research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Supra­molecular inter­actions in the 1:2 co-crystal of 4,4′-bi­pyridine and 3-chloro­thio­phene-2-carb­­oxy­lic acid

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, and bDepartment of Chemistry, SUNY-College at Geneseo, Geneseo, New York 14454, USA
*Correspondence e-mail: tommtrichy@yahoo.co.in

Edited by P. C. Healy, Griffith University, Australia (Received 17 August 2016; accepted 26 August 2016; online 5 September 2016)

The asymmetric unit of the title compound, 2C5H3ClO2S·C10H8N2, is comprised of a mol­ecule of 3-chloro­thio­phene-2-carb­oxy­lic acid (3TPC) and half of a mol­ecule of 4,4′-bi­pyridine (BPY). A distinctive O—H⋯N-based synthon is present. Cl⋯Cl and ππ stacking inter­actions further stabilize the crystal structure, forming a two-dimensional network parallel to the bc plane.

1. Chemical context

Structurally homogeneous crystalline solids in well defined stochiometry are called co-crystals. In recent years, the physicochemical properties of active pharmaceutical ingredients have been improved widely with the use of co-crystals (Lemmerer & Bernstein, 2010[Lemmerer, A. & Bernstein, J. (2010). CrystEngComm, 12, 2029-2033.]). Supra­molecular synthons – modular representation of primary recognition between functional groups – are of great importance in providing an effective strategy for designing solids in crystal engineering. All geometrical and chemical information of mol­ecular recognition is contained in the structural units called synthons. In the context of co-crystal formation, heterosynthons provide a predictive justification in terms of unique inter­molecular inter­actions (Mukherjee et al., 2011[Mukherjee, A., Tothadi, S., Chakraborty, S., Ganguly, S. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 2637-2653.], 2013[Mukherjee, A., Tothadi, S., Chakraborty, S., Ganguly, S. & Desiraju, G. R. (2013). CrystEngComm, 15, 4640-4654.]). There are many literature cases of O—H⋯N-bonded inter­actions between acid and pyridine-based systems (Shattock et al., 2008[Shattock, T. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533-4545.]; Lemmerer et al., 2015[Lemmerer, A., Govindraju, S., Johnston, M., Motloung, X. & Savig, K. L. (2015). CrystEngComm, 17, 3591-3595.]). 4,4′-Bi­pyridine (BPY) is a weak bidentate base commonly used in crystal engineering on account of its bridging abilities. It also acts as the co-crystal former in the present study because it readily participates in hydrogen bonds with carboxyl-attached organic mol­ecules (Pan et al., 2008[Pan, Y., Li, K., Bi, W. & Li, J. (2008). Acta Cryst. C64, o41-o43.]).

[Scheme 1]

Inter­molecular inter­actions involving halogen substituents, particularly chlorides, play an important role in mol­ecular self-assembly in supra- and biomolecular systems to prepare highly stereoregular organic polymers. It has been observed that these inter­actions act as a tool in crystal engineering to enhance crystal formation and for the design of supra­molecular aggregates (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]). In this context, the study of the effect of various halogens on the mol­ecular packing and crystalline architecture of solids has attracted great attention (Csöregh et al., 2001[Csöregh, I., Brehmer, T., Bombicz, P. & Weber, E. (2001). Cryst. Eng. 4, 343-357.]). The structure-forming ability of Cl⋯Cl inter­actions in assembling chains, ladders, two-dimensional sheets, etc. has been studied extensively (Navon et al., 1997[Navon, O., Bernstein, J. & Khodorkovsky, V. (1997). Angew. Chem. Int. Ed. Engl. 36, 601-603.]; Metrangolo & Resnati, 2014[Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5-7.]). It is based on the values of the two C—Hal⋯Hal angles, θ1 and θ2 (Vener et al., 2013[Vener, M. V., Shishkina, A. V., Rykounov, A. A. & Tsirelson, V. G. (2013). J. Phys. Chem. A, 117, 8459-8467.]).

2. Structural commentary

The asymmetric unit of the title compound (I)[link] consists of a mol­ecule of 3-chloro­thio­phene-2-carb­oxy­lic acid, 3TPC, and a half of a mol­ecule of 4,4′-bi­pyridine, BPY, which is located on a crystallographic inversion center. The inter­nal angle at N1 in BPY is 117.1 (3)° and bond lengths [N1-C6= 1.336 (5) Å and N1-C10 = 1.329 (5) Å] agree with those reported for neutral BPY structures (see for example Jennifer & Mu­thiah, 2014[Jennifer, S. J. & Muthiah, P. T. (2014). Chem. Cent. J. 8, 20.]; Atria et al., 2014[Atria, A. M., Garland, M. T. & Baggio, R. (2014). Acta Cryst. E70, 157-160.]; Moon & Park, 2012[Moon, S.-H. & Park, K.-M. (2012). Acta Cryst. E68, o1201.]; Qin, 2011[Qin, J.-L. (2011). Acta Cryst. E67, o589.]; Najafpour et al., 2008[Najafpour, M. M., Hołyńska, M. & Lis, T. (2008). Acta Cryst. E64, o985.]). The two external bond angles at the carbon of the carboxyl group are 123.7 (3)° and 112.4 (3)°. The high discrepancy between these two angles is typical of an unionized carboxyl group, as are the C=O distance of 1.219 (4) Å and C—OH distance of 1.3254 (5) Å (see for example Prajina et al., 2016[Prajina, O., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 659-662.]; Atria et al., 2014[Atria, A. M., Garland, M. T. & Baggio, R. (2014). Acta Cryst. E70, 157-160.]; Jennifer & Mu­thiah, 2014[Jennifer, S. J. & Muthiah, P. T. (2014). Chem. Cent. J. 8, 20.]; Qin, 2011[Qin, J.-L. (2011). Acta Cryst. E67, o589.]). The bond distances and angles of the thio­phene ring agree with those in structures reported earlier (Zhang et al., 2014[Zhang, Q., Luo, J., Ye, L., Wang, H., Huang, B., Zhang, J., Wu, J., Zhang, S. & Tian, Y. (2014). J. Mol. Struct. 1074, 33-42.]).

3. Supra­molecular features

3TPC and BPY are inter­connected via O—H⋯N hydrogen-bonding inter­actions between (O1—H1) of the carboxyl group and the nitro­gen (N1) of BPY (Table 1[link] and Fig. 1[link]). This O—H⋯N hydrogen bond is a frequently observed supra­molecular synthon in crystal engineering involving a carb­oxy­lic acid and a pyridine system (Dubey & Desiraju, 2015[Dubey, R. & Desiraju, G. R. (2015). IUCrJ, 2, 402-408.]; Lemmerer & Bernstein, 2010[Lemmerer, A. & Bernstein, J. (2010). CrystEngComm, 12, 2029-2033.]; Mukherjee et al., 2011[Mukherjee, A., Tothadi, S., Chakraborty, S., Ganguly, S. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 2637-2653.], 2013[Mukherjee, A., Tothadi, S., Chakraborty, S., Ganguly, S. & Desiraju, G. R. (2013). CrystEngComm, 15, 4640-4654.]; Prajina et al., 2016[Prajina, O., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 659-662.]; Seaton, 2014[Seaton, C. C. (2014). CrystEngComm, 16, 5878-5886.]; Thomas et al., 2010[Thomas, L. H., Blagden, N., Gutmann, M. J., Kallay, A. A., Parkin, A., Seaton, C. C. & Wilson, C. C. (2010). Cryst. Growth Des. 10, 2770-2774.]). This supra­molecular synthon is also present in the co-crystal of 5-chloro­thio­phene-2-carb­oxy­lic acid with BPY (5TPC44BIPY) and in the co-crystal of thio­phene-2-carb­oxy­lic acid with BPY reported from our laboratory (Jennifer & Mu­thiah, 2014[Jennifer, S. J. & Muthiah, P. T. (2014). Chem. Cent. J. 8, 20.]). The co-crystal 5TPC44BIPY and the title co-crystal differ only in the position of chlorine in the thio­phene ring with the same base. A chloro derivative was chosen as co-mol­ecule with the expectation that the presence of a Cl atom would result in halogen–halogen inter­actions. As expected, a Cl⋯Cl inter­action plays the key role in connecting the O—H⋯N hydrogen-bonded units to form an infinite zigzag chain, i.e., the three-mol­ecule aggregates are further linked to similar neighbouring aggregates through Cl⋯Cl inter­actions [3.3925 (12) Å, C3—Cl1⋯Cl1iii = 151.71 (1)°; symmetry code: (iii) 1 − x, y, [{1\over 2}] − z] (Vener et al., 2013[Vener, M. V., Shishkina, A. V., Rykounov, A. A. & Tsirelson, V. G. (2013). J. Phys. Chem. A, 117, 8459-8467.]; Sarma & Desiraju, 1986[Sarma, J. A. R. P. & Desiraju, G. R. (1986). Acc. Chem. Res. 19, 222-228.]; Capdevila-Cortada et al., 2014[Capdevila-Cortada, M., Castelló, J. & Novoa, J. J. (2014). CrystEngComm, 16, 8232-8242.]). The hydrogen-bonded units are stabilized via ππ stacking inter­actions between the aromatic systems of BPY mol­ecules [Cg1⋯Cg1ii = 3.794 (2) Å; Cg1 is the centroid of the N1/C6/C7/C8/C9/C10 ring; symmetry code: (ii) 1 − x, 2 − y, 1 − z]. The perpendicular distance between two parallel mol­ecules is 3.4812 (15) Å. This weak inter­action holds the hydrogen-bonded chains together, supporting a two-dimensional supra­molecular network parallel to the bc plane, as seen in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.89 (5) 1.77 (5) 2.659 (4) 178 (5)
Symmetry code: (i) x, y-1, z.
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line represents the O—H⋯N hydrogen bond. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]
[Figure 2]
Figure 2
A view of the O—H⋯N hydrogen bonds (black dashed lines), ππ stacking (brown dashed lines) and Cl⋯Cl inter­actions (blue dashed lines). Symmetry codes: (i) x, y − 1, z; (ii) 1 − x, 2 − y, 1 – z; (iii) 1 − x, y, [{1\over 2}] − z.

4. Database survey

In the title compound, the most dominant inter­action is the O—H⋯N hydrogen bond formed between a carboxyl group and a pyridine N atom (Fig. 1[link]). The length of this hydrogen bond [O⋯N = 2.659 (4) Å] is very close to those of O—H⋯N bonds found in similar reported co-crystals, such as in the adduct of 2,5-dihy­droxy-1,4-benzo­quinone and BPY (Cowan et al., 2001[Cowan, J. A., Howard, J. A. K. & Leech, M. A. (2001). Acta Cryst. C57, 302-303.]) and in the co-crystal of BPY with N,N′-dioxide-3-hy­droxy-2-naphthoic acid (1/2) (Lou & Huang, 2007[Lou, B.-Y. & Huang, Y.-B. (2007). Acta Cryst. C63, o246-o248.]) and in a series of nine co-crystals involving acridine and benzoic acids (Kowalska et al., 2015[Kowalska, K., Trzybiński, D. & Sikorski, A. (2015). CrystEngComm, 17, 7199-7212.]). The angle of the hydrogen bond formed between the 3CTPC and BPY mol­ecules is 178 (5)°. A similar value is found in the co-crystal of BPY with 3,5-di­nitro benzoic acid for which the O⋯N distance is 2.547 (2) Å (Thomas et al., 2010[Thomas, L. H., Blagden, N., Gutmann, M. J., Kallay, A. A., Parkin, A., Seaton, C. C. & Wilson, C. C. (2010). Cryst. Growth Des. 10, 2770-2774.]). In the crystal structure of the co-crystal of adamantane-1,3-di­carb­oxy­lic acid and 4,4′-bi­pyridine, ππ inter­actions connect the O—H⋯N hydrogen-bonded zigzag chains, supporting a two-dimensional network (Pan et al., 2008[Pan, Y., Li, K., Bi, W. & Li, J. (2008). Acta Cryst. C64, o41-o43.]).

5. Synthesis and crystallization

To 10 ml of a hot methanol solution of 3TPC (40.6 mg, 25 mmol), 10 ml of a hot methano­lic solution of BPY (39.0 mg, 25 mmol) was added. The resulting solution was warmed over a water bath for half an hour and then kept at room temperature for crystallization. After a week, clear yellow plates were obtained. The crystal used for X-ray diffraction data collection was cut from a larger crystal.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were located in difference Fourier maps. The hydrogen atoms bonded to carbon were refined using a riding model with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The carb­oxy­lic acid hydrogen atom was freely refined, including its isotropic displacement parameter.

Table 2
Experimental details

Crystal data
Chemical formula 2C5H3ClO2S·C10H8N2
Mr 481.35
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 13.538 (4), 5.1230 (18), 30.167 (10)
β (°) 95.968 (9)
V3) 2080.8 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.54
Crystal size (mm) 0.50 × 0.50 × 0.10
 
Data collection
Diffractometer Bruker SMART X2S benchtop
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.69, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 10427, 1907, 1563
Rint 0.078
(sin θ/λ)max−1) 0.607
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.136, 1.19
No. of reflections 1907
No. of parameters 140
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.32
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

bis(3-Chlorothiophene-2-carboxylic acid); 4,4'-bipyridine top
Crystal data top
2C5H3ClO2S·C10H8N2F(000) = 984
Mr = 481.35Dx = 1.537 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.538 (4) ÅCell parameters from 3438 reflections
b = 5.1230 (18) Åθ = 2.7–24.8°
c = 30.167 (10) ŵ = 0.54 mm1
β = 95.968 (9)°T = 200 K
V = 2080.8 (12) Å3Plate, clear colourless
Z = 40.50 × 0.50 × 0.10 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
1563 reflections with I > 2σ(I)
Radiation source: sealed microfocus tubeRint = 0.078
ω scansθmax = 25.6°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1616
Tmin = 0.69, Tmax = 0.95k = 66
10427 measured reflectionsl = 3636
1907 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0431P)2 + 4.3057P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
1907 reflectionsΔρmax = 0.37 e Å3
140 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3544 (2)0.9782 (6)0.54889 (10)0.0363 (7)
C80.4696 (2)0.6000 (7)0.51024 (11)0.0312 (8)
C70.4776 (3)0.6415 (8)0.55606 (12)0.0406 (9)
H70.52270.54010.57520.049*
C60.4200 (3)0.8304 (8)0.57370 (11)0.0385 (9)
H60.42750.85630.60510.046*
C100.3468 (3)0.9421 (8)0.50506 (12)0.0423 (9)
H100.30161.04810.48680.051*
C90.4017 (3)0.7571 (7)0.48451 (12)0.0386 (9)
H90.39310.73770.45300.046*
S10.12214 (6)0.6112 (2)0.64475 (3)0.0420 (3)
Cl10.40721 (6)0.8001 (2)0.70764 (3)0.0447 (3)
O10.24836 (19)0.2918 (6)0.59585 (9)0.0462 (7)
O20.39160 (18)0.3397 (5)0.63983 (8)0.0411 (6)
C20.2498 (2)0.5841 (7)0.65494 (11)0.0304 (7)
C50.1177 (3)0.8526 (8)0.68316 (12)0.0454 (10)
H50.05790.93410.68990.054*
C40.2091 (3)0.9160 (8)0.70321 (12)0.0414 (9)
H40.22101.04820.72520.050*
C30.2846 (2)0.7602 (7)0.68722 (10)0.0312 (8)
C10.3043 (3)0.3936 (7)0.63023 (11)0.0325 (8)
H10.283 (4)0.184 (10)0.5800 (16)0.072 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0315 (16)0.0350 (17)0.0435 (17)0.0014 (13)0.0097 (13)0.0083 (13)
C80.0258 (18)0.0349 (19)0.0340 (17)0.0042 (15)0.0083 (14)0.0031 (14)
C70.041 (2)0.049 (2)0.0321 (18)0.0065 (18)0.0083 (16)0.0011 (16)
C60.042 (2)0.042 (2)0.0330 (18)0.0001 (17)0.0108 (15)0.0080 (15)
C100.040 (2)0.046 (2)0.041 (2)0.0100 (18)0.0024 (16)0.0040 (17)
C90.041 (2)0.042 (2)0.0331 (18)0.0043 (17)0.0029 (15)0.0075 (15)
S10.0207 (5)0.0602 (7)0.0448 (5)0.0069 (4)0.0021 (4)0.0076 (4)
Cl10.0261 (5)0.0630 (7)0.0440 (5)0.0012 (4)0.0013 (4)0.0081 (4)
O10.0313 (14)0.0611 (19)0.0459 (15)0.0083 (13)0.0023 (12)0.0207 (14)
O20.0254 (13)0.0515 (17)0.0466 (14)0.0130 (12)0.0047 (11)0.0053 (12)
C20.0196 (16)0.040 (2)0.0316 (17)0.0064 (14)0.0048 (13)0.0036 (14)
C50.031 (2)0.061 (3)0.045 (2)0.0188 (19)0.0092 (16)0.0057 (18)
C40.038 (2)0.051 (2)0.0357 (19)0.0114 (18)0.0063 (16)0.0071 (16)
C30.0233 (17)0.042 (2)0.0282 (16)0.0065 (15)0.0034 (13)0.0029 (14)
C10.0294 (19)0.0352 (19)0.0335 (17)0.0025 (15)0.0056 (14)0.0019 (14)
Geometric parameters (Å, º) top
N1—C101.329 (5)S1—C21.729 (3)
N1—C61.336 (5)Cl1—C31.721 (3)
C8—C71.391 (5)O1—C11.325 (4)
C8—C91.395 (5)O1—H10.89 (5)
C8—C8i1.489 (7)O2—C11.219 (4)
C7—C61.384 (5)C2—C31.374 (5)
C7—H70.9500C2—C11.472 (5)
C6—H60.9500C5—C41.359 (6)
C10—C91.389 (5)C5—H50.9500
C10—H100.9500C4—C31.421 (5)
C9—H90.9500C4—H40.9500
S1—C51.700 (4)
C10—N1—C6117.1 (3)C1—O1—H1112 (3)
C7—C8—C9116.3 (3)C3—C2—C1129.8 (3)
C7—C8—C8i121.8 (4)C3—C2—S1109.7 (3)
C9—C8—C8i121.8 (4)C1—C2—S1120.5 (3)
C6—C7—C8120.0 (3)C4—C5—S1112.4 (3)
C6—C7—H7120.0C4—C5—H5123.8
C8—C7—H7120.0S1—C5—H5123.8
N1—C6—C7123.4 (3)C5—C4—C3111.7 (3)
N1—C6—H6118.3C5—C4—H4124.2
C7—C6—H6118.3C3—C4—H4124.2
N1—C10—C9123.4 (3)C2—C3—C4113.8 (3)
N1—C10—H10118.3C2—C3—Cl1125.4 (3)
C9—C10—H10118.3C4—C3—Cl1120.9 (3)
C10—C9—C8119.8 (3)O2—C1—O1123.9 (3)
C10—C9—H9120.1O2—C1—C2123.7 (3)
C8—C9—H9120.1O1—C1—C2112.4 (3)
C5—S1—C292.46 (18)
C9—C8—C7—C60.0 (5)S1—C5—C4—C30.9 (5)
C8i—C8—C7—C6179.7 (4)C1—C2—C3—C4179.3 (3)
C10—N1—C6—C71.4 (6)S1—C2—C3—C40.4 (4)
C8—C7—C6—N10.8 (6)C1—C2—C3—Cl10.3 (6)
C6—N1—C10—C91.4 (6)S1—C2—C3—Cl1180.0 (2)
N1—C10—C9—C80.7 (6)C5—C4—C3—C20.9 (5)
C7—C8—C9—C100.1 (5)C5—C4—C3—Cl1179.5 (3)
C8i—C8—C9—C10179.7 (4)C3—C2—C1—O210.6 (6)
C5—S1—C2—C30.1 (3)S1—C2—C1—O2169.7 (3)
C5—S1—C2—C1179.8 (3)C3—C2—C1—O1168.0 (4)
C2—S1—C5—C40.6 (3)S1—C2—C1—O111.7 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1ii0.89 (5)1.77 (5)2.659 (4)178 (5)
Symmetry code: (ii) x, y1, z.
 

Acknowledgements

OKP thanks the UGC–SAP and UGC–BSR India for the award of an RFSMS. PTM is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. DKG thanks the US Department of Education for the X-ray diffractometer (grant No. P116Z100020).

References

First citationAtria, A. M., Garland, M. T. & Baggio, R. (2014). Acta Cryst. E70, 157–160.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCapdevila-Cortada, M., Castelló, J. & Novoa, J. J. (2014). CrystEngComm, 16, 8232–8242.  CAS Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCowan, J. A., Howard, J. A. K. & Leech, M. A. (2001). Acta Cryst. C57, 302–303.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCsöregh, I., Brehmer, T., Bombicz, P. & Weber, E. (2001). Cryst. Eng. 4, 343–357.  Web of Science CSD CrossRef CAS Google Scholar
First citationDubey, R. & Desiraju, G. R. (2015). IUCrJ, 2, 402–408.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationJennifer, S. J. & Muthiah, P. T. (2014). Chem. Cent. J. 8, 20.  Web of Science CSD CrossRef PubMed Google Scholar
First citationKowalska, K., Trzybiński, D. & Sikorski, A. (2015). CrystEngComm, 17, 7199–7212.  Web of Science CSD CrossRef CAS Google Scholar
First citationLemmerer, A. & Bernstein, J. (2010). CrystEngComm, 12, 2029–2033.  Web of Science CSD CrossRef CAS Google Scholar
First citationLemmerer, A., Govindraju, S., Johnston, M., Motloung, X. & Savig, K. L. (2015). CrystEngComm, 17, 3591–3595.  Web of Science CSD CrossRef CAS Google Scholar
First citationLou, B.-Y. & Huang, Y.-B. (2007). Acta Cryst. C63, o246–o248.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMetrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5–7.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMoon, S.-H. & Park, K.-M. (2012). Acta Cryst. E68, o1201.  CSD CrossRef IUCr Journals Google Scholar
First citationMukherjee, A., Tothadi, S., Chakraborty, S., Ganguly, S. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 2637–2653.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, A., Tothadi, S., Chakraborty, S., Ganguly, S. & Desiraju, G. R. (2013). CrystEngComm, 15, 4640–4654.  Web of Science CSD CrossRef CAS Google Scholar
First citationNajafpour, M. M., Hołyńska, M. & Lis, T. (2008). Acta Cryst. E64, o985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNavon, O., Bernstein, J. & Khodorkovsky, V. (1997). Angew. Chem. Int. Ed. Engl. 36, 601–603.  CrossRef CAS Web of Science Google Scholar
First citationPan, Y., Li, K., Bi, W. & Li, J. (2008). Acta Cryst. C64, o41–o43.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrajina, O., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 659–662.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQin, J.-L. (2011). Acta Cryst. E67, o589.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarma, J. A. R. P. & Desiraju, G. R. (1986). Acc. Chem. Res. 19, 222–228.  CrossRef CAS Web of Science Google Scholar
First citationSeaton, C. C. (2014). CrystEngComm, 16, 5878–5886.  Web of Science CSD CrossRef CAS Google Scholar
First citationShattock, T. R., Arora, K. K., Vishweshwar, P. & Zaworotko, M. J. (2008). Cryst. Growth Des. 8, 4533–4545.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, L. H., Blagden, N., Gutmann, M. J., Kallay, A. A., Parkin, A., Seaton, C. C. & Wilson, C. C. (2010). Cryst. Growth Des. 10, 2770–2774.  Web of Science CSD CrossRef CAS Google Scholar
First citationVener, M. V., Shishkina, A. V., Rykounov, A. A. & Tsirelson, V. G. (2013). J. Phys. Chem. A, 117, 8459–8467.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q., Luo, J., Ye, L., Wang, H., Huang, B., Zhang, J., Wu, J., Zhang, S. & Tian, Y. (2014). J. Mol. Struct. 1074, 33–42.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds