 109.0 | C20—C21—H21 | 119.9 |
H2A—C2—H2B | 107.8 | C22—C21—H21 | 119.9 |
C4—C3—C8 | 118.84 (15) | C21—C22—C17 | 120.82 (14) |
C4—C3—C2 | 120.27 (14) | C21—C22—H22 | 119.6 |
C8—C3—C2 | 120.88 (13) | C17—C22—H22 | 119.6 |
C5—C4—C3 | 120.38 (15) | C24—C23—C28 | 118.41 (13) |
C5—C4—H4 | 119.8 | C24—C23—Sn | 122.40 (10) |
C3—C4—H4 | 119.8 | C28—C23—Sn | 119.16 (10) |
C6—C5—C4 | 120.19 (16) | C23—C24—C25 | 120.47 (15) |
C6—C5—H5 | 119.9 | C23—C24—H24 | 119.8 |
C4—C5—H5 | 119.9 | C25—C24—H24 | 119.8 |
C5—C6—C7 | 119.79 (17) | C26—C25—C24 | 120.40 (16) |
C5—C6—H6 | 120.1 | C26—C25—H25 | 119.8 |
C7—C6—H6 | 120.1 | C24—C25—H25 | 119.8 |
C8—C7—C6 | 120.22 (17) | C25—C26—C27 | 119.89 (16) |
C8—C7—H7 | 119.9 | C25—C26—H26 | 120.1 |
C6—C7—H7 | 119.9 | C27—C26—H26 | 120.1 |
C7—C8—C3 | 120.55 (15) | C28—C27—C26 | 120.08 (16) |
C7—C8—H8 | 119.7 | C28—C27—H27 | 120.0 |
C3—C8—H8 | 119.7 | C26—C27—H27 | 120.0 |
N1—C9—C10 | 112.51 (12) | C27—C28—C23 | 120.74 (15) |
N1—C9—H9A | 109.1 | C27—C28—H28 | 119.6 |
C10—C9—H9A | 109.1 | C23—C28—H28 | 119.6 |
N1—C9—H9B | 109.1 | C30—C29—C34 | 118.28 (12) |
C10—C9—H9B | 109.1 | C30—C29—Sn | 124.91 (10) |
H9A—C9—H9B | 107.8 | C34—C29—Sn | 116.54 (9) |
C11—C10—C9 | 111.70 (12) | C31—C30—C29 | 120.74 (14) |
C11—C10—H10A | 109.3 | C31—C30—H30 | 119.6 |
C9—C10—H10A | 109.3 | C29—C30—H30 | 119.6 |
C11—C10—H10B | 109.3 | C30—C31—C32 | 120.27 (14) |
C9—C10—H10B | 109.3 | C30—C31—H31 | 119.9 |
H10A—C10—H10B | 107.9 | C32—C31—H31 | 119.9 |
C12—C11—C16 | 118.47 (13) | C33—C32—C31 | 119.65 (14) |
C12—C11—C10 | 120.88 (13) | C33—C32—H32 | 120.2 |
C16—C11—C10 | 120.65 (13) | C31—C32—H32 | 120.2 |
C11—C12—C13 | 120.94 (14) | C32—C33—C34 | 120.05 (15) |
C11—C12—H12 | 119.5 | C32—C33—H33 | 120.0 |
C13—C12—H12 | 119.5 | C34—C33—H33 | 120.0 |
C14—C13—C12 | 119.83 (14) | C33—C34—C29 | 120.98 (13) |
C14—C13—H13 | 120.1 | C33—C34—H34 | 119.5 |
C12—C13—H13 | 120.1 | C29—C34—H34 | 119.5 |
C9—N1—C1—S2 | 1.80 (18) | C13—C14—C15—C16 | 0.8 (2) |
C2—N1—C1—S2 | −175.36 (11) | C14—C15—C16—C11 | 0.1 (2) |
C9—N1—C1—S1 | −178.87 (10) | C12—C11—C16—C15 | −1.2 (2) |
C2—N1—C1—S1 | 3.97 (19) | C10—C11—C16—C15 | 178.66 (14) |
Sn—S2—C1—N1 | 172.23 (12) | C22—C17—C18—C19 | −0.1 (2) |
Sn—S2—C1—S1 | −7.10 (7) | Sn—C17—C18—C19 | −175.86 (10) |
Sn—S1—C1—N1 | −171.12 (11) | C17—C18—C19—C20 | 0.8 (2) |
Sn—S1—C1—S2 | 8.24 (8) | C18—C19—C20—C21 | −0.9 (2) |
C1—N1—C2—C3 | −114.69 (15) | C19—C20—C21—C22 | 0.2 (2) |
C9—N1—C2—C3 | 68.04 (16) | C20—C21—C22—C17 | 0.6 (2) |
N1—C2—C3—C4 | −122.90 (15) | C18—C17—C22—C21 | −0.6 (2) |
N1—C2—C3—C8 | 58.25 (18) | Sn—C17—C22—C21 | 175.12 (11) |
C8—C3—C4—C5 | 1.6 (2) | C28—C23—C24—C25 | −0.4 (2) |
C2—C3—C4—C5 | −177.25 (14) | Sn—C23—C24—C25 | 177.51 (12) |
C3—C4—C5—C6 | −0.4 (3) | C23—C24—C25—C26 | −0.2 (3) |
C4—C5—C6—C7 | −1.1 (3) | C24—C25—C26—C27 | 0.6 (3) |
C5—C6—C7—C8 | 1.2 (3) | C25—C26—C27—C28 | −0.2 (3) |
C6—C7—C8—C3 | 0.1 (3) | C26—C27—C28—C23 | −0.4 (3) |
C4—C3—C8—C7 | −1.5 (2) | C24—C23—C28—C27 | 0.7 (2) |
C2—C3—C8—C7 | 177.40 (14) | Sn—C23—C28—C27 | −177.25 (13) |
C1—N1—C9—C10 | 79.44 (17) | C34—C29—C30—C31 | −0.8 (2) |
C2—N1—C9—C10 | −103.19 (15) | Sn—C29—C30—C31 | 173.03 (12) |
N1—C9—C10—C11 | −171.97 (12) | C29—C30—C31—C32 | −0.4 (2) |
C9—C10—C11—C12 | −113.86 (16) | C30—C31—C32—C33 | 1.4 (2) |
C9—C10—C11—C16 | 66.32 (19) | C31—C32—C33—C34 | −1.0 (2) |
C16—C11—C12—C13 | 1.4 (2) | C32—C33—C34—C29 | −0.2 (2) |
C10—C11—C12—C13 | −178.42 (14) | C30—C29—C34—C33 | 1.2 (2) |
C11—C12—C13—C14 | −0.5 (2) | Sn—C29—C34—C33 | −173.21 (12) |
C12—C13—C14—C15 | −0.6 (2) |
Cg1 and Cg2 are the centroids of the C17–C22 and C23–C28 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···Cg1i | 0.95 | 2.63 | 3.4732 (17) | 148 |
C13—H13···Cg2ii | 0.95 | 2.62 | 3.5227 (17) | 159 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y, z+1. |
[Sn(C6H5)3(C7H14NO2S2)] | Z = 2 |
Mr = 558.35 | F(000) = 568 |
Triclinic, P1 | Dx = 1.503 Mg m−3 |
a = 9.6703 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.8015 (2) Å | Cell parameters from 22178 reflections |
c = 13.8515 (3) Å | θ = 3.5–31.4° |
α = 95.092 (2)° | µ = 1.23 mm−1 |
β = 99.467 (2)° | T = 147 K |
γ = 105.841 (2)° | Slab, colourless |
V = 1233.41 (5) Å3 | 0.50 × 0.50 × 0.20 mm |
Agilent Technologies SuperNova Dual diffractometer with an Atlas detector | 7773 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 7157 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.035 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 31.7°, θmin = 3.4° |
ω scan | h = −14→14 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2015) | k = −14→14 |
Tmin = 0.722, Tmax = 1.000 | l = −20→20 |
35286 measured reflections |
Refinement on F2 | 18 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters constrained |
wR(F2) = 0.056 | w = 1/[σ2(Fo2) + (0.0258P)2 + 0.4182P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
7773 reflections | Δρmax = 0.55 e Å−3 |
290 parameters | Δρmin = −0.61 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Sn | 0.39512 (2) | 0.60246 (2) | 0.81652 (2) | 0.01772 (3) | |
S1 | 0.25030 (4) | 0.72645 (4) | 0.71341 (3) | 0.02167 (7) | |
S2 | 0.40147 (5) | 0.56965 (4) | 0.59282 (3) | 0.02642 (8) | |
O1 | 0.32503 (13) | 0.89169 (13) | 0.37430 (9) | 0.0305 (3) | |
C1 | 0.28578 (16) | 0.66905 (15) | 0.59818 (10) | 0.0193 (3) | |
C2 | 0.23365 (17) | 0.66021 (16) | 0.41897 (11) | 0.0232 (3) | |
H2A | 0.1416 | 0.6499 | 0.3716 | 0.028* | |
H2B | 0.2501 | 0.5648 | 0.4179 | 0.028* | |
C3 | 0.35905 (18) | 0.76178 (17) | 0.38579 (12) | 0.0260 (3) | |
H3A | 0.4505 | 0.7801 | 0.4356 | 0.031* | |
H3B | 0.3740 | 0.7191 | 0.3223 | 0.031* | |
C4 | 0.4413 (2) | 0.9955 (2) | 0.34738 (15) | 0.0396 (4) | |
H4A | 0.5295 | 1.0166 | 0.3991 | 0.059* | |
H4B | 0.4133 | 1.0834 | 0.3397 | 0.059* | |
H4C | 0.4612 | 0.9581 | 0.2848 | 0.059* | |
N1 | 0.21672 (13) | 0.70856 (13) | 0.51881 (9) | 0.0192 (2) | 0.569 (2) |
C5 | 0.12069 (19) | 0.8002 (2) | 0.52550 (12) | 0.0312 (4) | 0.569 (2) |
H5A | 0.1610 | 0.8662 | 0.5884 | 0.037* | 0.569 (2) |
H5B | 0.1316 | 0.8599 | 0.4716 | 0.037* | 0.569 (2) |
C6 | −0.0309 (3) | 0.7431 (3) | 0.5215 (2) | 0.0246 (5) | 0.569 (2) |
H6A | −0.0480 | 0.6835 | 0.5749 | 0.030* | 0.569 (2) |
H6B | −0.0783 | 0.6824 | 0.4572 | 0.030* | 0.569 (2) |
O2 | −0.0900 (2) | 0.8591 (3) | 0.53320 (18) | 0.0365 (4) | 0.569 (2) |
C7 | −0.2292 (3) | 0.8147 (2) | 0.50101 (19) | 0.0547 (6) | 0.569 (2) |
H7A | −0.2693 | 0.8963 | 0.5028 | 0.082* | 0.569 (2) |
H7B | −0.2748 | 0.7471 | 0.5428 | 0.082* | 0.569 (2) |
H7C | −0.2499 | 0.7667 | 0.4329 | 0.082* | 0.569 (2) |
N1' | 0.21672 (13) | 0.70856 (13) | 0.51881 (9) | 0.0192 (2) | 0.431 (2) |
C5' | 0.12069 (19) | 0.8002 (2) | 0.52550 (12) | 0.0312 (4) | 0.431 (2) |
H5C | 0.1118 | 0.8508 | 0.4671 | 0.037* | 0.431 (2) |
H5D | 0.1553 | 0.8710 | 0.5863 | 0.037* | 0.431 (2) |
C6' | −0.0389 (4) | 0.6765 (4) | 0.5286 (3) | 0.0246 (5) | 0.431 (2) |
H6C | −0.0856 | 0.6263 | 0.4611 | 0.030* | 0.431 (2) |
H6D | −0.0192 | 0.6046 | 0.5706 | 0.030* | 0.431 (2) |
O2' | −0.1349 (3) | 0.7437 (3) | 0.5672 (2) | 0.0365 (4) | 0.431 (2) |
C7' | −0.2292 (3) | 0.8147 (2) | 0.50101 (19) | 0.0547 (6) | 0.431 (2) |
H7D | −0.1720 | 0.8653 | 0.4560 | 0.082* | 0.431 (2) |
H7E | −0.2602 | 0.8830 | 0.5422 | 0.082* | 0.431 (2) |
H7F | −0.3159 | 0.7412 | 0.4625 | 0.082* | 0.431 (2) |
C8 | 0.29263 (16) | 0.37698 (15) | 0.78961 (10) | 0.0188 (3) | |
C9 | 0.14085 (17) | 0.32430 (17) | 0.75699 (11) | 0.0238 (3) | |
H9 | 0.0851 | 0.3895 | 0.7456 | 0.029* | |
C10 | 0.07039 (18) | 0.17834 (18) | 0.74106 (12) | 0.0278 (3) | |
H10 | −0.0327 | 0.1440 | 0.7177 | 0.033* | |
C11 | 0.1507 (2) | 0.08271 (17) | 0.75925 (12) | 0.0292 (3) | |
H11 | 0.1028 | −0.0174 | 0.7484 | 0.035* | |
C12 | 0.3002 (2) | 0.13313 (17) | 0.79310 (13) | 0.0294 (3) | |
H12 | 0.3548 | 0.0674 | 0.8064 | 0.035* | |
C13 | 0.37211 (17) | 0.27965 (16) | 0.80794 (11) | 0.0236 (3) | |
H13 | 0.4753 | 0.3132 | 0.8306 | 0.028* | |
C14 | 0.32522 (16) | 0.67665 (15) | 0.94660 (10) | 0.0194 (3) | |
C15 | 0.23729 (18) | 0.57911 (17) | 0.99534 (12) | 0.0259 (3) | |
H15 | 0.2122 | 0.4795 | 0.9727 | 0.031* | |
C16 | 0.1859 (2) | 0.6256 (2) | 1.07644 (13) | 0.0328 (4) | |
H16 | 0.1258 | 0.5579 | 1.1086 | 0.039* | |
C17 | 0.22211 (19) | 0.7699 (2) | 1.11016 (12) | 0.0321 (4) | |
H17 | 0.1880 | 0.8017 | 1.1661 | 0.038* | |
C18 | 0.30798 (19) | 0.86851 (18) | 1.06277 (12) | 0.0287 (3) | |
H18 | 0.3324 | 0.9680 | 1.0859 | 0.034* | |
C19 | 0.35860 (17) | 0.82221 (16) | 0.98128 (11) | 0.0233 (3) | |
H19 | 0.4168 | 0.8907 | 0.9487 | 0.028* | |
C20 | 0.62870 (16) | 0.68280 (16) | 0.84325 (11) | 0.0214 (3) | |
C21 | 0.71474 (19) | 0.6659 (2) | 0.77435 (13) | 0.0339 (4) | |
H21 | 0.6690 | 0.6197 | 0.7092 | 0.041* | |
C22 | 0.8665 (2) | 0.7157 (3) | 0.79983 (15) | 0.0433 (5) | |
H22 | 0.9237 | 0.7029 | 0.7521 | 0.052* | |
C23 | 0.93509 (19) | 0.7839 (2) | 0.89410 (14) | 0.0373 (4) | |
H23 | 1.0390 | 0.8178 | 0.9112 | 0.045* | |
C24 | 0.85144 (19) | 0.80232 (19) | 0.96333 (13) | 0.0316 (4) | |
H24 | 0.8978 | 0.8494 | 1.0282 | 0.038* | |
C25 | 0.69961 (17) | 0.75194 (17) | 0.93803 (12) | 0.0246 (3) | |
H25 | 0.6430 | 0.7648 | 0.9861 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.01785 (5) | 0.01692 (5) | 0.01786 (5) | 0.00513 (4) | 0.00269 (3) | 0.00099 (3) |
S1 | 0.02585 (18) | 0.02457 (17) | 0.01802 (16) | 0.01231 (14) | 0.00542 (13) | 0.00314 (13) |
S2 | 0.0303 (2) | 0.02931 (19) | 0.02422 (18) | 0.01682 (16) | 0.00519 (15) | 0.00213 (14) |
O1 | 0.0326 (6) | 0.0268 (6) | 0.0351 (6) | 0.0064 (5) | 0.0169 (5) | 0.0082 (5) |
C1 | 0.0189 (7) | 0.0177 (6) | 0.0196 (7) | 0.0029 (5) | 0.0037 (5) | 0.0009 (5) |
C2 | 0.0262 (7) | 0.0245 (7) | 0.0168 (7) | 0.0056 (6) | 0.0029 (5) | 0.0002 (5) |
C3 | 0.0256 (8) | 0.0318 (8) | 0.0222 (7) | 0.0092 (6) | 0.0080 (6) | 0.0036 (6) |
C4 | 0.0422 (11) | 0.0335 (9) | 0.0382 (10) | −0.0034 (8) | 0.0184 (8) | 0.0051 (8) |
N1 | 0.0194 (6) | 0.0211 (6) | 0.0174 (6) | 0.0059 (5) | 0.0041 (4) | 0.0027 (4) |
C5 | 0.0347 (9) | 0.0456 (10) | 0.0231 (8) | 0.0263 (8) | 0.0067 (6) | 0.0086 (7) |
C6 | 0.0210 (9) | 0.0262 (14) | 0.0283 (10) | 0.0093 (12) | 0.0059 (7) | 0.0029 (12) |
O2 | 0.0243 (9) | 0.0392 (9) | 0.0445 (11) | 0.0119 (8) | 0.0048 (7) | −0.0067 (8) |
C7 | 0.0675 (16) | 0.0340 (11) | 0.0552 (14) | 0.0097 (10) | 0.0002 (11) | 0.0056 (10) |
N1' | 0.0194 (6) | 0.0211 (6) | 0.0174 (6) | 0.0059 (5) | 0.0041 (4) | 0.0027 (4) |
C5' | 0.0347 (9) | 0.0456 (10) | 0.0231 (8) | 0.0263 (8) | 0.0067 (6) | 0.0086 (7) |
C6' | 0.0210 (9) | 0.0262 (14) | 0.0283 (10) | 0.0093 (12) | 0.0059 (7) | 0.0029 (12) |
O2' | 0.0243 (9) | 0.0392 (9) | 0.0445 (11) | 0.0119 (8) | 0.0048 (7) | −0.0067 (8) |
C7' | 0.0675 (16) | 0.0340 (11) | 0.0552 (14) | 0.0097 (10) | 0.0002 (11) | 0.0056 (10) |
C8 | 0.0220 (7) | 0.0188 (6) | 0.0155 (6) | 0.0062 (5) | 0.0038 (5) | 0.0006 (5) |
C9 | 0.0216 (7) | 0.0254 (7) | 0.0231 (7) | 0.0065 (6) | 0.0027 (5) | 0.0006 (6) |
C10 | 0.0235 (8) | 0.0290 (8) | 0.0254 (8) | 0.0000 (6) | 0.0058 (6) | −0.0021 (6) |
C11 | 0.0390 (9) | 0.0193 (7) | 0.0273 (8) | 0.0025 (6) | 0.0133 (7) | −0.0003 (6) |
C12 | 0.0383 (9) | 0.0221 (7) | 0.0330 (9) | 0.0139 (7) | 0.0127 (7) | 0.0049 (6) |
C13 | 0.0242 (7) | 0.0239 (7) | 0.0240 (7) | 0.0094 (6) | 0.0050 (6) | 0.0026 (6) |
C14 | 0.0196 (7) | 0.0205 (6) | 0.0177 (6) | 0.0060 (5) | 0.0028 (5) | 0.0024 (5) |
C15 | 0.0294 (8) | 0.0217 (7) | 0.0246 (7) | 0.0037 (6) | 0.0052 (6) | 0.0050 (6) |
C16 | 0.0325 (9) | 0.0393 (9) | 0.0264 (8) | 0.0049 (7) | 0.0126 (7) | 0.0096 (7) |
C17 | 0.0299 (9) | 0.0455 (10) | 0.0225 (8) | 0.0127 (7) | 0.0094 (6) | 0.0002 (7) |
C18 | 0.0330 (9) | 0.0273 (8) | 0.0258 (8) | 0.0109 (7) | 0.0056 (6) | −0.0037 (6) |
C19 | 0.0247 (7) | 0.0208 (7) | 0.0231 (7) | 0.0043 (6) | 0.0064 (6) | 0.0016 (5) |
C20 | 0.0197 (7) | 0.0213 (7) | 0.0225 (7) | 0.0054 (5) | 0.0029 (5) | 0.0040 (5) |
C21 | 0.0242 (8) | 0.0519 (11) | 0.0231 (8) | 0.0089 (7) | 0.0044 (6) | −0.0002 (7) |
C22 | 0.0242 (9) | 0.0731 (15) | 0.0324 (10) | 0.0107 (9) | 0.0105 (7) | 0.0088 (9) |
C23 | 0.0192 (8) | 0.0489 (11) | 0.0381 (10) | 0.0011 (7) | 0.0017 (7) | 0.0124 (8) |
C24 | 0.0270 (8) | 0.0325 (8) | 0.0289 (8) | 0.0040 (7) | −0.0039 (6) | 0.0029 (7) |
C25 | 0.0257 (8) | 0.0251 (7) | 0.0223 (7) | 0.0076 (6) | 0.0029 (6) | 0.0034 (6) |
Sn—C8 | 2.1312 (14) | C6'—H6D | 0.9900 |
Sn—C20 | 2.1357 (15) | O2'—C7' | 1.530 (4) |
Sn—C14 | 2.1608 (14) | C7'—H7D | 0.9800 |
Sn—S1 | 2.4612 (4) | C7'—H7E | 0.9800 |
Sn—S2 | 3.0992 (4) | C7'—H7F | 0.9800 |
S1—C1 | 1.7629 (14) | C8—C13 | 1.3945 (19) |
S2—C1 | 1.6781 (14) | C8—C9 | 1.397 (2) |
O1—C3 | 1.415 (2) | C9—C10 | 1.386 (2) |
O1—C4 | 1.421 (2) | C9—H9 | 0.9500 |
C1—N1' | 1.3340 (19) | C10—C11 | 1.386 (2) |
C1—N1 | 1.3340 (19) | C10—H10 | 0.9500 |
C2—N1' | 1.4712 (18) | C11—C12 | 1.379 (3) |
C2—N1 | 1.4712 (18) | C11—H11 | 0.9500 |
C2—C3 | 1.509 (2) | C12—C13 | 1.394 (2) |
C2—H2A | 0.9900 | C12—H12 | 0.9500 |
C2—H2B | 0.9900 | C13—H13 | 0.9500 |
C3—H3A | 0.9900 | C14—C19 | 1.395 (2) |
C3—H3B | 0.9900 | C14—C15 | 1.397 (2) |
C4—H4A | 0.9800 | C15—C16 | 1.390 (2) |
C4—H4B | 0.9800 | C15—H15 | 0.9500 |
C4—H4C | 0.9800 | C16—C17 | 1.379 (3) |
N1—C5 | 1.4651 (19) | C16—H16 | 0.9500 |
C5—C6 | 1.409 (3) | C17—C18 | 1.381 (3) |
C5—H5A | 0.9900 | C17—H17 | 0.9500 |
C5—H5B | 0.9900 | C18—C19 | 1.390 (2) |
C6—O2 | 1.414 (3) | C18—H18 | 0.9500 |
C6—H6A | 0.9900 | C19—H19 | 0.9500 |
C6—H6B | 0.9900 | C20—C21 | 1.393 (2) |
O2—C7 | 1.284 (3) | C20—C25 | 1.395 (2) |
C7—H7A | 0.9800 | C21—C22 | 1.387 (3) |
C7—H7B | 0.9800 | C21—H21 | 0.9500 |
C7—H7C | 0.9800 | C22—C23 | 1.382 (3) |
N1'—C5' | 1.4651 (19) | C22—H22 | 0.9500 |
C5'—C6' | 1.692 (5) | C23—C24 | 1.382 (3) |
C5'—H5C | 0.9900 | C23—H23 | 0.9500 |
C5'—H5D | 0.9900 | C24—C25 | 1.388 (2) |
C6'—O2' | 1.419 (4) | C24—H24 | 0.9500 |
C6'—H6C | 0.9900 | C25—H25 | 0.9500 |
C8—Sn—C20 | 119.54 (5) | O2'—C6'—C5' | 110.1 (3) |
C8—Sn—C14 | 104.97 (5) | O2'—C6'—H6C | 109.6 |
C20—Sn—C14 | 107.25 (6) | C5'—C6'—H6C | 109.6 |
C8—Sn—S1 | 110.54 (4) | O2'—C6'—H6D | 109.6 |
C20—Sn—S1 | 118.49 (4) | C5'—C6'—H6D | 109.6 |
C14—Sn—S1 | 90.94 (4) | H6C—C6'—H6D | 108.2 |
C8—Sn—S2 | 84.48 (4) | C6'—O2'—C7' | 121.0 (3) |
C20—Sn—S2 | 87.42 (4) | O2'—C7'—H7D | 109.5 |
C14—Sn—S2 | 154.45 (4) | O2'—C7'—H7E | 109.5 |
S1—Sn—S2 | 63.534 (11) | H7D—C7'—H7E | 109.5 |
C1—S1—Sn | 97.95 (5) | O2'—C7'—H7F | 109.5 |
C1—S2—Sn | 78.60 (5) | H7D—C7'—H7F | 109.5 |
C3—O1—C4 | 111.94 (14) | H7E—C7'—H7F | 109.5 |
N1'—C1—S2 | 123.54 (11) | C13—C8—C9 | 118.59 (14) |
N1—C1—S2 | 123.54 (11) | C13—C8—Sn | 121.76 (11) |
N1'—C1—S1 | 116.67 (10) | C9—C8—Sn | 119.58 (10) |
N1—C1—S1 | 116.67 (10) | C10—C9—C8 | 121.01 (14) |
S2—C1—S1 | 119.79 (9) | C10—C9—H9 | 119.5 |
N1'—C2—C3 | 112.94 (12) | C8—C9—H9 | 119.5 |
N1—C2—C3 | 112.94 (12) | C11—C10—C9 | 119.81 (15) |
N1—C2—H2A | 109.0 | C11—C10—H10 | 120.1 |
C3—C2—H2A | 109.0 | C9—C10—H10 | 120.1 |
N1—C2—H2B | 109.0 | C12—C11—C10 | 119.86 (15) |
C3—C2—H2B | 109.0 | C12—C11—H11 | 120.1 |
H2A—C2—H2B | 107.8 | C10—C11—H11 | 120.1 |
O1—C3—C2 | 108.64 (13) | C11—C12—C13 | 120.63 (15) |
O1—C3—H3A | 110.0 | C11—C12—H12 | 119.7 |
C2—C3—H3A | 110.0 | C13—C12—H12 | 119.7 |
O1—C3—H3B | 110.0 | C8—C13—C12 | 120.07 (15) |
C2—C3—H3B | 110.0 | C8—C13—H13 | 120.0 |
H3A—C3—H3B | 108.3 | C12—C13—H13 | 120.0 |
O1—C4—H4A | 109.5 | C19—C14—C15 | 117.90 (13) |
O1—C4—H4B | 109.5 | C19—C14—Sn | 121.67 (11) |
H4A—C4—H4B | 109.5 | C15—C14—Sn | 120.33 (10) |
O1—C4—H4C | 109.5 | C16—C15—C14 | 121.04 (15) |
H4A—C4—H4C | 109.5 | C16—C15—H15 | 119.5 |
H4B—C4—H4C | 109.5 | C14—C15—H15 | 119.5 |
C1—N1—C5 | 122.66 (12) | C17—C16—C15 | 119.95 (16) |
C1—N1—C2 | 120.73 (12) | C17—C16—H16 | 120.0 |
C5—N1—C2 | 116.61 (12) | C15—C16—H16 | 120.0 |
C6—C5—N1 | 122.02 (19) | C16—C17—C18 | 120.08 (15) |
C6—C5—H5A | 106.8 | C16—C17—H17 | 120.0 |
N1—C5—H5A | 106.8 | C18—C17—H17 | 120.0 |
C6—C5—H5B | 106.8 | C17—C18—C19 | 120.01 (15) |
N1—C5—H5B | 106.8 | C17—C18—H18 | 120.0 |
H5A—C5—H5B | 106.7 | C19—C18—H18 | 120.0 |
C5—C6—O2 | 107.8 (2) | C18—C19—C14 | 121.00 (15) |
C5—C6—H6A | 110.1 | C18—C19—H19 | 119.5 |
O2—C6—H6A | 110.1 | C14—C19—H19 | 119.5 |
C5—C6—H6B | 110.1 | C21—C20—C25 | 118.04 (14) |
O2—C6—H6B | 110.1 | C21—C20—Sn | 124.74 (12) |
H6A—C6—H6B | 108.5 | C25—C20—Sn | 117.17 (11) |
C7—O2—C6 | 109.2 (2) | C22—C21—C20 | 120.73 (16) |
O2—C7—H7A | 109.5 | C22—C21—H21 | 119.6 |
O2—C7—H7B | 109.5 | C20—C21—H21 | 119.6 |
H7A—C7—H7B | 109.5 | C23—C22—C21 | 120.52 (17) |
O2—C7—H7C | 109.5 | C23—C22—H22 | 119.7 |
H7A—C7—H7C | 109.5 | C21—C22—H22 | 119.7 |
H7B—C7—H7C | 109.5 | C22—C23—C24 | 119.56 (16) |
C1—N1'—C5' | 122.66 (12) | C22—C23—H23 | 120.2 |
C1—N1'—C2 | 120.73 (12) | C24—C23—H23 | 120.2 |
C5'—N1'—C2 | 116.61 (12) | C23—C24—C25 | 119.97 (16) |
N1'—C5'—C6' | 100.59 (18) | C23—C24—H24 | 120.0 |
N1'—C5'—H5C | 111.7 | C25—C24—H24 | 120.0 |
C6'—C5'—H5C | 111.7 | C24—C25—C20 | 121.18 (15) |
N1'—C5'—H5D | 111.7 | C24—C25—H25 | 119.4 |
C6'—C5'—H5D | 111.7 | C20—C25—H25 | 119.4 |
H5C—C5'—H5D | 109.4 | ||
Sn—S2—C1—N1' | −176.86 (13) | N1'—C5'—C6'—O2' | 160.9 (3) |
Sn—S2—C1—N1 | −176.86 (13) | C5'—C6'—O2'—C7' | 82.6 (3) |
Sn—S2—C1—S1 | 3.05 (7) | C13—C8—C9—C10 | −1.3 (2) |
Sn—S1—C1—N1' | 176.12 (10) | Sn—C8—C9—C10 | −178.46 (12) |
Sn—S1—C1—N1 | 176.12 (10) | C8—C9—C10—C11 | 1.1 (2) |
Sn—S1—C1—S2 | −3.80 (9) | C9—C10—C11—C12 | 0.0 (2) |
C4—O1—C3—C2 | 177.33 (13) | C10—C11—C12—C13 | −0.9 (3) |
N1'—C2—C3—O1 | −66.76 (16) | C9—C8—C13—C12 | 0.4 (2) |
N1—C2—C3—O1 | −66.76 (16) | Sn—C8—C13—C12 | 177.47 (12) |
S2—C1—N1—C5 | −177.49 (12) | C11—C12—C13—C8 | 0.7 (2) |
S1—C1—N1—C5 | 2.6 (2) | C19—C14—C15—C16 | −0.6 (2) |
S2—C1—N1—C2 | 2.9 (2) | Sn—C14—C15—C16 | −177.05 (13) |
S1—C1—N1—C2 | −177.05 (10) | C14—C15—C16—C17 | −0.3 (3) |
C3—C2—N1—C1 | −90.53 (17) | C15—C16—C17—C18 | 0.8 (3) |
C3—C2—N1—C5 | 89.80 (17) | C16—C17—C18—C19 | −0.3 (3) |
C1—N1—C5—C6 | −90.6 (2) | C17—C18—C19—C14 | −0.6 (2) |
C2—N1—C5—C6 | 89.0 (2) | C15—C14—C19—C18 | 1.1 (2) |
N1—C5—C6—O2 | 178.09 (18) | Sn—C14—C19—C18 | 177.44 (12) |
C5—C6—O2—C7 | 160.8 (2) | C25—C20—C21—C22 | 0.4 (3) |
S2—C1—N1'—C5' | −177.49 (12) | Sn—C20—C21—C22 | −176.82 (16) |
S1—C1—N1'—C5' | 2.6 (2) | C20—C21—C22—C23 | −0.3 (3) |
S2—C1—N1'—C2 | 2.9 (2) | C21—C22—C23—C24 | 0.0 (3) |
S1—C1—N1'—C2 | −177.05 (10) | C22—C23—C24—C25 | 0.3 (3) |
C3—C2—N1'—C1 | −90.53 (17) | C23—C24—C25—C20 | −0.2 (3) |
C3—C2—N1'—C5' | 89.80 (17) | C21—C20—C25—C24 | −0.1 (2) |
C1—N1'—C5'—C6' | −85.0 (2) | Sn—C20—C25—C24 | 177.30 (13) |
C2—N1'—C5'—C6' | 94.66 (19) |
Cg1 and Cg2 are the centroids of the C8–C13 and C14–C19 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7C···Cg1i | 0.98 | 2.94 | 3.821 (3) | 151 |
C13—H13···Cg2ii | 0.95 | 2.98 | 3.7979 (18) | 145 |
C23—H23···Cg2iii | 0.95 | 2.97 | 3.707 (2) | 136 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) x+1, y, z. |
Parameter | (I) | (II) |
Sn—S1 | 2.4886 (4) | 2.4612 (4) |
Sn—S2 | 2.9120 (3) | 3.0992 (4) |
Sn—C17 | 2.1696 (13) | – |
Sn—C23 | 2.1309 (13) | – |
Sn—C29 | 2.1469 (13) | – |
Sn—C8 | – | 2.1312 (14) |
Sn—C14 | – | 2.1608 (14) |
Sn—C20 | – | 2.1357 (15) |
C1—S1 | 1.7532 (13) | 1.7629 (14) |
C1—S2 | 1.6902 (13) | 1.6781 (14) |
S1—Sn—S2 | 65.919 (10) | 63.534 (11) |
S2—Sn—C17 | 158.55 (4) | – |
S2—Sn—C14 | – | 154.45 (4) |
Contact | (I) | (II) |
H···H | 59.4 | 62.5 |
C···H/H···C | 32.9 | 24.4 |
O···H/H···O | – | 4.7 |
S···H/H···S | 5.8 | 7.0 |
C···S/S···C | 0.4 | 0.0 |
N···H/H···N | 0.5 | 0.4 |
C···C | 0.9 | 0.0 |
S···S | 0.0 | 0.4 |
C···O/O···C | 0.1 | 0.1 |
O···O | 0.0 | 0.5 |
Acknowledgements
This work was supported by grant FRGS/2/2013/SKK10/UKM/02/1. We gratefully acknowledge the School of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia, for providing the essential laboratory facilities. We would also like to thank the laboratory assistants of the Faculty of Science and Technology, Universiti Kebangsaan Malaysia for technical support. Intensity data were collected in the University of Malaya's Crystallographic Laboratory.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA. Google Scholar
Ali, S., Zia-ur-Rehman, Muneeb-ur-Rehman, Khan, I., Shah, S. N. A., Ali, R. F., Shah, A., Badshah, A., Akbar, K. & Bélanger-Gariepy, F. (2014). J. Coord. Chem. 67, 3414–3430. CSD CrossRef CAS Google Scholar
Awang, N., Kosnon, N. A., Othman, H. & Kamaludin, N. F. (2012). Am. J. Appl. Sci. 9, 1214–1218. CrossRef CAS Google Scholar
Basu Baul, T. S., Singh, K. S., Holčapek, M., Jirásko, R., Linden, A., Song, X., Zapata, A. & Eng, G. (2005). Appl. Organomet. Chem. 19, 935–944. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hogarth, G., Rainford-Brent, E.-J. C.-R. C. R. & Richards, I. (2009). Inorg. Chim. Acta, 362, 1361–1364. CSD CrossRef CAS Google Scholar
Hook, J. M., Linahan, B. M., Taylor, R. L., Tiekink, E. R. T., van Gorkom, L. & Webster, L. K. (1994). Main Group Met. Chem. 17, 293–311. CrossRef CAS Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylo, C., Wolff, S. K., Chenai, C. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface. net/ Google Scholar
Kana, A. T., Hibbert, T. G., Mahon, M. F., Molloy, K. C., Parkin, I. P. & Price, L. S. (2001). Polyhedron, 20, 2989–2995. Web of Science CSD CrossRef CAS Google Scholar
Khan, N., Farina, Y., Mun, L. K., Rajab, N. F. & Awang, N. (2014). J. Mol. Struct. 1076, 403–410. Web of Science CSD CrossRef CAS Google Scholar
Khan, N., Farina, Y., Mun, L. K., Rajab, N. F. & Awang, N. (2015). Polyhedron, 85, 754–760. CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mohamad, R., Awang, N., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1130–1137. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muthalib, A. F. A., Baba, I. & Ibrahim, N. (2015). Malay. J. Anal. Sci. 19, 349–358. Google Scholar
Muthalib, A. F. A., Baba, I., Khaledi, H., Ali, H. M. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 39–46. Google Scholar
Naeem, S., Ogilvie, E., White, A. J. P., Hogarth, G. & Wilton-Ely, J. D. E. T. (2010). Dalton Trans. 39, 4080–4089. CSD CrossRef CAS PubMed Google Scholar
Ramasamy, K., Kuznetsov, V. L., Gopal, K., Malik, M. A., Raftery, J., Edwards, P. P. & O'Brien, P. (2013). Chem. Mater. 25, 266–276. Web of Science CSD CrossRef CAS Google Scholar
Rehman, Z., Shah, A., Muhammad, N., Ali, S., Qureshi, R., Meetsma, A. & Butler, I. S. (2009). Eur. J. Med. Chem. 44, 3986–3993. CSD CrossRef PubMed CAS Google Scholar
Safari, M., Yousefi, M., Jenkins, H. A., Torbati, M. B. & Amanzadeh, A. (2013). Med. Chem. Res. 22, 5730–5738. CSD CrossRef CAS Google Scholar
Sathiyaraj, E., Thirumaran, S. & Selvanayagam, S. (2012). Acta Cryst. E68, m1217. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, X., Duong, Q., Mitrojorgji, E., Zapata, A., Nguyen, N., Strickman, D., Glass, J. & Eng, E. (2004). Appl. Organomet. Chem. 18, 363–368. CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia. Google Scholar
Zia-ur-Rehman, Muhammad, N., Ali, S., Butler, I. S. & Meetsma, A. (2011). Inorg. Chim. Acta, 376, 381–388. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.