research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N-Benzyl-N-(2-phenyl­eth­yl)di­thio­carbamato-κ2S,S′]tri­phenyl­tin(IV) and [bis­­(2-meth­­oxy­eth­yl)di­thio­carbamato-κ2S,S′]tri­phenyl­tin(IV): crystal structures and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aBiomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, bEnvironmental Health and Industrial Safety Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and dResearch Centre for Chemical Crystallography, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 September 2016; accepted 21 September 2016; online 27 September 2016)

The crystal and mol­ecular structures of two tri­phenyl­tin di­thio­carbamates, [Sn(C6H5)3(C16H16NS2)], (I), and [Sn(C6H5)3(C7H14NO2S2)], (II), are described. In (I), the di­thio­carbamate ligand coordinates the SnIV atom in an asymmetric manner, leading to a highly distorted trigonal–bipyramidal coordination geometry defined by a C3S2 donor set with the weakly bound S atom approximately trans to one of the ipso-C atoms. A similar structure is found in (II), but the di­thio­carbamate ligand coordinates in an even more asymmetric fashion. The packing in (I) features supra­molecular chains along the c axis sustained by C—H⋯π inter­actions; chains pack with no directional inter­actions between them. In (II), supra­molecular layers are formed, similarly sustained by C—H⋯π inter­actions; these stack along the b axis. An analysis of the Hirshfeld surfaces for (I) and (II) confirms the presence of the C—H⋯π inter­actions but also reveals the overall dominance of H⋯H contacts in the respective crystals.

1. Chemical context

Among the varied motivations for investigating organotin di­thio­carbamate compounds, i.e. RnSn(S2CNRR′)4–n where R, R′ = alkyl, aryl, most relate to their biological activities and their usefulness as mol­ecular, single-source precursors for the formation of tin sulfide nanoparticles (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]). In terms of the latter, while triorganotin di­thio­carbamates, i.e. with n = 3, have been examined in this context (Kana et al., 2001[Kana, A. T., Hibbert, T. G., Mahon, M. F., Molloy, K. C., Parkin, I. P. & Price, L. S. (2001). Polyhedron, 20, 2989-2995.]), di- and mono-organotin derivatives often provide more effective precursors (Ramasamy et al., 2013[Ramasamy, K., Kuznetsov, V. L., Gopal, K., Malik, M. A., Raftery, J., Edwards, P. P. & O'Brien, P. (2013). Chem. Mater. 25, 266-276.]). By contrast, significant inter­est in the biological effects of triorganotin di­thio­carbamates continues. Hence, a wide variety of biological applications of triorganotin di­thio­carbamates, i.e. directly related to the title compounds, have been investigated. Thus, anti-bacterial (Muthalib et al., 2015[Muthalib, A. F. A., Baba, I. & Ibrahim, N. (2015). Malay. J. Anal. Sci. 19, 349-358.]), larvicidal (Song et al., 2004[Song, X., Duong, Q., Mitrojorgji, E., Zapata, A., Nguyen, N., Strickman, D., Glass, J. & Eng, E. (2004). Appl. Organomet. Chem. 18, 363-368.]), including against mosquito larvae (Basu Baul et al., 2005[Basu Baul, T. S., Singh, K. S., Holčapek, M., Jirásko, R., Linden, A., Song, X., Zapata, A. & Eng, G. (2005). Appl. Organomet. Chem. 19, 935-944.]), insecticidal (Awang et al., 2012[Awang, N., Kosnon, N. A., Othman, H. & Kamaludin, N. F. (2012). Am. J. Appl. Sci. 9, 1214-1218.]; Safari et al., 2013[Safari, M., Yousefi, M., Jenkins, H. A., Torbati, M. B. & Amanzadeh, A. (2013). Med. Chem. Res. 22, 5730-5738.]) and anti-leishmanial activities (Ali et al., 2014[Ali, S., Zia-ur-Rehman, Muneeb-ur-Rehman, Khan, I., Shah, S. N. A., Ali, R. F., Shah, A., Badshah, A., Akbar, K. & Bélanger-Gariepy, F. (2014). J. Coord. Chem. 67, 3414-3430.]) have been investigated. However, most activity has been directed towards evaluating their potential as anti-cancer agents (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]; Khan et al., 2014[Khan, N., Farina, Y., Mun, L. K., Rajab, N. F. & Awang, N. (2014). J. Mol. Struct. 1076, 403-410.], 2015[Khan, N., Farina, Y., Mun, L. K., Rajab, N. F. & Awang, N. (2015). Polyhedron, 85, 754-760.]). It was in this context and during on-going structural studies of organotin di­thio­carbamates (Muthalib et al., 2014[Muthalib, A. F. A., Baba, I., Khaledi, H., Ali, H. M. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 39-46.]; Mohamad et al., 2016[Mohamad, R., Awang, N., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1130-1137.]) that the title compounds were synthesized. Herein, the crystal and mol­ecular structures of (C6H5)3Sn[S2CN(Ben)CH2CH2Ph] (I)[link] and (C6H5)3Sn[S2CN(CH2CH2OMe)2] (II)[link] are reported along with a detailed analysis of the supra­molecular association operating in their crystal structures by means of Hirshfeld surface analysis.

[Scheme 1]

1.1. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link] and selected geometric parameters are collected in Table 1[link]. The tin atom is bound to three phenyl groups and to the di­thio­carbamate ligand. The latter coordinates asymmetrically with Δ(Sn—S), being the difference between the Sn—Slong and Sn—Sshort bond lengths, of 0.42 Å. This asymmetry is reflected in the relatively large disparity in the associated C—S bond lengths with the bond involving the tightly bound S1 atom being significantly longer than the bond involving the S2 atom, Table 1[link]. Such a great difference might imply a monodentate mode of coordination for the di­thio­carbamate ligand and the adoption of a tetra­hedral coordination geometry. However, the range of tetra­hedral angles if this were the case is over 30°, i.e. from a narrow 92.98 (4)° for S1—Sn—C17 to a wide 124.31 (4)° for S1—Sn—C29. The wide angle is due to the close approach to the tin atom of S2. Further, the Sn—C17 bond length is systematically longer than the other Sn—C bond lengths, an observation ascribed to the C17 atom being approximately trans to the incoming S2 atom, Table 1[link]. Thus, the coordination geometry is best described as being based on a C3S2 donor set. The geometry is not ideal with the value of τ of 0.57, cf. τ values of 0.0 and 1.0 for ideal square–pyramidal and trigonal–bipyramidal geometries, respectively (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), suggesting a small distortion towards trigonal–bipyramidal. Distortions from the ideal can be related to the disparate Sn—donor atom bond lengths and the acute chelate angle, Table 1[link].

Table 1
Geometric data (Å, °) for (I)[link] and (II)

Parameter (I) (II)
Sn—S1 2.4886 (4) 2.4612 (4)
Sn—S2 2.9120 (3) 3.0992 (4)
Sn—C17 2.1696 (13)
Sn—C23 2.1309 (13)
Sn—C29 2.1469 (13)
Sn—C8 2.1312 (14)
Sn—C14 2.1608 (14)
Sn—C20 2.1357 (15)
C1—S1 1.7532 (13) 1.7629 (14)
C1—S2 1.6902 (13) 1.6781 (14)
S1—Sn—S2 65.919 (10) 63.534 (11)
S2—Sn—C17 158.55 (4)
S2—Sn—C14 154.45 (4)
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

The mol­ecular structure of (II)[link] (Fig. 2[link]) bears many similarities with that just described for (I)[link]. The value of Δ(Sn—S) of 0.64 Å is even greater than that of (I)[link], indicating a more asymmetric mode of coordination of the di­thio­carbamate ligand. This difference is also reflected in the associated C—S bond lengths, following the same trend as for (I)[link] but, with Δ(C—S) of 0.08 Å cf. 0.06 Å for (I)[link]. This being stated, the Sn—C14 bond length of 2.1608 (14)°, with the C14 atom being trans to the S2 atom, is the longest of all six Sn—C bonds in (I)[link] and (II)[link]. The range of tetra­hedral angles, i.e. 90.94 (4)° for S1—Sn—C14 to 119.54 (5)° for C8—Sn—C20, is slightly narrower at less than 30°. The value of τ computes to 0.58, i.e. virtually identical to that in (I)[link].

[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. Only the major component of the disordered C5–C6–O2–C7 chain is shown, where atoms C6 and O2 are split over two positions.

2. Supra­molecular features

Despite there being five aromatic rings in the mol­ecule of (I)[link], the closest face-to-face contact between rings is > 4.0 Å. The only points of contact between mol­ecules in the mol­ecular packing identified by PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) are those of the type C—H⋯π. Each of the rings of the di­thio­carbamate ligand donates a hydrogen atom to a different tin-bound phenyl ring with the result that a supra­molecular chain is formed along the c-axis direction, Table 2[link] and Fig. 3[link]a. The chains pack without directional inter­actions between them, Fig. 3[link]b.

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of the C17–C22 and C23–C28 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg1i 0.95 2.63 3.4732 (17) 148
C13—H13⋯Cg2ii 0.95 2.62 3.5227 (17) 159
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y, z+1.
[Figure 3]
Figure 3
The mol­ecular packing in (I)[link]: (a) supra­molecular chain along the c axis sustained by di­thio­carbamate-phenyl-C—H⋯π(Sn-phen­yl) inter­actions shown as purple dashed lines and (b) a view of the unit-cell contents in projection down the c axis. In (a), the accepting rings are highlighted in purple and in (b), one chain is highlighted in space-filling mode.

Even though there are oxygen atoms in the mol­ecule of (II)[link], the supra­molecular association is dominated by C—H⋯π contacts involving methyl-C—H and Sn-bound-phenyl-C—H as donors and only two of the Sn-bound phenyl rings as acceptors, as the (C14–C19) ring accepts two inter­actions, Table 3[link]. The result of this association is the formation of supra­molecular layers in the ac plane, Fig. 4[link]a. The layers stack along the b axis without directional inter­actions between them, Fig. 4[link]b.

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 and Cg2 are the centroids of the C8–C13 and C14–C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7CCg1i 0.98 2.94 3.821 (3) 151
C13—H13⋯Cg2ii 0.95 2.98 3.7979 (18) 145
C23—H23⋯Cg2iii 0.95 2.97 3.707 (2) 136
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x+1, y, z.
[Figure 4]
Figure 4
The mol­ecular packing in (II)[link]: (a) supra­molecular layer parallel to the ac plane sustained by methyl- and Sn-phenyl-C—H⋯π(Sn-phen­yl) inter­actions shown as purple dashed lines and (b) a view of the unit-cell contents in projection down the a axis. In (a), the accepting rings are highlighted in purple and in (b), one layer is highlighted in space-filling mode.

3. Hirshfeld surface analysis

Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]) was used to generate Hirshfeld surfaces mapped over dnorm, shape-index and electrostatic potential. The electrostatic potentials were calculated using TONTO (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylo, C., Wolff, S. K., Chenai, C. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface. net/]) integrated into Crystal Explorer, wherein the respective experimental structure was used as the input to TONTO. Further, the electrostatic potentials were mapped on Hirshfeld surfaces using the STO-3G basis set at the Hartree–Fock level of theory over ranges ± 0.037 au. and ± 0.048 au. for (I)[link] and (II)[link], respectively. The contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively, enable the analysis of the inter­molecular inter­actions through the mapping of dnorm. The combination of de and di in the form of two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) provides a useful summary of inter­molecular contacts in the respective crystal.

The different shapes of Hirshfeld surfaces for mol­ecules (I)[link] and (II)[link] arise from the asymmetric geometries resulting from the different di­thio­carbamate-bound functional groups, i.e. phenyl and meth­oxy groups in (I)[link] and (II)[link], respectively, Fig. 5[link]. The images of the Hirshfeld surface mapped over electrostatic potential for (I)[link] and (II)[link] display dark-red and dark-blue regions, assigned to negative and positive potentials, respectively, and are localized near their respective functional groups. The absence of conventional hydrogen bonds in the crystals of (I)[link] and (II)[link] is consistent with the non-appearance of characteristic red-spots in the Hirshfeld surface mapped over dnorm (not shown). The curvature of the Hirshfeld surfaces around the phenyl rings participating as acceptors in the C—H⋯π contacts determine the strength of these inter­actions in the crystal packing. In the structure of (I)[link], the surfaces around the Sn-bound phenyl (C17–C22) and (C23–C28) rings are more concave than the equivalent rings participating in C—H⋯π inter­actions in (II)[link], indicating their greater influence upon packing, as seen in the shorter H⋯ring centroid separations, Tables 2[link] and 3[link]. This observation is also apparent from the Hirshfeld surfaces mapped over electrostatic potential corresponding to C⋯H contacts for (I)[link] and (II)[link], both showing red spots in the images of Fig. 6[link] correlating with their functioning as π-bond acceptors. The concave appearance of the Hirshfeld surface mapped over electrostatic potential around the Sn-bound phenyl ring (C14–C19) in the structure of (II)[link] is indicative of its participation in two C—H⋯ π inter­actions, i.e. with the H13 and H23 hydrogen atoms. The other C—H⋯π contact involves methyl-H7C atom as the donor and phenyl (C8–C13) ring as the acceptor. The shape-indexed Hirshfeld surfaces highlighting the C—H⋯π contacts are shown in Fig. 7[link].

[Figure 5]
Figure 5
Views of the Hirshfeld surfaces mapped over electrostatic potential (the red and blue regions represent negative and positive electrostatic potentials, respectively): (a) for (I)[link] and (b) for (II)[link].
[Figure 6]
Figure 6
Views of Hirshfeld surfaces mapped over electrostatic potential corresponding to C⋯H contacts (the red spots located near the phenyl rings indicate their contribution as π-bond donors in the C—H⋯π inter­actions) for: (a) (I)[link] and (b) (II)[link].
[Figure 7]
Figure 7
Views of Hirshfeld surfaces mapped over shape-index (a) for (I)[link] and (b) for (II)[link]. The different C—H⋯π contacts are labelled and indicated as dashed lines.

The overall two-dimensional fingerprint plots for (I)[link] and (II)[link] and those delineated into H⋯H, C⋯H/H⋯C and S⋯H/H⋯S contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 8[link]ad, respectively; their relative contributions are summarized in Table 4[link]. Although the distribution of points in the overall plots of (I)[link] and (II)[link] have almost same (de, di) ranges, i.e. between 1.2 and 2.6 Å, the densities and the areas of their distributions are different. It is evident from the data in Table 4[link] and the fingerprint plot delineated into H⋯H contacts in Fig. 8[link]b that these contacts make the most significant contribution to the Hirshfeld surfaces of both (I)[link] and (II)[link]. In the fingerprint plot of (I)[link] delineated into H⋯H contacts (Fig. 8[link]b), all the points are situated at the (de, di) distances greater than or equal to their van der Waals separations i.e. 2 x 1.2 Å, hence there is no propensity to form such inter­molecular contacts. The peak at (de, di) distances slightly less than van der Waals separations in the fingerprint plot for (II)[link] is due to a short inter­atomic H⋯H contact between symmetry-related meth­oxy- and di­thio­carbamate hydrogen atoms [H7A⋯H5Ai = 2.36 Å; symmetry code: (i) −x, 2 − y, 1 − z]. In the fingerprint plot delineated into C⋯H/H⋯C contacts for (I)[link], Fig. 8[link]c, the 32.9% contribution to the Hirshfeld surface and the symmetrical distribution of points showing bending of the pattern at (de + di)min ∼2.8 Å is the result of short inter­atomic C⋯H/H⋯C contacts [C1⋯H32ii = 2.85 and C14⋯H27iii = 2.84 Å; symmetry codes: (ii) 1 + x, y, z; (iii) 1 − x, 2 − y, −z]. In the structure of (II)[link], a comparatively reduced contribution from these contacts to the surface is made, i.e. 24.4%, an observation ascribed to the presence of only C—H⋯π contacts in the mol­ecular packing, with no other short inter-atomic contacts. The negligible contribution from C⋯C contacts to the Hirshfeld surfaces indicate that despite the presence of three Sn-bound phenyl rings in the structures of both (I)[link] and (II)[link], and the presence of other two phenyl rings bound to the di­thio­carbamate ligand in (I)[link], the structures show no significant ππ stacking. In the structure of (II)[link], the presence of oxygen atoms does not have any significant influence on its mol­ecular packing although there is 4.7% contribution from O⋯H/H⋯O contacts to the Hirshfeld surface. The fingerprint plots delineated into S⋯H/H⋯S contacts for both the mol­ecules (I)[link] and (II)[link], Fig. 8[link]d, show that crowded geometries around the tin atoms prevent the sulfur atoms from forming such inter­molecular contacts although these contacts have significant contributions to their respective Hirshfeld surfaces, Table 4[link], as well as nearly symmetrical distributions of points in their plots. This observation was also noted in an earlier study describing related organotin di­thio­carbamate structures (Mohamad et al., 2016[Mohamad, R., Awang, N., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1130-1137.]).

Table 4
Percentage contribution to inter­atomic contacts from the Hirshfeld surface for (I)[link] and (II)

Contact (I) (II)
H⋯H 59.4 62.5
C⋯H/H⋯C 32.9 24.4
O⋯H/H⋯O 4.7
S⋯H/H⋯S 5.8 7.0
C⋯S/S⋯C 0.4 0.0
N⋯H/H⋯N 0.5 0.4
C⋯C 0.9 0.0
S⋯S 0.0 0.4
C⋯O/O⋯C 0.1 0.1
O⋯O 0.5
[Figure 8]
Figure 8
Comparison between (I)[link] and (II)[link] of the (a) full two-dimensional fingerprint plots, and the plots delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) S⋯H/H⋯S contacts.

4. Database survey

According to a search of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), the di­thio­carbamate ligands featuring in the present study have comparatively rare R/R′ substituents. For example, the S2CN(Ben)CH2CH2Ph anion in (I)[link] has only one precedent, namely in Pb[S2CN(Ben)CH2CH2Ph]2 (Sathiyaraj et al., 2012[Sathiyaraj, E., Thirumaran, S. & Selvanayagam, S. (2012). Acta Cryst. E68, m1217.]). There are eight examples of the S2CN(CH2CH2OMe)2 anion, as in (II)[link], being the focus of two recent systematic studies (Hogarth et al., 2009[Hogarth, G., Rainford-Brent, E.-J. C.-R. C. R. & Richards, I. (2009). Inorg. Chim. Acta, 362, 1361-1364.]; Naeem et al., 2010[Naeem, S., Ogilvie, E., White, A. J. P., Hogarth, G. & Wilton-Ely, J. D. E. T. (2010). Dalton Trans. 39, 4080-4089.]).

Reflecting the inter­est in organotin di­thio­carbamates, there are approximately 40 examples of tri­phenyl­tin di­thio­carbamate structures in the CSD, all of which present the same basic structural motif as described herein for (I)[link] and (II)[link]. The prototype compound, Ph3Sn(S2CNEt2) features the shortest Sn—S bond length of the series at 2.429 (3) Å (Hook et al., 1994[Hook, J. M., Linahan, B. M., Taylor, R. L., Tiekink, E. R. T., van Gorkom, L. & Webster, L. K. (1994). Main Group Met. Chem. 17, 293-311.]). The most asymmetric mode of coordination of a di­thio­carbamate ligand, i.e. with Δ(Sn—S) of 0.74 Å, is found in the structure of Ph3Sn(4-nitro­phenyl­piperazine-1-di­thio­carbamate) (Rehman et al., 2009[Rehman, Z., Shah, A., Muhammad, N., Ali, S., Qureshi, R., Meetsma, A. & Butler, I. S. (2009). Eur. J. Med. Chem. 44, 3986-3993.]). On the other hand, the most symmetric mode of coordination is found in the structure of Ph3Sn(4-meth­oxy­phenyl­piperazine-1-di­thio­carbamate), having Δ(Sn—S) of 0.42 Å (Zia-ur-Rehman et al., 2011[Zia-ur-Rehman, Muhammad, N., Ali, S., Butler, I. S. & Meetsma, A. (2011). Inorg. Chim. Acta, 376, 381-388.]), i.e. the same value as found in the structure of (I)[link] reported herein.

5. Synthesis and crystallization

Synthesis of (I)[link]: N-Benzyl-2-phenyl­ethyl­amine (2 mmol) dissolved in ethanol (10 ml) was stirred for 30 min in an ice-bath. 25% ammonia (1–2 ml) was added to generate a basic solution. After that, a cold ethano­lic solution of carbon di­sulfide (2 mmol) was added to the solution followed by stirring for about 2 h. Then, tri­phenyl­tin(IV) chloride (2 mmol) dissolved in ethanol (30 ml) was added drop wise into the solution followed by further stirring for 2 h. The precipitate that formed was filtered off and washed with cold ethanol a few times to remove impurities. Finally, the precipitate was dried in a desiccator. Recrystallization was achieved by dissolv­ing the compound in a chloro­form and ethanol mixture (1:1 v/v): this solution was allowed to slowly evaporate at room temperature yielding colourless slabs of (I)[link]. M.p.: 419–421 K. Yield: 85%. Analysis: found C, 64.5; H, 5.3; N, 2.3; S, 9.9. C34H31NS2Sn requires: C, 64.2; H, 4.9; N, 2.2; S, 10.1. IR (cm−1): 1476 ν(C—N), 1021 ν(C—S), 502 ν(Sn—C), 448 ν(Sn—S). 1H NMR (CDCl3): 7.44–7.86 (15H, Sn—Ph), 7.16–7.39 (10H, C-Ph), 5.03 (2H, CH2Ben), 3.96 (2H, NCH2CH2), 3.04 (2H, NCH2CH2). 13C{1H} NMR (CDCl3): δ 197.8 (S2C), 126.7–142.3 (Ar), 59.8 (CH2Ben), 56.4 (NCH2CH2), 32.8 (NCH2CH2). 119Sn{1H} NMR (CDCl3): −180.2.

Compound (II)[link] was prepared in essentially the same manner as for (I)[link] but using bis­(2-meth­oxy­eth­yl)amine (5 mmol) in place of N-benzyl-2-phenyl­ethyl­amine. Recrystallization was from chloro­form solution to yield colourless slabs. M.p.: 366–367 K. Yield: 89%. Analysis: found C, 54.4; H, 4.4; N, 2.9; S, 12.1. C25H29NO2S2 Sn requires: C, 53.8; H, 5.2; N, 2.5; S, 11.5. IR (cm−1): 1470 ν(C—N), 994 ν(C—S), 559 ν(Sn—C), 425 ν(Sn—S). 1H NMR (CDCl3): 7.40–7.74 (15H, Sn—Ph), 4.13 (2H, OCH2), 3.72 (2H, NCH2), 3.35 (3H, CH3). 13C{1H} NMR (CDCl3): δ 197.3 (S2C), 128.6–142.4 (Ar), 70.0 (OCH2), 59.0 (NCH2), 57.1 (CH3). 119Sn{1H} NMR (CDCl3): −185.0.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). In the refinement of (II)[link], disorder was noted in the C5-chain of the di­thio­carbamate ligand. Specifically, the C6 and O2 atoms were modelled over two positions in the ratio 0.569 (2):0.431 (2). The anisotropic displacement parameters for both components of the C6 and O5 atoms were constrained to be equivalent; further, those for the C6 atoms were restrained to be approximately isotropic. The 1,2 and 1,3 bond lengths of the disordered residual were restrained to be similar to those of the ordered arm of the di­thio­carbamate ligand.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula [Sn(C6H5)3(C16H16NS2)] [Sn(C6H5)3(C7H14NO2S2)]
Mr 636.41 558.35
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 139 147
a, b, c (Å) 9.5856 (2), 11.6140 (2), 13.6795 (3) 9.6703 (2), 9.8015 (2), 13.8515 (3)
α, β, γ (°) 78.043 (2), 77.868 (2), 82.358 (2) 95.092 (2), 99.467 (2), 105.841 (2)
V3) 1450.20 (5) 1233.41 (5)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.05 1.23
Crystal size (mm) 0.50 × 0.30 × 0.20 0.50 × 0.50 × 0.20
 
Data collection
Diffractometer Agilent Technologies SuperNova Dual diffractometer with an Atlas detector Agilent Technologies SuperNova Dual diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Multi-scan (CrysAlis PRO; Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.804, 1.000 0.722, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 41508, 9103, 8428 35286, 7773, 7157
Rint 0.038 0.035
(sin θ/λ)max−1) 0.741 0.740
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.055, 1.00 0.023, 0.056, 1.03
No. of reflections 9103 7773
No. of parameters 343 290
No. of restraints 0 18
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.61 0.55, −0.61
Computer programs: CrysAlis PRO (Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2015); cell refinement: CrysAlis PRO (Agilent, 2015); data reduction: CrysAlis PRO (Agilent, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) [N-Benzyl-N-(2-phenylethyl)dithiocarbamato-κ2S,S']triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3(C16H16NS2)]Z = 2
Mr = 636.41F(000) = 648
Triclinic, P1Dx = 1.457 Mg m3
a = 9.5856 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6140 (2) ÅCell parameters from 26203 reflections
c = 13.6795 (3) Åθ = 4.1–31.4°
α = 78.043 (2)°µ = 1.05 mm1
β = 77.868 (2)°T = 139 K
γ = 82.358 (2)°Slab, colourless
V = 1450.20 (5) Å30.50 × 0.30 × 0.20 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with an Atlas detector
9103 independent reflections
Radiation source: SuperNova (Mo) X-ray Source8428 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.4041 pixels mm-1θmax = 31.8°, θmin = 3.3°
ω scanh = 1314
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2015)
k = 1717
Tmin = 0.804, Tmax = 1.000l = 1919
41508 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0236P)2 + 0.5974P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.003
9103 reflectionsΔρmax = 0.53 e Å3
343 parametersΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.11097 (2)0.73083 (2)0.11080 (2)0.01757 (3)
S10.26398 (4)0.60268 (3)0.00262 (3)0.02307 (7)
S20.14838 (4)0.83511 (3)0.05703 (3)0.02241 (7)
N10.34474 (13)0.69202 (11)0.14450 (9)0.0226 (2)
C10.25975 (14)0.71037 (11)0.07630 (10)0.0195 (2)
C20.45063 (16)0.58852 (14)0.15813 (11)0.0276 (3)
H2A0.54640.61610.15040.033*
H2B0.45490.54250.10400.033*
C30.41603 (15)0.50885 (13)0.26046 (11)0.0242 (3)
C40.51461 (16)0.48312 (14)0.32492 (12)0.0299 (3)
H40.60250.51860.30570.036*
C50.48559 (19)0.40590 (17)0.41719 (13)0.0383 (4)
H50.55380.38840.46070.046*
C60.3580 (2)0.35456 (16)0.44587 (14)0.0402 (4)
H60.33890.30070.50860.048*
C70.25767 (19)0.38180 (15)0.38302 (15)0.0390 (4)
H70.16890.34770.40330.047*
C80.28613 (17)0.45813 (14)0.29129 (13)0.0317 (3)
H80.21670.47640.24860.038*
C90.34155 (15)0.78002 (13)0.20882 (11)0.0252 (3)
H9A0.33580.86020.16670.030*
H9B0.43190.76800.23530.030*
C100.21466 (18)0.77186 (14)0.29854 (11)0.0293 (3)
H10A0.12520.77260.27310.035*
H10B0.22760.69610.34610.035*
C110.20107 (15)0.87303 (13)0.35476 (10)0.0226 (3)
C120.22314 (16)0.85318 (14)0.45412 (11)0.0268 (3)
H120.24950.77510.48660.032*
C130.20723 (17)0.94591 (15)0.50684 (11)0.0298 (3)
H130.22190.93100.57510.036*
C140.17019 (17)1.05948 (14)0.45984 (12)0.0309 (3)
H140.15831.12290.49580.037*
C150.15027 (17)1.08086 (14)0.35992 (13)0.0306 (3)
H150.12601.15930.32720.037*
C160.16559 (16)0.98869 (14)0.30788 (11)0.0273 (3)
H160.15181.00420.23940.033*
C170.11990 (14)0.59670 (12)0.20181 (10)0.0202 (2)
C180.12215 (15)0.62884 (12)0.30614 (11)0.0226 (3)
H180.12610.70950.33790.027*
C190.11864 (16)0.54453 (14)0.36467 (12)0.0280 (3)
H190.12150.56770.43580.034*
C200.11097 (17)0.42673 (14)0.31871 (13)0.0318 (3)
H200.10720.36930.35820.038*
C210.10880 (17)0.39296 (13)0.21536 (13)0.0317 (3)
H210.10380.31220.18400.038*
C220.11387 (15)0.47709 (12)0.15718 (11)0.0253 (3)
H220.11320.45300.08640.030*
C230.23372 (14)0.86620 (12)0.20545 (10)0.0196 (2)
C240.18559 (18)0.98566 (13)0.21328 (12)0.0290 (3)
H240.09331.00880.17760.035*
C250.2715 (2)1.07114 (15)0.27286 (14)0.0412 (4)
H250.23741.15240.27790.049*
C260.4055 (2)1.03887 (18)0.32465 (14)0.0444 (4)
H260.46421.09770.36480.053*
C270.45457 (18)0.92100 (19)0.31816 (15)0.0434 (4)
H270.54700.89860.35410.052*
C280.36913 (15)0.83497 (15)0.25919 (12)0.0306 (3)
H280.40340.75390.25540.037*
C290.11619 (14)0.77083 (11)0.06779 (10)0.0194 (2)
C300.18103 (15)0.85380 (12)0.00804 (12)0.0256 (3)
H300.12390.89100.02290.031*
C310.32861 (16)0.88286 (14)0.00684 (13)0.0320 (3)
H310.37160.93930.04820.038*
C320.41312 (16)0.82989 (14)0.03838 (13)0.0318 (3)
H320.51360.85110.02930.038*
C330.35052 (16)0.74601 (14)0.09672 (13)0.0318 (3)
H330.40820.70850.12700.038*
C340.20313 (15)0.71655 (13)0.11116 (12)0.0256 (3)
H340.16100.65860.15110.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01871 (5)0.01729 (5)0.01588 (4)0.00169 (3)0.00165 (3)0.00279 (3)
S10.02930 (17)0.01917 (15)0.02176 (15)0.00255 (12)0.00751 (13)0.00641 (12)
S20.02570 (16)0.02023 (15)0.02146 (15)0.00247 (12)0.00597 (13)0.00562 (12)
N10.0248 (5)0.0254 (6)0.0181 (5)0.0031 (4)0.0055 (4)0.0067 (4)
C10.0213 (6)0.0199 (6)0.0164 (6)0.0022 (5)0.0008 (5)0.0034 (5)
C20.0258 (7)0.0334 (8)0.0221 (7)0.0085 (6)0.0061 (5)0.0070 (6)
C30.0267 (7)0.0236 (6)0.0234 (6)0.0049 (5)0.0075 (5)0.0085 (5)
C40.0242 (7)0.0363 (8)0.0281 (7)0.0037 (6)0.0081 (6)0.0044 (6)
C50.0348 (8)0.0473 (10)0.0287 (8)0.0094 (7)0.0119 (7)0.0003 (7)
C60.0443 (9)0.0324 (8)0.0345 (9)0.0058 (7)0.0027 (7)0.0039 (7)
C70.0360 (8)0.0285 (8)0.0507 (11)0.0051 (6)0.0076 (8)0.0026 (7)
C80.0331 (8)0.0281 (7)0.0384 (9)0.0019 (6)0.0158 (7)0.0078 (7)
C90.0276 (7)0.0302 (7)0.0204 (6)0.0024 (5)0.0055 (5)0.0095 (6)
C100.0392 (8)0.0292 (7)0.0190 (6)0.0071 (6)0.0008 (6)0.0075 (6)
C110.0238 (6)0.0262 (7)0.0173 (6)0.0025 (5)0.0016 (5)0.0050 (5)
C120.0318 (7)0.0289 (7)0.0173 (6)0.0015 (6)0.0034 (5)0.0012 (5)
C130.0329 (8)0.0406 (8)0.0177 (6)0.0091 (6)0.0030 (6)0.0078 (6)
C140.0316 (7)0.0323 (8)0.0296 (8)0.0094 (6)0.0037 (6)0.0132 (6)
C150.0322 (7)0.0253 (7)0.0315 (8)0.0013 (6)0.0025 (6)0.0032 (6)
C160.0313 (7)0.0309 (7)0.0191 (6)0.0008 (6)0.0079 (5)0.0014 (5)
C170.0188 (6)0.0201 (6)0.0204 (6)0.0017 (4)0.0007 (5)0.0043 (5)
C180.0247 (6)0.0219 (6)0.0214 (6)0.0005 (5)0.0059 (5)0.0043 (5)
C190.0280 (7)0.0350 (8)0.0239 (7)0.0028 (6)0.0057 (6)0.0111 (6)
C200.0306 (7)0.0329 (8)0.0358 (8)0.0073 (6)0.0007 (6)0.0184 (7)
C210.0368 (8)0.0213 (7)0.0355 (8)0.0087 (6)0.0034 (7)0.0082 (6)
C220.0291 (7)0.0224 (6)0.0219 (6)0.0052 (5)0.0018 (5)0.0037 (5)
C230.0213 (6)0.0220 (6)0.0163 (6)0.0052 (5)0.0045 (5)0.0026 (5)
C240.0401 (8)0.0226 (7)0.0235 (7)0.0042 (6)0.0003 (6)0.0072 (6)
C250.0680 (12)0.0241 (7)0.0330 (9)0.0168 (8)0.0050 (8)0.0051 (7)
C260.0520 (11)0.0491 (11)0.0348 (9)0.0343 (9)0.0072 (8)0.0039 (8)
C270.0230 (7)0.0605 (12)0.0408 (10)0.0135 (7)0.0005 (7)0.0044 (9)
C280.0207 (6)0.0349 (8)0.0315 (8)0.0002 (6)0.0023 (6)0.0003 (6)
C290.0196 (6)0.0180 (6)0.0180 (6)0.0014 (4)0.0014 (5)0.0003 (5)
C300.0249 (6)0.0223 (6)0.0288 (7)0.0006 (5)0.0033 (5)0.0065 (6)
C310.0257 (7)0.0266 (7)0.0391 (9)0.0043 (6)0.0012 (6)0.0073 (6)
C320.0194 (6)0.0285 (7)0.0411 (9)0.0002 (5)0.0004 (6)0.0013 (6)
C330.0235 (7)0.0336 (8)0.0392 (9)0.0053 (6)0.0079 (6)0.0050 (7)
C340.0236 (6)0.0255 (7)0.0276 (7)0.0026 (5)0.0039 (5)0.0055 (6)
Geometric parameters (Å, º) top
Sn—C232.1309 (13)C14—H140.9500
Sn—C292.1469 (13)C15—C161.380 (2)
Sn—C172.1696 (13)C15—H150.9500
Sn—S12.4886 (4)C16—H160.9500
Sn—S22.9120 (3)C17—C181.3947 (19)
S1—C11.7532 (13)C17—C221.4003 (19)
S2—C11.6902 (13)C18—C191.3949 (19)
N1—C11.3305 (18)C18—H180.9500
N1—C91.4739 (17)C19—C201.387 (2)
N1—C21.4739 (17)C19—H190.9500
C2—C31.508 (2)C20—C211.383 (2)
C2—H2A0.9900C20—H200.9500
C2—H2B0.9900C21—C221.393 (2)
C3—C41.388 (2)C21—H210.9500
C3—C81.395 (2)C22—H220.9500
C4—C51.387 (2)C23—C241.3922 (19)
C4—H40.9500C23—C281.3932 (19)
C5—C61.379 (3)C24—C251.388 (2)
C5—H50.9500C24—H240.9500
C6—C71.385 (3)C25—C261.376 (3)
C6—H60.9500C25—H250.9500
C7—C81.376 (2)C26—C271.378 (3)
C7—H70.9500C26—H260.9500
C8—H80.9500C27—C281.388 (2)
C9—C101.533 (2)C27—H270.9500
C9—H9A0.9900C28—H280.9500
C9—H9B0.9900C29—C301.3915 (18)
C10—C111.5102 (19)C29—C341.3952 (19)
C10—H10A0.9900C30—C311.392 (2)
C10—H10B0.9900C30—H300.9500
C11—C121.3869 (19)C31—C321.385 (2)
C11—C161.394 (2)C31—H310.9500
C12—C131.391 (2)C32—C331.383 (2)
C12—H120.9500C32—H320.9500
C13—C141.378 (2)C33—C341.391 (2)
C13—H130.9500C33—H330.9500
C14—C151.387 (2)C34—H340.9500
C23—Sn—C29118.33 (5)C13—C14—C15119.82 (14)
C23—Sn—C17106.09 (5)C13—C14—H14120.1
C29—Sn—C17101.34 (5)C15—C14—H14120.1
C23—Sn—S1108.24 (4)C16—C15—C14120.25 (15)
C29—Sn—S1124.31 (4)C16—C15—H15119.9
C17—Sn—S192.98 (4)C14—C15—H15119.9
C23—Sn—S285.28 (3)C15—C16—C11120.67 (14)
C29—Sn—S288.48 (4)C15—C16—H16119.7
C17—Sn—S2158.55 (4)C11—C16—H16119.7
S1—Sn—S265.919 (10)C18—C17—C22118.10 (12)
C1—S1—Sn93.73 (5)C18—C17—Sn120.38 (10)
C1—S2—Sn81.22 (5)C22—C17—Sn121.39 (10)
C1—N1—C9120.43 (11)C17—C18—C19121.14 (13)
C1—N1—C2123.71 (11)C17—C18—H18119.4
C9—N1—C2115.81 (11)C19—C18—H18119.4
N1—C1—S2122.25 (10)C20—C19—C18119.81 (14)
N1—C1—S1119.24 (10)C20—C19—H19120.1
S2—C1—S1118.51 (8)C18—C19—H19120.1
N1—C2—C3112.93 (11)C21—C20—C19119.96 (14)
N1—C2—H2A109.0C21—C20—H20120.0
C3—C2—H2A109.0C19—C20—H20120.0
N1—C2—H2B109.0C20—C21—C22120.16 (14)
C3—C2—H2B109.0C20—C21—H21119.9
H2A—C2—H2B107.8C22—C21—H21119.9
C4—C3—C8118.84 (15)C21—C22—C17120.82 (14)
C4—C3—C2120.27 (14)C21—C22—H22119.6
C8—C3—C2120.88 (13)C17—C22—H22119.6
C5—C4—C3120.38 (15)C24—C23—C28118.41 (13)
C5—C4—H4119.8C24—C23—Sn122.40 (10)
C3—C4—H4119.8C28—C23—Sn119.16 (10)
C6—C5—C4120.19 (16)C23—C24—C25120.47 (15)
C6—C5—H5119.9C23—C24—H24119.8
C4—C5—H5119.9C25—C24—H24119.8
C5—C6—C7119.79 (17)C26—C25—C24120.40 (16)
C5—C6—H6120.1C26—C25—H25119.8
C7—C6—H6120.1C24—C25—H25119.8
C8—C7—C6120.22 (17)C25—C26—C27119.89 (16)
C8—C7—H7119.9C25—C26—H26120.1
C6—C7—H7119.9C27—C26—H26120.1
C7—C8—C3120.55 (15)C28—C27—C26120.08 (16)
C7—C8—H8119.7C28—C27—H27120.0
C3—C8—H8119.7C26—C27—H27120.0
N1—C9—C10112.51 (12)C27—C28—C23120.74 (15)
N1—C9—H9A109.1C27—C28—H28119.6
C10—C9—H9A109.1C23—C28—H28119.6
N1—C9—H9B109.1C30—C29—C34118.28 (12)
C10—C9—H9B109.1C30—C29—Sn124.91 (10)
H9A—C9—H9B107.8C34—C29—Sn116.54 (9)
C11—C10—C9111.70 (12)C31—C30—C29120.74 (14)
C11—C10—H10A109.3C31—C30—H30119.6
C9—C10—H10A109.3C29—C30—H30119.6
C11—C10—H10B109.3C30—C31—C32120.27 (14)
C9—C10—H10B109.3C30—C31—H31119.9
H10A—C10—H10B107.9C32—C31—H31119.9
C12—C11—C16118.47 (13)C33—C32—C31119.65 (14)
C12—C11—C10120.88 (13)C33—C32—H32120.2
C16—C11—C10120.65 (13)C31—C32—H32120.2
C11—C12—C13120.94 (14)C32—C33—C34120.05 (15)
C11—C12—H12119.5C32—C33—H33120.0
C13—C12—H12119.5C34—C33—H33120.0
C14—C13—C12119.83 (14)C33—C34—C29120.98 (13)
C14—C13—H13120.1C33—C34—H34119.5
C12—C13—H13120.1C29—C34—H34119.5
C9—N1—C1—S21.80 (18)C13—C14—C15—C160.8 (2)
C2—N1—C1—S2175.36 (11)C14—C15—C16—C110.1 (2)
C9—N1—C1—S1178.87 (10)C12—C11—C16—C151.2 (2)
C2—N1—C1—S13.97 (19)C10—C11—C16—C15178.66 (14)
Sn—S2—C1—N1172.23 (12)C22—C17—C18—C190.1 (2)
Sn—S2—C1—S17.10 (7)Sn—C17—C18—C19175.86 (10)
Sn—S1—C1—N1171.12 (11)C17—C18—C19—C200.8 (2)
Sn—S1—C1—S28.24 (8)C18—C19—C20—C210.9 (2)
C1—N1—C2—C3114.69 (15)C19—C20—C21—C220.2 (2)
C9—N1—C2—C368.04 (16)C20—C21—C22—C170.6 (2)
N1—C2—C3—C4122.90 (15)C18—C17—C22—C210.6 (2)
N1—C2—C3—C858.25 (18)Sn—C17—C22—C21175.12 (11)
C8—C3—C4—C51.6 (2)C28—C23—C24—C250.4 (2)
C2—C3—C4—C5177.25 (14)Sn—C23—C24—C25177.51 (12)
C3—C4—C5—C60.4 (3)C23—C24—C25—C260.2 (3)
C4—C5—C6—C71.1 (3)C24—C25—C26—C270.6 (3)
C5—C6—C7—C81.2 (3)C25—C26—C27—C280.2 (3)
C6—C7—C8—C30.1 (3)C26—C27—C28—C230.4 (3)
C4—C3—C8—C71.5 (2)C24—C23—C28—C270.7 (2)
C2—C3—C8—C7177.40 (14)Sn—C23—C28—C27177.25 (13)
C1—N1—C9—C1079.44 (17)C34—C29—C30—C310.8 (2)
C2—N1—C9—C10103.19 (15)Sn—C29—C30—C31173.03 (12)
N1—C9—C10—C11171.97 (12)C29—C30—C31—C320.4 (2)
C9—C10—C11—C12113.86 (16)C30—C31—C32—C331.4 (2)
C9—C10—C11—C1666.32 (19)C31—C32—C33—C341.0 (2)
C16—C11—C12—C131.4 (2)C32—C33—C34—C290.2 (2)
C10—C11—C12—C13178.42 (14)C30—C29—C34—C331.2 (2)
C11—C12—C13—C140.5 (2)Sn—C29—C34—C33173.21 (12)
C12—C13—C14—C150.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C17–C22 and C23–C28 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg1i0.952.633.4732 (17)148
C13—H13···Cg2ii0.952.623.5227 (17)159
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1.
(II) [Bis(2-methoxyethyl)dithiocarbamato-κ2S,S']triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3(C7H14NO2S2)]Z = 2
Mr = 558.35F(000) = 568
Triclinic, P1Dx = 1.503 Mg m3
a = 9.6703 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8015 (2) ÅCell parameters from 22178 reflections
c = 13.8515 (3) Åθ = 3.5–31.4°
α = 95.092 (2)°µ = 1.23 mm1
β = 99.467 (2)°T = 147 K
γ = 105.841 (2)°Slab, colourless
V = 1233.41 (5) Å30.50 × 0.50 × 0.20 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with an Atlas detector
7773 independent reflections
Radiation source: SuperNova (Mo) X-ray Source7157 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.4041 pixels mm-1θmax = 31.7°, θmin = 3.4°
ω scanh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2015)
k = 1414
Tmin = 0.722, Tmax = 1.000l = 2020
35286 measured reflections
Refinement top
Refinement on F218 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0258P)2 + 0.4182P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7773 reflectionsΔρmax = 0.55 e Å3
290 parametersΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn0.39512 (2)0.60246 (2)0.81652 (2)0.01772 (3)
S10.25030 (4)0.72645 (4)0.71341 (3)0.02167 (7)
S20.40147 (5)0.56965 (4)0.59282 (3)0.02642 (8)
O10.32503 (13)0.89169 (13)0.37430 (9)0.0305 (3)
C10.28578 (16)0.66905 (15)0.59818 (10)0.0193 (3)
C20.23365 (17)0.66021 (16)0.41897 (11)0.0232 (3)
H2A0.14160.64990.37160.028*
H2B0.25010.56480.41790.028*
C30.35905 (18)0.76178 (17)0.38579 (12)0.0260 (3)
H3A0.45050.78010.43560.031*
H3B0.37400.71910.32230.031*
C40.4413 (2)0.9955 (2)0.34738 (15)0.0396 (4)
H4A0.52951.01660.39910.059*
H4B0.41331.08340.33970.059*
H4C0.46120.95810.28480.059*
N10.21672 (13)0.70856 (13)0.51881 (9)0.0192 (2)0.569 (2)
C50.12069 (19)0.8002 (2)0.52550 (12)0.0312 (4)0.569 (2)
H5A0.16100.86620.58840.037*0.569 (2)
H5B0.13160.85990.47160.037*0.569 (2)
C60.0309 (3)0.7431 (3)0.5215 (2)0.0246 (5)0.569 (2)
H6A0.04800.68350.57490.030*0.569 (2)
H6B0.07830.68240.45720.030*0.569 (2)
O20.0900 (2)0.8591 (3)0.53320 (18)0.0365 (4)0.569 (2)
C70.2292 (3)0.8147 (2)0.50101 (19)0.0547 (6)0.569 (2)
H7A0.26930.89630.50280.082*0.569 (2)
H7B0.27480.74710.54280.082*0.569 (2)
H7C0.24990.76670.43290.082*0.569 (2)
N1'0.21672 (13)0.70856 (13)0.51881 (9)0.0192 (2)0.431 (2)
C5'0.12069 (19)0.8002 (2)0.52550 (12)0.0312 (4)0.431 (2)
H5C0.11180.85080.46710.037*0.431 (2)
H5D0.15530.87100.58630.037*0.431 (2)
C6'0.0389 (4)0.6765 (4)0.5286 (3)0.0246 (5)0.431 (2)
H6C0.08560.62630.46110.030*0.431 (2)
H6D0.01920.60460.57060.030*0.431 (2)
O2'0.1349 (3)0.7437 (3)0.5672 (2)0.0365 (4)0.431 (2)
C7'0.2292 (3)0.8147 (2)0.50101 (19)0.0547 (6)0.431 (2)
H7D0.17200.86530.45600.082*0.431 (2)
H7E0.26020.88300.54220.082*0.431 (2)
H7F0.31590.74120.46250.082*0.431 (2)
C80.29263 (16)0.37698 (15)0.78961 (10)0.0188 (3)
C90.14085 (17)0.32430 (17)0.75699 (11)0.0238 (3)
H90.08510.38950.74560.029*
C100.07039 (18)0.17834 (18)0.74106 (12)0.0278 (3)
H100.03270.14400.71770.033*
C110.1507 (2)0.08271 (17)0.75925 (12)0.0292 (3)
H110.10280.01740.74840.035*
C120.3002 (2)0.13313 (17)0.79310 (13)0.0294 (3)
H120.35480.06740.80640.035*
C130.37211 (17)0.27965 (16)0.80794 (11)0.0236 (3)
H130.47530.31320.83060.028*
C140.32522 (16)0.67665 (15)0.94660 (10)0.0194 (3)
C150.23729 (18)0.57911 (17)0.99534 (12)0.0259 (3)
H150.21220.47950.97270.031*
C160.1859 (2)0.6256 (2)1.07644 (13)0.0328 (4)
H160.12580.55791.10860.039*
C170.22211 (19)0.7699 (2)1.11016 (12)0.0321 (4)
H170.18800.80171.16610.038*
C180.30798 (19)0.86851 (18)1.06277 (12)0.0287 (3)
H180.33240.96801.08590.034*
C190.35860 (17)0.82221 (16)0.98128 (11)0.0233 (3)
H190.41680.89070.94870.028*
C200.62870 (16)0.68280 (16)0.84325 (11)0.0214 (3)
C210.71474 (19)0.6659 (2)0.77435 (13)0.0339 (4)
H210.66900.61970.70920.041*
C220.8665 (2)0.7157 (3)0.79983 (15)0.0433 (5)
H220.92370.70290.75210.052*
C230.93509 (19)0.7839 (2)0.89410 (14)0.0373 (4)
H231.03900.81780.91120.045*
C240.85144 (19)0.80232 (19)0.96333 (13)0.0316 (4)
H240.89780.84941.02820.038*
C250.69961 (17)0.75194 (17)0.93803 (12)0.0246 (3)
H250.64300.76480.98610.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01785 (5)0.01692 (5)0.01786 (5)0.00513 (4)0.00269 (3)0.00099 (3)
S10.02585 (18)0.02457 (17)0.01802 (16)0.01231 (14)0.00542 (13)0.00314 (13)
S20.0303 (2)0.02931 (19)0.02422 (18)0.01682 (16)0.00519 (15)0.00213 (14)
O10.0326 (6)0.0268 (6)0.0351 (6)0.0064 (5)0.0169 (5)0.0082 (5)
C10.0189 (7)0.0177 (6)0.0196 (7)0.0029 (5)0.0037 (5)0.0009 (5)
C20.0262 (7)0.0245 (7)0.0168 (7)0.0056 (6)0.0029 (5)0.0002 (5)
C30.0256 (8)0.0318 (8)0.0222 (7)0.0092 (6)0.0080 (6)0.0036 (6)
C40.0422 (11)0.0335 (9)0.0382 (10)0.0034 (8)0.0184 (8)0.0051 (8)
N10.0194 (6)0.0211 (6)0.0174 (6)0.0059 (5)0.0041 (4)0.0027 (4)
C50.0347 (9)0.0456 (10)0.0231 (8)0.0263 (8)0.0067 (6)0.0086 (7)
C60.0210 (9)0.0262 (14)0.0283 (10)0.0093 (12)0.0059 (7)0.0029 (12)
O20.0243 (9)0.0392 (9)0.0445 (11)0.0119 (8)0.0048 (7)0.0067 (8)
C70.0675 (16)0.0340 (11)0.0552 (14)0.0097 (10)0.0002 (11)0.0056 (10)
N1'0.0194 (6)0.0211 (6)0.0174 (6)0.0059 (5)0.0041 (4)0.0027 (4)
C5'0.0347 (9)0.0456 (10)0.0231 (8)0.0263 (8)0.0067 (6)0.0086 (7)
C6'0.0210 (9)0.0262 (14)0.0283 (10)0.0093 (12)0.0059 (7)0.0029 (12)
O2'0.0243 (9)0.0392 (9)0.0445 (11)0.0119 (8)0.0048 (7)0.0067 (8)
C7'0.0675 (16)0.0340 (11)0.0552 (14)0.0097 (10)0.0002 (11)0.0056 (10)
C80.0220 (7)0.0188 (6)0.0155 (6)0.0062 (5)0.0038 (5)0.0006 (5)
C90.0216 (7)0.0254 (7)0.0231 (7)0.0065 (6)0.0027 (5)0.0006 (6)
C100.0235 (8)0.0290 (8)0.0254 (8)0.0000 (6)0.0058 (6)0.0021 (6)
C110.0390 (9)0.0193 (7)0.0273 (8)0.0025 (6)0.0133 (7)0.0003 (6)
C120.0383 (9)0.0221 (7)0.0330 (9)0.0139 (7)0.0127 (7)0.0049 (6)
C130.0242 (7)0.0239 (7)0.0240 (7)0.0094 (6)0.0050 (6)0.0026 (6)
C140.0196 (7)0.0205 (6)0.0177 (6)0.0060 (5)0.0028 (5)0.0024 (5)
C150.0294 (8)0.0217 (7)0.0246 (7)0.0037 (6)0.0052 (6)0.0050 (6)
C160.0325 (9)0.0393 (9)0.0264 (8)0.0049 (7)0.0126 (7)0.0096 (7)
C170.0299 (9)0.0455 (10)0.0225 (8)0.0127 (7)0.0094 (6)0.0002 (7)
C180.0330 (9)0.0273 (8)0.0258 (8)0.0109 (7)0.0056 (6)0.0037 (6)
C190.0247 (7)0.0208 (7)0.0231 (7)0.0043 (6)0.0064 (6)0.0016 (5)
C200.0197 (7)0.0213 (7)0.0225 (7)0.0054 (5)0.0029 (5)0.0040 (5)
C210.0242 (8)0.0519 (11)0.0231 (8)0.0089 (7)0.0044 (6)0.0002 (7)
C220.0242 (9)0.0731 (15)0.0324 (10)0.0107 (9)0.0105 (7)0.0088 (9)
C230.0192 (8)0.0489 (11)0.0381 (10)0.0011 (7)0.0017 (7)0.0124 (8)
C240.0270 (8)0.0325 (8)0.0289 (8)0.0040 (7)0.0039 (6)0.0029 (7)
C250.0257 (8)0.0251 (7)0.0223 (7)0.0076 (6)0.0029 (6)0.0034 (6)
Geometric parameters (Å, º) top
Sn—C82.1312 (14)C6'—H6D0.9900
Sn—C202.1357 (15)O2'—C7'1.530 (4)
Sn—C142.1608 (14)C7'—H7D0.9800
Sn—S12.4612 (4)C7'—H7E0.9800
Sn—S23.0992 (4)C7'—H7F0.9800
S1—C11.7629 (14)C8—C131.3945 (19)
S2—C11.6781 (14)C8—C91.397 (2)
O1—C31.415 (2)C9—C101.386 (2)
O1—C41.421 (2)C9—H90.9500
C1—N1'1.3340 (19)C10—C111.386 (2)
C1—N11.3340 (19)C10—H100.9500
C2—N1'1.4712 (18)C11—C121.379 (3)
C2—N11.4712 (18)C11—H110.9500
C2—C31.509 (2)C12—C131.394 (2)
C2—H2A0.9900C12—H120.9500
C2—H2B0.9900C13—H130.9500
C3—H3A0.9900C14—C191.395 (2)
C3—H3B0.9900C14—C151.397 (2)
C4—H4A0.9800C15—C161.390 (2)
C4—H4B0.9800C15—H150.9500
C4—H4C0.9800C16—C171.379 (3)
N1—C51.4651 (19)C16—H160.9500
C5—C61.409 (3)C17—C181.381 (3)
C5—H5A0.9900C17—H170.9500
C5—H5B0.9900C18—C191.390 (2)
C6—O21.414 (3)C18—H180.9500
C6—H6A0.9900C19—H190.9500
C6—H6B0.9900C20—C211.393 (2)
O2—C71.284 (3)C20—C251.395 (2)
C7—H7A0.9800C21—C221.387 (3)
C7—H7B0.9800C21—H210.9500
C7—H7C0.9800C22—C231.382 (3)
N1'—C5'1.4651 (19)C22—H220.9500
C5'—C6'1.692 (5)C23—C241.382 (3)
C5'—H5C0.9900C23—H230.9500
C5'—H5D0.9900C24—C251.388 (2)
C6'—O2'1.419 (4)C24—H240.9500
C6'—H6C0.9900C25—H250.9500
C8—Sn—C20119.54 (5)O2'—C6'—C5'110.1 (3)
C8—Sn—C14104.97 (5)O2'—C6'—H6C109.6
C20—Sn—C14107.25 (6)C5'—C6'—H6C109.6
C8—Sn—S1110.54 (4)O2'—C6'—H6D109.6
C20—Sn—S1118.49 (4)C5'—C6'—H6D109.6
C14—Sn—S190.94 (4)H6C—C6'—H6D108.2
C8—Sn—S284.48 (4)C6'—O2'—C7'121.0 (3)
C20—Sn—S287.42 (4)O2'—C7'—H7D109.5
C14—Sn—S2154.45 (4)O2'—C7'—H7E109.5
S1—Sn—S263.534 (11)H7D—C7'—H7E109.5
C1—S1—Sn97.95 (5)O2'—C7'—H7F109.5
C1—S2—Sn78.60 (5)H7D—C7'—H7F109.5
C3—O1—C4111.94 (14)H7E—C7'—H7F109.5
N1'—C1—S2123.54 (11)C13—C8—C9118.59 (14)
N1—C1—S2123.54 (11)C13—C8—Sn121.76 (11)
N1'—C1—S1116.67 (10)C9—C8—Sn119.58 (10)
N1—C1—S1116.67 (10)C10—C9—C8121.01 (14)
S2—C1—S1119.79 (9)C10—C9—H9119.5
N1'—C2—C3112.94 (12)C8—C9—H9119.5
N1—C2—C3112.94 (12)C11—C10—C9119.81 (15)
N1—C2—H2A109.0C11—C10—H10120.1
C3—C2—H2A109.0C9—C10—H10120.1
N1—C2—H2B109.0C12—C11—C10119.86 (15)
C3—C2—H2B109.0C12—C11—H11120.1
H2A—C2—H2B107.8C10—C11—H11120.1
O1—C3—C2108.64 (13)C11—C12—C13120.63 (15)
O1—C3—H3A110.0C11—C12—H12119.7
C2—C3—H3A110.0C13—C12—H12119.7
O1—C3—H3B110.0C8—C13—C12120.07 (15)
C2—C3—H3B110.0C8—C13—H13120.0
H3A—C3—H3B108.3C12—C13—H13120.0
O1—C4—H4A109.5C19—C14—C15117.90 (13)
O1—C4—H4B109.5C19—C14—Sn121.67 (11)
H4A—C4—H4B109.5C15—C14—Sn120.33 (10)
O1—C4—H4C109.5C16—C15—C14121.04 (15)
H4A—C4—H4C109.5C16—C15—H15119.5
H4B—C4—H4C109.5C14—C15—H15119.5
C1—N1—C5122.66 (12)C17—C16—C15119.95 (16)
C1—N1—C2120.73 (12)C17—C16—H16120.0
C5—N1—C2116.61 (12)C15—C16—H16120.0
C6—C5—N1122.02 (19)C16—C17—C18120.08 (15)
C6—C5—H5A106.8C16—C17—H17120.0
N1—C5—H5A106.8C18—C17—H17120.0
C6—C5—H5B106.8C17—C18—C19120.01 (15)
N1—C5—H5B106.8C17—C18—H18120.0
H5A—C5—H5B106.7C19—C18—H18120.0
C5—C6—O2107.8 (2)C18—C19—C14121.00 (15)
C5—C6—H6A110.1C18—C19—H19119.5
O2—C6—H6A110.1C14—C19—H19119.5
C5—C6—H6B110.1C21—C20—C25118.04 (14)
O2—C6—H6B110.1C21—C20—Sn124.74 (12)
H6A—C6—H6B108.5C25—C20—Sn117.17 (11)
C7—O2—C6109.2 (2)C22—C21—C20120.73 (16)
O2—C7—H7A109.5C22—C21—H21119.6
O2—C7—H7B109.5C20—C21—H21119.6
H7A—C7—H7B109.5C23—C22—C21120.52 (17)
O2—C7—H7C109.5C23—C22—H22119.7
H7A—C7—H7C109.5C21—C22—H22119.7
H7B—C7—H7C109.5C22—C23—C24119.56 (16)
C1—N1'—C5'122.66 (12)C22—C23—H23120.2
C1—N1'—C2120.73 (12)C24—C23—H23120.2
C5'—N1'—C2116.61 (12)C23—C24—C25119.97 (16)
N1'—C5'—C6'100.59 (18)C23—C24—H24120.0
N1'—C5'—H5C111.7C25—C24—H24120.0
C6'—C5'—H5C111.7C24—C25—C20121.18 (15)
N1'—C5'—H5D111.7C24—C25—H25119.4
C6'—C5'—H5D111.7C20—C25—H25119.4
H5C—C5'—H5D109.4
Sn—S2—C1—N1'176.86 (13)N1'—C5'—C6'—O2'160.9 (3)
Sn—S2—C1—N1176.86 (13)C5'—C6'—O2'—C7'82.6 (3)
Sn—S2—C1—S13.05 (7)C13—C8—C9—C101.3 (2)
Sn—S1—C1—N1'176.12 (10)Sn—C8—C9—C10178.46 (12)
Sn—S1—C1—N1176.12 (10)C8—C9—C10—C111.1 (2)
Sn—S1—C1—S23.80 (9)C9—C10—C11—C120.0 (2)
C4—O1—C3—C2177.33 (13)C10—C11—C12—C130.9 (3)
N1'—C2—C3—O166.76 (16)C9—C8—C13—C120.4 (2)
N1—C2—C3—O166.76 (16)Sn—C8—C13—C12177.47 (12)
S2—C1—N1—C5177.49 (12)C11—C12—C13—C80.7 (2)
S1—C1—N1—C52.6 (2)C19—C14—C15—C160.6 (2)
S2—C1—N1—C22.9 (2)Sn—C14—C15—C16177.05 (13)
S1—C1—N1—C2177.05 (10)C14—C15—C16—C170.3 (3)
C3—C2—N1—C190.53 (17)C15—C16—C17—C180.8 (3)
C3—C2—N1—C589.80 (17)C16—C17—C18—C190.3 (3)
C1—N1—C5—C690.6 (2)C17—C18—C19—C140.6 (2)
C2—N1—C5—C689.0 (2)C15—C14—C19—C181.1 (2)
N1—C5—C6—O2178.09 (18)Sn—C14—C19—C18177.44 (12)
C5—C6—O2—C7160.8 (2)C25—C20—C21—C220.4 (3)
S2—C1—N1'—C5'177.49 (12)Sn—C20—C21—C22176.82 (16)
S1—C1—N1'—C5'2.6 (2)C20—C21—C22—C230.3 (3)
S2—C1—N1'—C22.9 (2)C21—C22—C23—C240.0 (3)
S1—C1—N1'—C2177.05 (10)C22—C23—C24—C250.3 (3)
C3—C2—N1'—C190.53 (17)C23—C24—C25—C200.2 (3)
C3—C2—N1'—C5'89.80 (17)C21—C20—C25—C240.1 (2)
C1—N1'—C5'—C6'85.0 (2)Sn—C20—C25—C24177.30 (13)
C2—N1'—C5'—C6'94.66 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and C14–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7C···Cg1i0.982.943.821 (3)151
C13—H13···Cg2ii0.952.983.7979 (18)145
C23—H23···Cg2iii0.952.973.707 (2)136
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y, z.
Geometric data (Å, °) for (I) and (II) top
Parameter(I)(II)
Sn—S12.4886 (4)2.4612 (4)
Sn—S22.9120 (3)3.0992 (4)
Sn—C172.1696 (13)
Sn—C232.1309 (13)
Sn—C292.1469 (13)
Sn—C82.1312 (14)
Sn—C142.1608 (14)
Sn—C202.1357 (15)
C1—S11.7532 (13)1.7629 (14)
C1—S21.6902 (13)1.6781 (14)
S1—Sn—S265.919 (10)63.534 (11)
S2—Sn—C17158.55 (4)
S2—Sn—C14154.45 (4)
Percentage contribution to interatomic contacts from the Hirshfeld surface for (I) and (II) top
Contact(I)(II)
H···H59.462.5
C···H/H···C32.924.4
O···H/H···O4.7
S···H/H···S5.87.0
C···S/S···C0.40.0
N···H/H···N0.50.4
C···C0.90.0
S···S0.00.4
C···O/O···C0.10.1
O···O0.00.5
 

Footnotes

Additional correspondence author, e-mail: awang_normah@yahoo.com.

§Additional correspondence author, e-mail: nurulfarahana@ukm.edu.my.

Acknowledgements

This work was supported by grant FRGS/2/2013/SKK10/UKM/02/1. We gratefully acknowledge the School of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia, for providing the essential laboratory facilities. We would also like to thank the laboratory assistants of the Faculty of Science and Technology, Universiti Kebangsaan Malaysia for technical support. Intensity data were collected in the University of Malaya's Crystallographic Laboratory.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationAli, S., Zia-ur-Rehman, Muneeb-ur-Rehman, Khan, I., Shah, S. N. A., Ali, R. F., Shah, A., Badshah, A., Akbar, K. & Bélanger-Gariepy, F. (2014). J. Coord. Chem. 67, 3414–3430.  CSD CrossRef CAS Google Scholar
First citationAwang, N., Kosnon, N. A., Othman, H. & Kamaludin, N. F. (2012). Am. J. Appl. Sci. 9, 1214–1218.  CrossRef CAS Google Scholar
First citationBasu Baul, T. S., Singh, K. S., Holčapek, M., Jirásko, R., Linden, A., Song, X., Zapata, A. & Eng, G. (2005). Appl. Organomet. Chem. 19, 935–944.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHogarth, G., Rainford-Brent, E.-J. C.-R. C. R. & Richards, I. (2009). Inorg. Chim. Acta, 362, 1361–1364.  CSD CrossRef CAS Google Scholar
First citationHook, J. M., Linahan, B. M., Taylor, R. L., Tiekink, E. R. T., van Gorkom, L. & Webster, L. K. (1994). Main Group Met. Chem. 17, 293–311.  CrossRef CAS Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylo, C., Wolff, S. K., Chenai, C. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface. net/  Google Scholar
First citationKana, A. T., Hibbert, T. G., Mahon, M. F., Molloy, K. C., Parkin, I. P. & Price, L. S. (2001). Polyhedron, 20, 2989–2995.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhan, N., Farina, Y., Mun, L. K., Rajab, N. F. & Awang, N. (2014). J. Mol. Struct. 1076, 403–410.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhan, N., Farina, Y., Mun, L. K., Rajab, N. F. & Awang, N. (2015). Polyhedron, 85, 754–760.  CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMohamad, R., Awang, N., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1130–1137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuthalib, A. F. A., Baba, I. & Ibrahim, N. (2015). Malay. J. Anal. Sci. 19, 349–358.  Google Scholar
First citationMuthalib, A. F. A., Baba, I., Khaledi, H., Ali, H. M. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 39–46.  Google Scholar
First citationNaeem, S., Ogilvie, E., White, A. J. P., Hogarth, G. & Wilton-Ely, J. D. E. T. (2010). Dalton Trans. 39, 4080–4089.  CSD CrossRef CAS PubMed Google Scholar
First citationRamasamy, K., Kuznetsov, V. L., Gopal, K., Malik, M. A., Raftery, J., Edwards, P. P. & O'Brien, P. (2013). Chem. Mater. 25, 266–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationRehman, Z., Shah, A., Muhammad, N., Ali, S., Qureshi, R., Meetsma, A. & Butler, I. S. (2009). Eur. J. Med. Chem. 44, 3986–3993.  CSD CrossRef PubMed CAS Google Scholar
First citationSafari, M., Yousefi, M., Jenkins, H. A., Torbati, M. B. & Amanzadeh, A. (2013). Med. Chem. Res. 22, 5730–5738.  CSD CrossRef CAS Google Scholar
First citationSathiyaraj, E., Thirumaran, S. & Selvanayagam, S. (2012). Acta Cryst. E68, m1217.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, X., Duong, Q., Mitrojorgji, E., Zapata, A., Nguyen, N., Strickman, D., Glass, J. & Eng, E. (2004). Appl. Organomet. Chem. 18, 363–368.  CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationZia-ur-Rehman, Muhammad, N., Ali, S., Butler, I. S. & Meetsma, A. (2011). Inorg. Chim. Acta, 376, 381–388.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds