research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Isotypic MnII and FeII binuclear complexes of the ligand 5,6-bis­­(pyridin-2-yl)-pyrazine-2,3-di­carb­­oxy­lic acid

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, University of Neuchâtel, Av Bellevaux 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by T. J. Prior, University of Hull, England (Received 26 August 2016; accepted 2 September 2016; online 9 September 2016)

The title isotypic complexes, bis­[μ-5,6-bis­(pyridin-2-yl)pyrazine-2,3-di­carboxylato]-κ4N1,O2,N6:O3;κ4O3:N1,O2,N6-bis­[di­aqua­manganese(II)] tetra­hydrate, [Mn2(C16H8N4O4)2(H2O)4]·4H2O, (I), and bis­[μ-5,6-bis­(pyridin-2-yl)pyrazine-2,3-di­carboxyl­ato]-κ4N1,O2,N6:O3;κ4O3:N1,O2,N6-bis­[di­aqua­iron(II)] tetrahydrate, [Fe2(C16H8N4O4)2(H2O)4]·4H2O, (II), are, respectively, the mangan­ese(II) and iron(II) complexes of the ligand 5,6-bis­(pyridin-2-yl)-pyrazine-2,3-di­carb­oxy­lic acid. The complete mol­ecule of each complex is generated by inversion symmetry. Each metal ion is coordinated by a pyrazine N atom, a pyridine N atom, two carboxyl­ate O atoms, one of which is bridging, and two water O atoms. The metal atoms have MN2O4 coordination geometries and the complexes have a cage-like structure. In the crystals of both compounds, the complexes are linked by O—H⋯O and O—H⋯N hydrogen bonds involving the coordinating water mol­ecules, forming chains along [100]. These chains are linked by O—H⋯O hydrogen bonds involving the non-coordinating water mol­ecules, forming layers parallel to (011). The layers are linked by pairs of C—H⋯O hydrogen bonds and offset ππ inter­actions, so forming a hydrogen-bonded three-dimensional framework.

1. Chemical context

The syntheses and crystal structures of the ligand 5,6-bis(pyridin-2-yl)pyrazine-2,3-di­carb­oxy­lic acid (H2L) and three different salts, have been described by Alfonso et al. (2001[Alfonso, M., Wang, Y. & Stoeckli-Evans, H. (2001). Acta Cryst. C57, 1184-1188.]), and it was noted that the ligand crystallizes as a zwitterion in all four compounds. The reaction of H2L with CuBr2 (ratio 1:2) led to the formation of a one-dimensional coordination polymer. On exposure to air, this compound loses the solvent of crystallization and four water mol­ecules, transforming into a polymeric two-dimensional network structure (Neels et al., 2003[Neels, A., Alfonso, M., Mantero, D. G. & Stoeckli-Evans, H. (2003). Chimia, 57, 619-622.]). In both cases, there are two crystallographically independent fivefold-coordinated copper atoms present, each having an almost perfect square-pyramidal geometry. Recently, we have reported on the crystal structure of the cadmium dichloride complex of ligand H2L, which is a two-dimensional coordination polymer (Alfonso & Stoeckli-Evans, 2016[Alfonso, M. & Stoeckli-Evans, H. (2016). Acta Cryst. E72, 1214-1218.]). Herein, we describe the syntheses and crystal structures of the title isotypic binuclear complexes, (I)[link] and (II)[link], formed by the reaction of H2L with, respectively, MnCl2 and FeCl2.

[Scheme 1]

2. Structural commentary

The complete mol­ecules of complexes (I)[link] and (II)[link] are generated by inversion symmetry, as shown in Figs. 1[link] and 2[link], respectively. The metal atoms are sixfold coordinated by one pyrazine N atom (N1), one pyridine N atom (N3), two water O atoms (O1W and O2W), and by two carboxyl­ate O atoms, O1 and O3i [symmetry code: (i) −x + 2, −y + 2, −z + 2]. Hence, the ligand coordinates to the metal atoms in a tridentate (N,N,O) and a monodentate (O) manner. Atom O3 is bridg­ing, so leading to the formation of a cage-like complex situated about a centre of inversion; illustrated in Fig. 3[link] for the FeII complex, (II)[link]. The metal–metal distances are Mn1⋯Mn1i ca 6.58 Å, while the Fe1⋯Fe1i distance is ca 6.50 Å. Selected bond lengths and angles for compounds (I)[link] and (II)[link], are given in Tables 1[link] and 2[link], respectively.

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Mn1—O3i 2.139 (2) Mn1—N3 2.311 (3)
Mn1—O1W 2.141 (3) O1—C15 1.257 (4)
Mn1—O2W 2.148 (3) O2—C15 1.243 (4)
Mn1—O1 2.228 (2) O3—C16 1.254 (4)
Mn1—N1 2.242 (3) O4—C16 1.239 (4)
       
O3i—Mn1—O1W 162.15 (10) O2W—Mn1—N1 163.62 (11)
O3i—Mn1—O2W 85.00 (11) O1—Mn1—N1 71.84 (8)
O1W—Mn1—O2W 86.92 (12) O3i—Mn1—N3 100.80 (10)
O3i—Mn1—O1 89.80 (9) O1W—Mn1—N3 95.57 (11)
O1W—Mn1—O1 81.62 (10) O2W—Mn1—N3 93.71 (11)
O2W—Mn1—O1 124.11 (10) O1—Mn1—N3 141.63 (9)
O3i—Mn1—N1 99.80 (10) N1—Mn1—N3 70.05 (9)
O1W—Mn1—N1 92.39 (11)    
Symmetry code: (i) -x+2, -y+2, -z+2.

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Fe1—O3i 2.105 (2) Fe1—N3 2.205 (3)
Fe1—O1W 2.115 (2) O1—C15 1.271 (4)
Fe1—O2W 2.066 (2) O2—C15 1.229 (4)
Fe1—O1 2.131 (2) O3—C16 1.251 (3)
Fe1—N1 2.126 (2) O4—C16 1.240 (4)
       
O3i—Fe1—O1W 164.77 (9) O2W—Fe1—N1 165.15 (10)
O3i—Fe1—O2W 85.22 (9) N1—Fe1—O1 74.91 (9)
O1W—Fe1—O2W 87.43 (10) O3i—Fe1—N3 99.60 (9)
O3i—Fe1—O1 89.65 (8) O1W—Fe1—N3 94.03 (10)
O1W—Fe1—O1 82.38 (9) O2W—Fe1—N3 92.45 (10)
O2W—Fe1—O1 119.49 (10) O1—Fe1—N3 147.49 (9)
O3i—Fe1—N1 99.21 (9) N1—Fe1—N3 72.87 (10)
O1W—Fe1—N1 91.27 (9)    
Symmetry code: (i) -x+2, -y+2, -z+2.
[Figure 1]
Figure 1
A view of the mol­ecular structure of compound (I)[link], with atom labelling. Unlabelled atoms are related to the labelled atoms by inversion symmetry (−x + 2, −y + 2, −z + 2). Displacement ellipsoids are drawn at the 50% probability level. The solvate water molecules have been omitted for clarity.
[Figure 2]
Figure 2
A view of the mol­ecular structure of compound (II)[link], with atom labelling. Unlabelled atoms are related to the labelled atoms by inversion symmetry (−x + 2, −y + 2, −z + 2). Displacement ellipsoids are drawn at the 50% probability level. The solvate water molecules have been omitted for clarity.
[Figure 3]
Figure 3
A view of the mol­ecular structure of compound (II)[link], illustrating the cage-like form of the complexes [symmetry code: (i) −x + 2, −y + 2, −z + 2].

In complex (I)[link], it can be seen from the carboxyl­ate C—O bond lengths [C15—O1 and C15—O2 are 1.257 (4) and 1.243 (4) Å, respectively, and C16—O3 and C16—O4 are 1.254 (4) and 1.239 (4) Å, respectively], that the negative charge is distributed over the O–C–O groups (Table 1[link]). The Mn—Npyrazine, Mn1—N1, bond length is 2.242 (3) Å, which is shorter than the Mn—Npyridine, Mn1—N3, bond length of 2.311 (3) Å. The Mn1—Owater bond lengths [2.141 (3) and 2.148 (3) Å] are similar to the Mn—Ocarboxyl­ate, Mn1—O3i, bond length of 2.139 (2) Å, while distance Mn1—O1 is longer at 2.228 (2) Å.

In complex (II)[link], the carboxyl­ate C—O distances [C15—O1 and C15—O2 are 1.271 (4) and 1.229 (4) Å, respectively, and C16—O3 and C16—O4 are 1.251 (3) and 1.240 (4) Å, respectively], indicate that the negative charge is centred on atom O1 for carboxyl­ate O1–C15–O2, while for carboxyl­ate O3–C16–O4 is appears to be distributed over the O–C–O group (Table 2[link]). This situation is similar to that observed for the coordinating carboxyl­ate groups in the CdII two-dimensional coordination polymer involving ligand H2L, mentioned above. The Fe—Npyrazine bond length, Fe1—N1, is 2.126 (2) Å, which is slightly shorter than the Fe—Npyridine, Fe1—N3, bond length of 2.205 (3) Å. The Fe1—Owater bond lengths [2.115 (2) and 2.066 (2) Å] are similar to the Fe1—Ocarboxyl­ate bond lengths [2.131 (2) and 2.139 (2) Å].

The geometry of the sixfold coordinated metal atoms can best be described as a distorted octa­hedron, with atoms O1,N3,O1W,O3i in the equatorial plane and atoms O2W and N1 in the apical positions with an O2W—Mn1—N1 bond angle of 163.62 (11) ° (Table 1[link]), and an O2W—Fe1—N1 bond angle of 165.15 (10)° (Table 2[link]). The coordinating pyridine ring (N3/C5–C9) and the carboxyl­ate group (O1/O2/C15) are inclined to the mean plane of the pyrazine ring by 18.57 (17) and 7.8 (4)°, respectively, in (I)[link] and by 14.71 (16) and 7.4 (4)°, respectively, in (II)[link]. The non-coordinating pyridine ring (N4/C10–C14) and the second coordinating carboxyl­ate group (O3/O4/C16) are inclined to the mean plane of the pyrazine ring by 65.42 (16) and 80.64 (4)°, respectively, in (I)[link] and by 64.59 (16) and 79.4 (4)°, respectively, in (II)[link]. In compound (I)[link] the two pyridine rings are inclined to one another by 57.16 (18)°, very similar to the same dihedral angle in (II)[link], viz. 57.28 (17)°.

3. Supra­molecular features

Details of the hydrogen-bonding inter­actions in the crystals of both compounds, are given in Table 3[link] for (I)[link] and Table 4[link] for (II)[link]. In the crystals of both compounds, the complexes are linked by O—H⋯O and O—H⋯N hydrogen bonds, involving the coordinating water mol­ecules (O1W and O2W), forming chains along [100]; illustrated in Fig. 4[link] for compound (I)[link]. The chains are linked by O—H⋯O hydrogen bonds involving the lattice water mol­ecules (O3W and O4W), forming layers parallel to the bc plane, as illustrated in Fig. 5[link] for compound (I)[link]. The lattice water mol­ecules are hydrogen bonded to themselves, forming chains that enclose two different R42(8) ring motifs (Fig. 5[link]). Pairs of C—H⋯O hydrogen bonds and offset ππ inter­actions, involving inversion-related coordinated pyridine rings [CgCgii = 3.671 (4) Å in (I)[link], and 3.594 (2) Å in (II)[link]; Cg is the centroid of the ring N3/C5–C9; symmetry code: (ii) −x + 2, −y + 2, −z + 1], link the layers, forming a three-dimensional framework; illus­trated in Fig. 6[link] for compound (II)[link].

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1ii 0.83 (2) 1.89 (2) 2.710 (4) 168 (4)
O1W—H1WB⋯N4iii 0.84 (2) 1.91 (2) 2.750 (4) 179 (5)
O2W—H2WA⋯O2ii 0.84 (2) 1.91 (2) 2.743 (4) 170 (5)
O2W—H2WB⋯O3Wiv 0.83 (2) 1.92 (3) 2.710 (4) 159 (4)
O3W—H3WA⋯O4W 0.83 (2) 2.08 (2) 2.888 (5) 163 (5)
O3W—H3WB⋯O4Wv 0.85 (2) 2.07 (2) 2.906 (5) 169 (5)
O4W—H4WA⋯O4vi 0.84 (2) 2.16 (2) 3.000 (4) 175 (6)
O4W—H4WB⋯O4vii 0.84 (2) 1.95 (2) 2.793 (4) 176 (6)
C7—H7⋯O3viii 0.93 2.40 3.216 (5) 147
C8—H8⋯O2viii 0.93 2.54 3.452 (4) 167
Symmetry codes: (ii) -x+1, -y+2, -z+2; (iii) x-1, y, z; (iv) x, y+1, z; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+1, -z+2; (vii) x-1, y, z-1; (viii) x, y, z-1.

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1ii 0.84 (2) 1.93 (2) 2.728 (3) 160 (4)
O1W—H1WB⋯N4iii 0.83 (2) 1.94 (2) 2.752 (3) 165 (6)
O2W—H2WA⋯O2ii 0.87 (2) 1.83 (2) 2.694 (3) 172 (3)
O2W—H2WB⋯O3Wiv 0.84 (2) 1.87 (2) 2.686 (4) 165 (4)
O3W—H3WA⋯O4W 0.83 (2) 2.04 (2) 2.874 (4) 176 (6)
O3W—H3WB⋯O4Wv 0.84 (2) 2.03 (2) 2.866 (4) 171 (4)
O4W—H4WA⋯O4vi 0.84 (2) 2.12 (2) 2.957 (4) 172 (5)
O4W—H4WB⋯O4vii 0.82 (2) 1.96 (2) 2.784 (4) 178 (7)
C7—H7⋯O3viii 0.94 2.36 3.206 (5) 149
C8—H8⋯O2viii 0.94 2.57 3.477 (4) 162
Symmetry codes: (ii) -x+1, -y+2, -z+2; (iii) x-1, y, z; (iv) x, y+1, z; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+1, -z+2; (vii) x-1, y, z-1; (viii) x, y, z-1.
[Figure 4]
Figure 4
A view along the c axis of the chain of complexes propagating along the a axis direction. The hydrogen bonds are shown as dashed lines (see Table 3[link]).
[Figure 5]
Figure 5
A view along the normal to the bc plane of the crystal packing of compound (I)[link]. The hydrogen bonds are shown as dashed lines (see Table 3[link]), and the C-bound H atoms have been omitted for clarity.
[Figure 6]
Figure 6
A view along the a axis of the crystal packing of compound (II)[link], showing the hydrogen bonds as dashed lines (see Table 4[link]). The offset ππ inter­actions are shown as dark-blue dashed lines and for clarity only the C-bound H atoms, H7 and H8, have been included.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, last update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the ligand H2L, and its dimethyl ester, gave eight hits. Some of these structures have been mentioned in the Chemical context above. In the case of (I)[link] and (II)[link], the ligand coordinates to the metal atom in a tridentate (N,N,O) and monodentate (O) manner. This coordination mode of H2L is the same as that observed in the CdII two-dimensional coordination polymer (Alfonso & Stoeckli-Evans, 2016[Alfonso, M. & Stoeckli-Evans, H. (2016). Acta Cryst. E72, 1214-1218.]). The pyridine rings and the carboxyl­ate groups are orientated with respect to the pyrazine ring in a very similar manner for all three compounds.

5. Synthesis and crystallization

The synthesis of the ligand 5,6-bis­(pyridin-2-yl)pyrazine-2,3-di­carb­oxy­lic acid (H2L) has been reported previously (Alfonso et al., 2001[Alfonso, M., Wang, Y. & Stoeckli-Evans, H. (2001). Acta Cryst. C57, 1184-1188.]).

Synthesis of compound (I): H2L (64 mg, 0.20 mmol) was added in solid form to an aqueous solution (15 ml) of MnCl2·4H2O (45 mg, 0.20 mmol). The yellow solution immediately obtained was stirred for 10 min at room temperature, filtered and the filtrate allowed to slowly evaporate. After two weeks orange–yellow rod-like crystals were obtained. They were separated by filtration and dried in air (yield: 54 mg, 54.5%). Selected IR bands (KBr pellet, cm−1): ν 3226(br, s), 3080(w), 1636(s), 1598(vs), 1545(w), 1475(m), 1440(m), 1410(w), 1366(s), 1348(s), 1301(w), 1275(w), 1170(m), 1126(m), 1007(w), 954(w), 850(w), 790(m), 562(m).

Synthesis of compound (II): A degassed aqueous solution (20 ml) of H2L (32 mg, 0.10 mmol) was treated with FeCl2·4H2O (20 mg, 0.10 mmol). The violet solution immediately obtained was stirred under N2 at 343 K for 1 h, filtered and the filtrate allowed to slowly evaporate. After two months deep-violet block-like crystals were obtained. They were separated by filtration and air dried (yield: 20 mg, 44.6%). Precipitation of small amounts of iron(III) hydroxide accompanied the formation of the crystals. Selected IR bands (KBr pellet, cm−1): ν 3477(br, s), 3291(br, s), 3078(w), 1640(s), 1593(vs), 1545(w), 1475(m), 1440(m), 1405(w), 1359(m), 1300(w), 1286(w), 1269(w), 1172(m), 1124(m), 1008(w), 954(w), 847(w), 789(m), 772(w), 677(w), 565(m), 549(w), 494(m) %.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. For both (I)[link] and (II)[link], the water H atoms were located in difference Fourier maps and refined with distance restraints: O—H = 0.84 (2) Å. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å for (I)[link] and 0.94 Å for (II)[link], with Uiso(H) = 1.2Ueq(C). Intensity data for (I)[link] were collected at 293 K on a four-circle diffractometer. Only one equivalent of data was measured, hence Rint = 0, and as no suitable ψ-scans could be measured no absorption correction was applied. For compound (II)[link], the data were collected at 223 K using a one-circle image-plate diffractometer with which it is not possible to measure 100% of the Ewald sphere, particularly for the triclinic system, hence a small cusp of data was inaccessible.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula [Mn2(C16H8N4O4)2(H2O)4]·4H2O [Fe2(C16H8N4O4)2(H2O)4]·4H2O
Mr 894.53 896.35
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 293 223
a, b, c (Å) 8.148 (7), 10.4408 (13), 11.5796 (11) 8.0933 (9), 10.3403 (11), 11.5679 (12)
α, β, γ (°) 70.527 (8), 84.232 (9), 84.849 (8) 69.500 (12), 83.593 (13), 84.238 (13)
V3) 922.4 (8) 899.16 (18)
Z 1 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.77 0.90
Crystal size (mm) 0.38 × 0.27 × 0.23 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Stoe–Siemens AED2, 4-circle Stoe IPDS 1 image plate
Absorption correction Multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])
Tmin, Tmax 0.805, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3244, 3244, 2689 6988, 3202, 2475
Rint 0.000 0.063
(sin θ/λ)max−1) 0.595 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.108, 1.11 0.046, 0.116, 0.97
No. of reflections 3244 3202
No. of parameters 294 294
No. of restraints 8 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.40 0.59, −0.69
Computer programs: STADI4 Software (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Damstadt, Germany.]), EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 2004[Stoe & Cie (2004). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]), X-RED Software (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Damstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: STADI4 Software (Stoe & Cie, 1997) for (I); EXPOSE in IPDS-I (Stoe & Cie, 2004) for (II). Cell refinement: STADI4 Software (Stoe & Cie, 1997) for (I); CELL in IPDS-I (Stoe & Cie, 2004) for (II). Data reduction: X-RED Software (Stoe & Cie, 1997) for (I); INTEGRATE in IPDS-I (Stoe & Cie, 2004) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(I) Bis[µ-5,6-bis(pyridin-2-yl)pyrazine-2,3-dicarboxylato]-κ4N1,O2,N6:O3;κ4O3:N1,O2,N6-bis[diaquamanganese(II)] tetrahydrate top
Crystal data top
[Mn2(C16H8N4O4)2(H2O)4]·4H2OZ = 1
Mr = 894.53F(000) = 458
Triclinic, P1Dx = 1.610 Mg m3
a = 8.148 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4408 (13) ÅCell parameters from 22 reflections
c = 11.5796 (11) Åθ = 14.0–19.7°
α = 70.527 (8)°µ = 0.77 mm1
β = 84.232 (9)°T = 293 K
γ = 84.849 (8)°Block, yellow
V = 922.4 (8) Å30.38 × 0.27 × 0.23 mm
Data collection top
Stoe-Siemens AED2, 4-circle
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.1°
Plane graphite monochromatorh = 99
ω/\2q scansk = 1112
3244 measured reflectionsl = 013
3244 independent reflections3 standard reflections every 60 min
2689 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.039P)2 + 1.0007P]
where P = (Fo2 + 2Fc2)/3
3244 reflections(Δ/σ)max < 0.001
294 parametersΔρmax = 0.45 e Å3
8 restraintsΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.70864 (6)0.99063 (5)0.82620 (4)0.02391 (16)
N10.9248 (3)0.8600 (3)0.9156 (2)0.0206 (6)
N21.1681 (3)0.6867 (3)1.0396 (2)0.0235 (6)
N30.8377 (4)0.8748 (3)0.7001 (3)0.0312 (7)
N41.4257 (3)0.6290 (3)0.8621 (3)0.0321 (7)
O10.7117 (3)1.0051 (2)1.0136 (2)0.0265 (5)
O20.8025 (3)0.9040 (3)1.2007 (2)0.0319 (6)
O31.1805 (3)0.8180 (2)1.2502 (2)0.0304 (5)
O41.0455 (3)0.6281 (3)1.3049 (2)0.0365 (6)
O1W0.5391 (3)0.8379 (3)0.9213 (3)0.0357 (6)
H1WA0.455 (4)0.875 (4)0.946 (4)0.051 (13)*
H1WB0.505 (5)0.774 (3)0.903 (4)0.053 (14)*
O2W0.5185 (3)1.0850 (3)0.7038 (3)0.0424 (7)
H2WA0.419 (3)1.079 (5)0.733 (4)0.058 (15)*
H2WB0.523 (5)1.166 (2)0.659 (4)0.052 (14)*
C10.9384 (4)0.8447 (3)1.0332 (3)0.0199 (6)
C21.0656 (4)0.7588 (3)1.0956 (3)0.0209 (7)
C31.1502 (4)0.6992 (3)0.9223 (3)0.0215 (7)
C41.0271 (4)0.7907 (3)0.8571 (3)0.0221 (7)
C50.9896 (4)0.8167 (3)0.7265 (3)0.0251 (7)
C61.0980 (5)0.7841 (4)0.6389 (3)0.0352 (9)
H61.20530.75000.65670.042*
C71.0440 (6)0.8031 (4)0.5245 (3)0.0446 (10)
H71.11480.78120.46470.053*
C80.8856 (6)0.8542 (4)0.4996 (3)0.0466 (11)
H80.84550.86340.42470.056*
C90.7872 (5)0.8917 (4)0.5885 (3)0.0423 (10)
H90.68150.93030.57060.051*
C101.2647 (4)0.6068 (3)0.8723 (3)0.0220 (7)
C111.2058 (4)0.5036 (3)0.8415 (3)0.0315 (8)
H111.09300.49170.84850.038*
C121.3179 (5)0.4179 (4)0.7999 (3)0.0359 (9)
H121.28170.34710.77900.043*
C131.4837 (5)0.4392 (4)0.7900 (3)0.0382 (9)
H131.56150.38340.76210.046*
C141.5315 (5)0.5442 (4)0.8220 (4)0.0398 (9)
H141.64380.55760.81560.048*
C150.8067 (4)0.9252 (3)1.0883 (3)0.0220 (7)
C161.0965 (4)0.7345 (3)1.2291 (3)0.0249 (7)
O3W0.5321 (5)0.3184 (4)0.5099 (3)0.0592 (9)
H3WA0.441 (4)0.361 (4)0.496 (4)0.063 (16)*
H3WB0.605 (5)0.376 (4)0.496 (5)0.064 (17)*
O4W0.2287 (4)0.4854 (4)0.5048 (3)0.0541 (8)
H4WA0.156 (5)0.450 (5)0.561 (4)0.09 (2)*
H4WB0.177 (6)0.528 (5)0.443 (4)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0229 (3)0.0281 (3)0.0212 (3)0.0047 (2)0.00536 (19)0.0092 (2)
N10.0206 (13)0.0254 (14)0.0170 (13)0.0020 (11)0.0013 (10)0.0094 (11)
N20.0227 (14)0.0255 (14)0.0241 (14)0.0032 (11)0.0052 (11)0.0108 (12)
N30.0327 (16)0.0421 (18)0.0229 (15)0.0071 (13)0.0094 (12)0.0164 (13)
N40.0252 (15)0.0384 (17)0.0387 (17)0.0029 (13)0.0029 (13)0.0216 (14)
O10.0291 (12)0.0296 (12)0.0214 (12)0.0084 (10)0.0043 (10)0.0110 (10)
O20.0309 (13)0.0458 (15)0.0210 (12)0.0088 (11)0.0020 (10)0.0164 (11)
O30.0360 (14)0.0363 (14)0.0222 (12)0.0046 (11)0.0076 (10)0.0117 (10)
O40.0466 (16)0.0360 (15)0.0234 (13)0.0105 (12)0.0068 (11)0.0020 (11)
O1W0.0290 (14)0.0340 (15)0.0490 (17)0.0058 (12)0.0061 (12)0.0218 (13)
O2W0.0254 (15)0.0521 (19)0.0360 (16)0.0046 (13)0.0067 (12)0.0031 (14)
C10.0225 (16)0.0194 (16)0.0172 (15)0.0022 (13)0.0000 (12)0.0054 (12)
C20.0200 (16)0.0236 (16)0.0206 (16)0.0034 (13)0.0028 (13)0.0083 (13)
C30.0216 (16)0.0218 (16)0.0220 (16)0.0013 (13)0.0027 (13)0.0082 (13)
C40.0243 (17)0.0245 (17)0.0190 (16)0.0026 (13)0.0032 (13)0.0096 (13)
C50.0330 (19)0.0270 (17)0.0169 (16)0.0049 (14)0.0045 (14)0.0101 (14)
C60.040 (2)0.041 (2)0.0242 (18)0.0142 (17)0.0039 (15)0.0133 (16)
C70.071 (3)0.044 (2)0.0187 (18)0.012 (2)0.0017 (18)0.0150 (17)
C80.071 (3)0.051 (3)0.0219 (19)0.011 (2)0.0142 (19)0.0184 (18)
C90.046 (2)0.054 (3)0.031 (2)0.0112 (19)0.0190 (18)0.0183 (19)
C100.0229 (16)0.0230 (16)0.0201 (16)0.0048 (13)0.0050 (13)0.0078 (13)
C110.0291 (18)0.0278 (19)0.038 (2)0.0011 (15)0.0004 (15)0.0122 (16)
C120.049 (2)0.0256 (19)0.036 (2)0.0006 (17)0.0038 (17)0.0142 (16)
C130.041 (2)0.039 (2)0.038 (2)0.0157 (17)0.0044 (17)0.0209 (18)
C140.0249 (19)0.051 (2)0.051 (2)0.0086 (17)0.0060 (17)0.029 (2)
C150.0206 (16)0.0254 (17)0.0229 (17)0.0040 (13)0.0004 (13)0.0113 (14)
C160.0221 (17)0.0307 (19)0.0223 (17)0.0063 (14)0.0058 (13)0.0100 (15)
O3W0.052 (2)0.050 (2)0.062 (2)0.0047 (18)0.0119 (17)0.0001 (16)
O4W0.0378 (17)0.066 (2)0.0458 (19)0.0026 (15)0.0105 (15)0.0000 (16)
Geometric parameters (Å, º) top
Mn1—O3i2.139 (2)C2—C161.524 (4)
Mn1—O1W2.141 (3)C3—C41.410 (4)
Mn1—O2W2.148 (3)C3—C101.496 (4)
Mn1—O12.228 (2)C4—C51.502 (4)
Mn1—N12.242 (3)C5—C61.386 (5)
Mn1—N32.311 (3)C6—C71.383 (5)
N1—C11.333 (4)C6—H60.9300
N1—C41.335 (4)C7—C81.372 (6)
N2—C21.337 (4)C7—H70.9300
N2—C31.342 (4)C8—C91.379 (6)
N3—C91.345 (4)C8—H80.9300
N3—C51.346 (4)C9—H90.9300
N4—C101.339 (4)C10—C111.380 (5)
N4—C141.341 (4)C11—C121.385 (5)
O1—C151.257 (4)C11—H110.9300
O2—C151.243 (4)C12—C131.376 (5)
O3—C161.254 (4)C12—H120.9300
O3—Mn1i2.139 (2)C13—C141.367 (5)
O4—C161.239 (4)C13—H130.9300
O1W—H1WA0.831 (19)C14—H140.9300
O1W—H1WB0.839 (19)O3W—H3WA0.834 (19)
O2W—H2WA0.841 (19)O3W—H3WB0.851 (19)
O2W—H2WB0.833 (19)O4W—H4WA0.84 (2)
C1—C21.397 (4)O4W—H4WB0.84 (2)
C1—C151.524 (4)
O3i—Mn1—O1W162.15 (10)N1—C4—C5113.8 (3)
O3i—Mn1—O2W85.00 (11)C3—C4—C5127.3 (3)
O1W—Mn1—O2W86.92 (12)N3—C5—C6121.5 (3)
O3i—Mn1—O189.80 (9)N3—C5—C4114.0 (3)
O1W—Mn1—O181.62 (10)C6—C5—C4124.5 (3)
O2W—Mn1—O1124.11 (10)C7—C6—C5118.9 (3)
O3i—Mn1—N199.80 (10)C7—C6—H6120.5
O1W—Mn1—N192.39 (11)C5—C6—H6120.5
O2W—Mn1—N1163.62 (11)C8—C7—C6119.7 (3)
O1—Mn1—N171.84 (8)C8—C7—H7120.1
O3i—Mn1—N3100.80 (10)C6—C7—H7120.1
O1W—Mn1—N395.57 (11)C7—C8—C9118.3 (3)
O2W—Mn1—N393.71 (11)C7—C8—H8120.8
O1—Mn1—N3141.63 (9)C9—C8—H8120.8
N1—Mn1—N370.05 (9)N3—C9—C8122.8 (4)
C1—N1—C4121.1 (3)N3—C9—H9118.6
C1—N1—Mn1117.1 (2)C8—C9—H9118.6
C4—N1—Mn1121.5 (2)N4—C10—C11122.8 (3)
C2—N2—C3119.7 (3)N4—C10—C3116.1 (3)
C9—N3—C5118.5 (3)C11—C10—C3121.1 (3)
C9—N3—Mn1122.3 (2)C10—C11—C12118.7 (3)
C5—N3—Mn1117.1 (2)C10—C11—H11120.7
C10—N4—C14117.2 (3)C12—C11—H11120.7
C15—O1—Mn1119.75 (19)C13—C12—C11119.0 (3)
C16—O3—Mn1i145.3 (2)C13—C12—H12120.5
Mn1—O1W—H1WA108 (3)C11—C12—H12120.5
Mn1—O1W—H1WB132 (3)C14—C13—C12118.6 (3)
H1WA—O1W—H1WB105 (4)C14—C13—H13120.7
Mn1—O2W—H2WA118 (3)C12—C13—H13120.7
Mn1—O2W—H2WB121 (3)N4—C14—C13123.7 (4)
H2WA—O2W—H2WB104 (4)N4—C14—H14118.1
N1—C1—C2119.7 (3)C13—C14—H14118.1
N1—C1—C15114.6 (3)O2—C15—O1127.1 (3)
C2—C1—C15125.7 (3)O2—C15—C1117.5 (3)
N2—C2—C1120.2 (3)O1—C15—C1115.4 (3)
N2—C2—C16114.9 (3)O4—C16—O3126.5 (3)
C1—C2—C16124.9 (3)O4—C16—C2116.0 (3)
N2—C3—C4120.3 (3)O3—C16—C2117.2 (3)
N2—C3—C10114.7 (3)H3WA—O3W—H3WB108 (5)
C4—C3—C10124.9 (3)H4WA—O4W—H4WB106 (5)
N1—C4—C3118.8 (3)
C4—N1—C1—C22.5 (5)C5—C6—C7—C80.4 (6)
Mn1—N1—C1—C2176.7 (2)C6—C7—C8—C93.2 (6)
C4—N1—C1—C15176.9 (3)C5—N3—C9—C81.1 (6)
Mn1—N1—C1—C152.7 (3)Mn1—N3—C9—C8161.9 (3)
C3—N2—C2—C11.2 (5)C7—C8—C9—N32.9 (7)
C3—N2—C2—C16179.1 (3)C14—N4—C10—C111.2 (5)
N1—C1—C2—N23.5 (5)C14—N4—C10—C3177.5 (3)
C15—C1—C2—N2175.8 (3)N2—C3—C10—N465.6 (4)
N1—C1—C2—C16178.9 (3)C4—C3—C10—N4116.5 (4)
C15—C1—C2—C161.8 (5)N2—C3—C10—C11113.1 (3)
C2—N2—C3—C41.9 (5)C4—C3—C10—C1164.8 (5)
C2—N2—C3—C10176.2 (3)N4—C10—C11—C121.0 (5)
C1—N1—C4—C30.6 (5)C3—C10—C11—C12177.6 (3)
Mn1—N1—C4—C3173.3 (2)C10—C11—C12—C130.4 (5)
C1—N1—C4—C5177.8 (3)C11—C12—C13—C140.2 (6)
Mn1—N1—C4—C53.9 (4)C10—N4—C14—C130.9 (6)
N2—C3—C4—N12.8 (5)C12—C13—C14—N40.4 (6)
C10—C3—C4—N1175.0 (3)Mn1—O1—C15—O2166.2 (3)
N2—C3—C4—C5179.7 (3)Mn1—O1—C15—C112.6 (4)
C10—C3—C4—C51.8 (5)N1—C1—C15—O2172.6 (3)
C9—N3—C5—C64.9 (5)C2—C1—C15—O26.7 (5)
Mn1—N3—C5—C6158.9 (3)N1—C1—C15—O16.3 (4)
C9—N3—C5—C4174.5 (3)C2—C1—C15—O1174.3 (3)
Mn1—N3—C5—C421.7 (4)Mn1i—O3—C16—O4176.0 (3)
N1—C4—C5—N316.8 (4)Mn1i—O3—C16—C29.6 (5)
C3—C4—C5—N3160.2 (3)N2—C2—C16—O477.6 (4)
N1—C4—C5—C6163.8 (3)C1—C2—C16—O4100.2 (4)
C3—C4—C5—C619.2 (6)N2—C2—C16—O397.5 (4)
N3—C5—C6—C74.6 (6)C1—C2—C16—O384.8 (4)
C4—C5—C6—C7174.8 (3)
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1ii0.83 (2)1.89 (2)2.710 (4)168 (4)
O1W—H1WB···N4iii0.84 (2)1.91 (2)2.750 (4)179 (5)
O2W—H2WA···O2ii0.84 (2)1.91 (2)2.743 (4)170 (5)
O2W—H2WB···O3Wiv0.83 (2)1.92 (3)2.710 (4)159 (4)
O3W—H3WA···O4W0.83 (2)2.08 (2)2.888 (5)163 (5)
O3W—H3WB···O4Wv0.85 (2)2.07 (2)2.906 (5)169 (5)
O4W—H4WA···O4vi0.84 (2)2.16 (2)3.000 (4)175 (6)
O4W—H4WB···O4vii0.84 (2)1.95 (2)2.793 (4)176 (6)
C7—H7···O3viii0.932.403.216 (5)147
C8—H8···O2viii0.932.543.452 (4)167
Symmetry codes: (ii) x+1, y+2, z+2; (iii) x1, y, z; (iv) x, y+1, z; (v) x+1, y+1, z+1; (vi) x+1, y+1, z+2; (vii) x1, y, z1; (viii) x, y, z1.
(II) Bis[µ-5,6-bis(pyridin-2-yl)pyrazine-2,3-dicarboxylato]-κ4N1,O2,N6:O3;κ4O3:N1,O2,N6-bis[diaquairon(II)] tetrahydrate top
Crystal data top
[Fe2(C16H8N4O4)2(H2O)4]·4H2OZ = 1
Mr = 896.35F(000) = 460
Triclinic, P1Dx = 1.655 Mg m3
a = 8.0933 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3403 (11) ÅCell parameters from 5000 reflections
c = 11.5679 (12) Åθ = 3.3–52.1°
α = 69.500 (12)°µ = 0.90 mm1
β = 83.593 (13)°T = 223 K
γ = 84.238 (13)°Block, dark-violet
V = 899.16 (18) Å30.30 × 0.20 × 0.10 mm
Data collection top
Stoe IPDS 1 image plate
diffractometer
3202 independent reflections
Radiation source: fine-focus sealed tube2475 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.063
φ rotation scansθmax = 25.7°, θmin = 2.1°
Absorption correction: multi-scan
(MULABS; Spek, 2009)
h = 99
Tmin = 0.805, Tmax = 1.000k = 1212
6988 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.072P)2]
where P = (Fo2 + 2Fc2)/3
3202 reflections(Δ/σ)max = 0.001
294 parametersΔρmax = 0.59 e Å3
8 restraintsΔρmin = 0.69 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.71296 (5)0.99041 (4)0.82831 (4)0.01544 (16)
N10.9194 (3)0.8624 (2)0.9131 (2)0.0142 (5)
N21.1679 (3)0.6879 (2)1.0372 (2)0.0154 (6)
N30.8286 (3)0.8855 (3)0.7002 (3)0.0202 (6)
N41.4267 (3)0.6299 (3)0.8589 (3)0.0226 (6)
O10.7040 (3)1.00868 (19)1.0068 (2)0.0165 (5)
O20.7957 (3)0.9106 (2)1.1961 (2)0.0211 (5)
O31.1738 (3)0.8201 (2)1.2494 (2)0.0194 (5)
O41.0447 (3)0.6252 (2)1.3039 (2)0.0245 (5)
O1W0.5488 (3)0.8329 (2)0.9222 (2)0.0225 (5)
H1WA0.463 (3)0.863 (4)0.955 (4)0.040 (12)*
H1WB0.508 (6)0.784 (5)0.891 (5)0.078 (18)*
O2W0.5259 (3)1.0878 (2)0.7138 (3)0.0277 (6)
H2WA0.423 (3)1.080 (4)0.744 (3)0.028 (10)*
H2WB0.547 (5)1.160 (3)0.654 (3)0.030 (11)*
C10.9344 (3)0.8476 (3)1.0307 (3)0.0123 (6)
C21.0637 (4)0.7604 (3)1.0931 (3)0.0137 (6)
C31.1487 (4)0.7011 (3)0.9199 (3)0.0151 (7)
C41.0221 (4)0.7921 (3)0.8542 (3)0.0139 (6)
C50.9805 (4)0.8186 (3)0.7251 (3)0.0182 (7)
C61.0827 (4)0.7811 (3)0.6371 (3)0.0254 (8)
H61.19080.74110.65400.031*
C71.0240 (5)0.8032 (3)0.5224 (4)0.0320 (9)
H71.09150.77750.46140.038*
C80.8663 (5)0.8629 (4)0.4998 (4)0.0326 (9)
H80.82180.87440.42490.039*
C90.7745 (5)0.9057 (3)0.5888 (3)0.0292 (8)
H90.66900.95120.57100.035*
C101.2661 (4)0.6075 (3)0.8702 (3)0.0150 (6)
C111.2068 (4)0.5027 (3)0.8409 (3)0.0212 (7)
H111.09220.48990.84960.025*
C121.3217 (4)0.4167 (3)0.7982 (3)0.0252 (8)
H121.28570.34500.77680.030*
C131.4882 (4)0.4381 (3)0.7877 (3)0.0268 (8)
H131.56850.38080.76010.032*
C141.5346 (4)0.5459 (3)0.8187 (4)0.0282 (8)
H141.64860.56080.81110.034*
C150.8008 (3)0.9290 (3)1.0849 (3)0.0137 (6)
C161.0942 (4)0.7348 (3)1.2273 (3)0.0162 (7)
O3W0.5377 (4)0.3176 (3)0.5121 (3)0.0389 (7)
H3WA0.448 (4)0.365 (5)0.507 (6)0.08 (2)*
H3WB0.611 (4)0.374 (4)0.500 (4)0.044 (13)*
O4W0.2296 (3)0.4837 (3)0.5051 (3)0.0351 (6)
H4WA0.159 (5)0.448 (4)0.564 (3)0.050 (14)*
H4WB0.177 (7)0.527 (6)0.445 (4)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0188 (3)0.0121 (2)0.0149 (3)0.00398 (16)0.00588 (18)0.00385 (17)
N10.0159 (12)0.0098 (11)0.0163 (16)0.0009 (9)0.0017 (11)0.0042 (10)
N20.0175 (13)0.0114 (11)0.0181 (16)0.0014 (9)0.0042 (11)0.0058 (11)
N30.0237 (14)0.0199 (13)0.0170 (17)0.0032 (11)0.0073 (12)0.0059 (12)
N40.0202 (14)0.0204 (13)0.0297 (19)0.0033 (11)0.0044 (13)0.0124 (12)
O10.0200 (11)0.0132 (9)0.0166 (13)0.0053 (8)0.0049 (9)0.0062 (9)
O20.0211 (11)0.0273 (11)0.0154 (14)0.0050 (9)0.0034 (10)0.0093 (10)
O30.0269 (12)0.0160 (10)0.0155 (13)0.0035 (9)0.0053 (10)0.0042 (9)
O40.0328 (13)0.0183 (11)0.0173 (14)0.0067 (9)0.0059 (11)0.0028 (10)
O1W0.0193 (12)0.0168 (11)0.0338 (16)0.0020 (9)0.0023 (11)0.0128 (11)
O2W0.0184 (13)0.0250 (12)0.0284 (17)0.0022 (10)0.0067 (11)0.0052 (11)
C10.0154 (14)0.0083 (12)0.0130 (18)0.0002 (11)0.0014 (13)0.0035 (12)
C20.0173 (15)0.0090 (12)0.0143 (18)0.0028 (11)0.0015 (13)0.0027 (12)
C30.0161 (15)0.0096 (13)0.020 (2)0.0005 (11)0.0012 (13)0.0055 (12)
C40.0168 (15)0.0111 (13)0.0147 (18)0.0010 (11)0.0004 (13)0.0058 (12)
C50.0247 (16)0.0110 (13)0.018 (2)0.0022 (12)0.0030 (14)0.0048 (13)
C60.0363 (19)0.0189 (15)0.020 (2)0.0123 (14)0.0055 (16)0.0077 (14)
C70.052 (2)0.0223 (16)0.019 (2)0.0090 (16)0.0002 (18)0.0073 (15)
C80.053 (2)0.0293 (18)0.018 (2)0.0063 (16)0.0142 (18)0.0112 (16)
C90.037 (2)0.0278 (17)0.024 (2)0.0082 (15)0.0119 (17)0.0110 (16)
C100.0209 (15)0.0111 (13)0.0108 (18)0.0028 (11)0.0054 (13)0.0007 (12)
C110.0232 (16)0.0131 (14)0.027 (2)0.0000 (12)0.0036 (15)0.0058 (14)
C120.0371 (19)0.0139 (14)0.025 (2)0.0012 (13)0.0041 (16)0.0069 (14)
C130.0325 (19)0.0201 (15)0.027 (2)0.0112 (14)0.0035 (16)0.0102 (15)
C140.0190 (17)0.0296 (17)0.038 (3)0.0072 (13)0.0039 (16)0.0166 (17)
C150.0140 (14)0.0110 (13)0.018 (2)0.0007 (11)0.0031 (13)0.0067 (12)
C160.0159 (15)0.0153 (14)0.0166 (19)0.0044 (12)0.0041 (13)0.0050 (13)
O3W0.0379 (17)0.0250 (13)0.042 (2)0.0034 (12)0.0074 (14)0.0028 (12)
O4W0.0258 (14)0.0379 (15)0.0308 (19)0.0003 (11)0.0060 (13)0.0024 (13)
Geometric parameters (Å, º) top
Fe1—O3i2.105 (2)C2—C161.525 (4)
Fe1—O1W2.115 (2)C3—C41.411 (4)
Fe1—O2W2.066 (2)C3—C101.502 (4)
Fe1—O12.131 (2)C4—C51.492 (4)
Fe1—N12.126 (2)C5—C61.377 (5)
Fe1—N32.205 (3)C6—C71.394 (5)
N1—C11.333 (4)C6—H60.9400
N1—C41.335 (4)C7—C81.372 (5)
N2—C21.335 (4)C7—H70.9400
N2—C31.340 (4)C8—C91.374 (5)
N3—C91.347 (4)C8—H80.9400
N3—C51.357 (4)C9—H90.9400
N4—C101.327 (4)C10—C111.385 (4)
N4—C141.331 (4)C11—C121.391 (5)
O1—C151.271 (4)C11—H110.9400
O2—C151.229 (4)C12—C131.373 (5)
O3—C161.251 (3)C12—H120.9400
O3—Fe1i2.105 (2)C13—C141.381 (5)
O4—C161.240 (4)C13—H130.9400
O1W—H1WA0.836 (19)C14—H140.9400
O1W—H1WB0.83 (2)O3W—H3WA0.83 (2)
O2W—H2WA0.867 (19)O3W—H3WB0.843 (19)
O2W—H2WB0.840 (19)O4W—H4WA0.842 (19)
C1—C21.398 (4)O4W—H4WB0.82 (2)
C1—C151.519 (4)
O3i—Fe1—O1W164.77 (9)N1—C4—C5113.3 (2)
O3i—Fe1—O2W85.22 (9)C3—C4—C5128.5 (3)
O1W—Fe1—O2W87.43 (10)N3—C5—C6121.7 (3)
O3i—Fe1—O189.65 (8)N3—C5—C4113.3 (3)
O1W—Fe1—O182.38 (9)C6—C5—C4125.0 (3)
O2W—Fe1—O1119.49 (10)C5—C6—C7119.2 (3)
O3i—Fe1—N199.21 (9)C5—C6—H6120.4
O1W—Fe1—N191.27 (9)C7—C6—H6120.4
O2W—Fe1—N1165.15 (10)C8—C7—C6119.1 (3)
N1—Fe1—O174.91 (9)C8—C7—H7120.4
O3i—Fe1—N399.60 (9)C6—C7—H7120.4
O1W—Fe1—N394.03 (10)C7—C8—C9118.7 (3)
O2W—Fe1—N392.45 (10)C7—C8—H8120.6
O1—Fe1—N3147.49 (9)C9—C8—H8120.6
N1—Fe1—N372.87 (10)N3—C9—C8123.1 (3)
C1—N1—C4121.5 (2)N3—C9—H9118.4
C1—N1—Fe1116.87 (19)C8—C9—H9118.4
C4—N1—Fe1121.4 (2)N4—C10—C11123.0 (3)
C2—N2—C3119.3 (2)N4—C10—C3116.3 (2)
C9—N3—C5117.9 (3)C11—C10—C3120.7 (3)
C9—N3—Fe1124.0 (2)C10—C11—C12118.2 (3)
C5—N3—Fe1116.9 (2)C10—C11—H11120.9
C10—N4—C14117.9 (3)C12—C11—H11120.9
C15—O1—Fe1118.95 (19)C13—C12—C11119.1 (3)
C16—O3—Fe1i144.9 (2)C13—C12—H12120.4
Fe1—O1W—H1WA112 (3)C11—C12—H12120.4
Fe1—O1W—H1WB126 (4)C12—C13—C14118.2 (3)
H1WA—O1W—H1WB101 (4)C12—C13—H13120.9
Fe1—O2W—H2WA119 (3)C14—C13—H13120.9
Fe1—O2W—H2WB118 (3)N4—C14—C13123.5 (3)
H2WA—O2W—H2WB117 (4)N4—C14—H14118.2
N1—C1—C2119.6 (3)C13—C14—H14118.2
N1—C1—C15114.3 (2)O2—C15—O1127.5 (3)
C2—C1—C15126.1 (3)O2—C15—C1118.4 (2)
N2—C2—C1120.4 (3)O1—C15—C1114.0 (3)
N2—C2—C16115.0 (2)O4—C16—O3126.2 (3)
C1—C2—C16124.6 (3)O4—C16—C2115.5 (2)
N2—C3—C4121.1 (3)O3—C16—C2118.2 (3)
N2—C3—C10114.3 (2)H3WA—O3W—H3WB105 (4)
C4—C3—C10124.6 (3)H4WA—O4W—H4WB107 (5)
N1—C4—C3118.1 (3)
C4—N1—C1—C22.2 (4)C5—C6—C7—C80.6 (5)
Fe1—N1—C1—C2177.48 (19)C6—C7—C8—C93.4 (5)
C4—N1—C1—C15176.6 (2)C5—N3—C9—C80.6 (5)
Fe1—N1—C1—C151.3 (3)Fe1—N3—C9—C8166.1 (3)
C3—N2—C2—C11.0 (4)C7—C8—C9—N33.5 (6)
C3—N2—C2—C16178.6 (2)C14—N4—C10—C110.8 (5)
N1—C1—C2—N22.7 (4)C14—N4—C10—C3177.9 (3)
C15—C1—C2—N2176.0 (2)N2—C3—C10—N465.1 (4)
N1—C1—C2—C16180.0 (2)C4—C3—C10—N4117.8 (3)
C15—C1—C2—C161.4 (4)N2—C3—C10—C11113.7 (3)
C2—N2—C3—C41.1 (4)C4—C3—C10—C1163.5 (4)
C2—N2—C3—C10176.2 (2)N4—C10—C11—C120.3 (5)
C1—N1—C4—C30.2 (4)C3—C10—C11—C12178.3 (3)
Fe1—N1—C4—C3175.24 (19)C10—C11—C12—C130.5 (5)
C1—N1—C4—C5177.6 (2)C11—C12—C13—C140.8 (5)
Fe1—N1—C4—C52.6 (3)C10—N4—C14—C130.4 (5)
N2—C3—C4—N11.5 (4)C12—C13—C14—N40.3 (6)
C10—C3—C4—N1175.5 (3)Fe1—O1—C15—O2168.1 (2)
N2—C3—C4—C5178.9 (3)Fe1—O1—C15—C110.8 (3)
C10—C3—C4—C52.0 (5)N1—C1—C15—O2172.9 (2)
C9—N3—C5—C64.8 (4)C2—C1—C15—O25.8 (4)
Fe1—N3—C5—C6162.8 (2)N1—C1—C15—O16.1 (3)
C9—N3—C5—C4175.5 (3)C2—C1—C15—O1175.2 (3)
Fe1—N3—C5—C416.9 (3)Fe1i—O3—C16—O4180.0 (2)
N1—C4—C5—N312.7 (4)Fe1i—O3—C16—C24.6 (5)
C3—C4—C5—N3164.8 (3)N2—C2—C16—O476.7 (3)
N1—C4—C5—C6167.0 (3)C1—C2—C16—O4100.8 (3)
C3—C4—C5—C615.4 (5)N2—C2—C16—O399.2 (3)
N3—C5—C6—C74.8 (5)C1—C2—C16—O383.4 (4)
C4—C5—C6—C7175.5 (3)
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1ii0.84 (2)1.93 (2)2.728 (3)160 (4)
O1W—H1WB···N4iii0.83 (2)1.94 (2)2.752 (3)165 (6)
O2W—H2WA···O2ii0.87 (2)1.83 (2)2.694 (3)172 (3)
O2W—H2WB···O3Wiv0.84 (2)1.87 (2)2.686 (4)165 (4)
O3W—H3WA···O4W0.83 (2)2.04 (2)2.874 (4)176 (6)
O3W—H3WB···O4Wv0.84 (2)2.03 (2)2.866 (4)171 (4)
O4W—H4WA···O4vi0.84 (2)2.12 (2)2.957 (4)172 (5)
O4W—H4WB···O4vii0.82 (2)1.96 (2)2.784 (4)178 (7)
C7—H7···O3viii0.942.363.206 (5)149
C8—H8···O2viii0.942.573.477 (4)162
Symmetry codes: (ii) x+1, y+2, z+2; (iii) x1, y, z; (iv) x, y+1, z; (v) x+1, y+1, z+1; (vi) x+1, y+1, z+2; (vii) x1, y, z1; (viii) x, y, z1.
 

Acknowledgements

We are grateful to the Swiss National Science Foundation and the University of Neuchâtel for financial support.

References

First citationAlfonso, M. & Stoeckli-Evans, H. (2016). Acta Cryst. E72, 1214–1218.  CSD CrossRef IUCr Journals Google Scholar
First citationAlfonso, M., Wang, Y. & Stoeckli-Evans, H. (2001). Acta Cryst. C57, 1184–1188.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNeels, A., Alfonso, M., Mantero, D. G. & Stoeckli-Evans, H. (2003). Chimia, 57, 619–622.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Damstadt, Germany.  Google Scholar
First citationStoe & Cie (2004). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds