research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(azido-κN)bis­­(quinolin-8-amine-κ2N,N′)iron(II)

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, cInstitute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain, 1 Place Louis Pasteur, B 1348 Louvain-la-Neuve, Belgium, dLaboratoire de Chimie Appliquée et Environnement, LCAE-URAC18, COSTE, Faculté des Sciences, Université Mohamed Premier, BP524, 60000, Oujda, Morocco, and eFaculté Pluridisciplinaire Nador BP 300, Selouane, 62702, Nador, Morocco
*Correspondence e-mail: fat_setifi@yahoo.fr, koen.robeyns@uclouvain.be, touzanir@yahoo.fr

Edited by T. J. Prior, University of Hull, England (Received 7 September 2016; accepted 19 September 2016; online 30 September 2016)

The search for new mol­ecular materials with inter­esting magnetic properties using the pseudohalide azide ion and quinolin-8-amine (aqin, C9H8N2) as a chelating ligand, led to the synthesis and structure determination of the title complex, [Fe(N3)2(C9H8N2)2]. The complex shows an octa­hedral geometry, with the FeII atom surrounded by six N atoms; the two N3 anions coordinate in a cis configuration, while the remaining N atoms originate from the two quinolin-8-amine ligands with the quinoline N atoms lying on opposite sides of the Fe atom. The crystal packing is dominated by layers of hydro­philic and aromatic regions parallel to the ac plane, stabilized by a two-dimensional hydrogen-bonded network and ππ stacking.

1. Chemical context

In recent years, mol­ecular magnetism has attracted great attention due to the inter­est in designing new mol­ecular materials with inter­esting magnetic properties and potential applications (Kahn, 1993[Kahn, O. (1993). In Molecular Magnetism. New York: VCH.]; Miller & Gatteschi, 2011[Miller, J. S. & Gatteschi, D. (2011). Chem. Soc. Rev. 40, 3065-3066.]). Connecting paramagnetic centers by use of bridging polynitrile or pseudohalide ligands is an important strategy to design such materials (Setifi et al., 2002[Setifi, F., Ota, A., Ouahab, L., Golhen, S., Yamochi, A. & Saito, G. (2002). J. Solid State Chem. 168, 450-456.], 2003[Setifi, F., Ouahab, L., Golhen, S., Miyazaki, A., Enoki, A. & Yamada, J. I. (2003). C. R. Chim. 6, 309-316.]; Gaamoune et al., 2010[Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044-m1045.]; Miyazaki et al., 2003[Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195-1196.]; Benmansour et al., 2008[Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856-3862.], 2009[Benmansour, S., Setifi, F., Triki, S., Thétiot, F., Sala-Pala, J., Gómez-García, C. J. & Colacio, E. (2009). Polyhedron, 28, 1308-1314.]; Yuste et al., 2009[Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287-1294.]; Setifi et al., 2013[Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12-m13.], 2014[Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338-341.]; Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]). As a short bridging ligand and efficient superexchange mediator, the pseudohalide azide ion has proved to be very versatile and diverse in both coordination chemistry and magnetism. It can link metal ions in μ-1,1 (end-on, EO), μ-1,3 (end-to-end, EE), μ-1,1,1 and other modes, and effectively mediate either ferromagnetic or anti­ferromagnetic coupling. Many azide-bridged systems with different dimensionality and topologies have been synthesized by using various auxiliary ligands, and a great diversity of magnetic behavior has been demonstrated (Ribas et al., 1999[Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193-195, 1027-1068.]; Gao et al., 2004[Gao, E.-Q., Yue, Y.-F., Bai, S.-Q., He, Z., Zhang, S.-W. & Yan, C.-H. (2004). Chem. Mater. 16, 1590-1596.]; Liu et al., 2007[Liu, F.-C., Zeng, Y.-F., Zhao, J.-P., Hu, B.-W., Bu, X.-H., Ribas, J. & Cano, J. (2007). Inorg. Chem. 46, 1520-1522.]; Mautner et al., 2010[Mautner, F. A., Egger, A., Sodin, B., Goher, M. A. S., Abu-Youssef, M. A. M., Massoud, A., Escuer, A. & Vicente, R. (2010). J. Mol. Struct. 969, 192-196.]). In view of the possible roles of the versatile azido ligand, we have been inter­ested in using it in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics in the field of mol­ecular materials exhibiting inter­esting magnetic exchange coupling. During the course of attempts to prepare such complexes with quinolin-8-amine, we isolated the title compound, whose structure is described herein.

[Scheme 1]

2. Structural commentary

The title compound shows an octa­hedral coordination around the FeII atom. The Fe complex is a neutral and discrete mol­ecule and the two coordinating N3 anions occupy adjacent sites, classifying the title compound as a cis-complex. Fig. 1[link] shows the mol­ecular structure.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

The octa­hedral positions are occupied by six nitro­gen atoms where the quinoline aromatic nitro­gen atoms are found in the trans positions. All six Fe—N bond lengths are essentially uniform [2.104 (3)–2.284 (3) Å] and typical for high-spin iron(II) compounds (Table 1[link]). The Fe—NH2 bond lengths are somewhat longer (∼0.10 Å) than the other Fe—N bonds. As a result of the quinolin-8-amine bite angle of about 75° the octa­hedral geometry is slightly distorted, allowing better separation of the negative charges on the azide ligands.

Table 1
Selected geometric parameters (Å, °)

Fe1—N8 2.104 (3) Fe1—N4 2.175 (2)
Fe1—N2 2.160 (3) Fe1—N3 2.241 (3)
Fe1—N5 2.174 (3) Fe1—N1 2.284 (3)
       
N8—Fe1—N2 91.14 (12) N5—Fe1—N3 82.06 (11)
N8—Fe1—N5 94.16 (13) N4—Fe1—N3 76.67 (9)
N2—Fe1—N5 95.49 (10) N8—Fe1—N1 88.56 (13)
N8—Fe1—N4 94.82 (12) N2—Fe1—N1 75.65 (10)
N2—Fe1—N4 167.88 (9) N5—Fe1—N1 170.81 (10)
N5—Fe1—N4 94.59 (10) N4—Fe1—N1 93.92 (9)
N8—Fe1—N3 170.31 (11) N3—Fe1—N1 96.56 (10)
N2—Fe1—N3 98.09 (9)    

3. Supra­molecular features

Looking down the a axis (Fig. 2[link]) one can notice alternating layers (stacked along the b-axis direction) of hydro­philic and aromatic regions. This layering can also be seen at the level of the complex itself, where the aromatic quinoline moieties are located above and below the hydro­philic plane formed by the NH2 and N3 groups. These latter are engaged in hydrogen bonds expanding along the ac plane (Table 2[link]). Both H atoms of the NH2 group involving N1 form hydrogen bonds with the terminal nitro­gen atoms of two neighboring (symmetry-related) azide ligands. The other NH2 group has one of its hydrogen atoms (N3—N3A) involved in a similar inter­action, and the other hydrogen (N3—N3B) shows a very weak inter­action with the coordinating end of a neighboring azide ion. The aromatic rings on the other hand show parallel displaced π-stacking between pairs of quinoline (Q) moieties, the distance between the two quinoline planes is 3.38 Å (measured as the distance between the centroid of Q1 and the plane through Q2), or 3.35 Å, when inter­changing Q1 and Q2. Some of the hydrogen bonds (Table 2[link]) are rather long and the stabilization of the crystal packing comes from the combined effect of the hydrogen-bonding inter­actions, which direct the orientation of the neighboring complexes and the additional ππ stacking inter­actions that hold the complexes in place.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N10i 0.89 2.62 3.361 (6) 141
N1—H1B⋯N10ii 0.89 2.42 3.254 (6) 157
N3—H3A⋯N7i 0.89 2.22 3.019 (4) 149
N3—H3B⋯N5iii 0.89 2.72 3.561 (4) 159
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
(Left) A view down the a axis, showing the alternating layers of hydro­philic and aromatic regions. (Right) The hydrogen-bonding network found in the hydro­philic region.

4. Database survey

A search in the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals that only nine FeII complexes with quinolin-8-amine groups have been reported. None of these complexes involve azide groups, neither coordinating nor as a free anion. There is one known Cd complex that contains 8-amino­quinoline and bound azide; rather than forming discrete entities, the Cd complex is polymeric, expanding into chains where the azides act as bridging ligands [refcodes WIJWES (Paira et al., 2007[Paira, M. K., Dinda, J., Lu, T. H., Paital, A. R. & Sinha, C. (2007). Polyhedron, 26, 4131-4140.]) and WIJWES01 (Xu et al., 2008[Xu, H., Huang, L.-F., Guo, L.-M., Zhang, Y.-G., Ren, X.-M., Song, Y. & Xie, J. (2008). J. Lumin. 128, 1665-1672.])] in the EO mode. Considering the azides and their coordination modes, the predominant N3 binding mode is as monodentate (2210 entries), among the bridging modes the μ2 modes either 1,1 EO (1652 entries) or 1,3 EE (931 entries) are most favored. The other EO modes μ3 (159 entries) or μ4 (11 entries) are far less frequent. Similar observations are made for the more complex end-to-end bridging modes: μ3-1,1,3 (131), μ4-1,1,3,3 (13), μ4-1,1,1,3 (11), μ5-1,1,1,3,3 (1). For completeness, the occurrence of N3 as a free anion is not so common, as only 92 entries were identified in the CSD database.

5. Synthesis and crystallization

The title compound was synthesized hydro­thermally under autogenous pressure from a mixture of iron(II) sulfate hepta­hydrate (28 mg, 0.1 mmol), quinolin-8-amine (15 mg, 0.1 mmol) and sodium azide NaN3 (13 mg, 0.2 mmol) in water–methanol (4:1 v/v, 20 ml). The mixture was sealed in a Teflon-lined autoclave and heated at 453 K for two days and cooled to room temperature at 10 K h−1. The crystals were obtained in ca 20% yield based on iron and proved to consist of a mononuclear heteroleptic Fe complex rather than the expected polymeric architecture with bridging azides.

CAUTION! Although not encountered in our experiments, azido compounds of metal ions are potentially explosive. Only a small amount of the materials should be prepared, and it should be handled with care.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å, N—H distance of 0.89 Å and with 1.2Ueq of the parent atom.

Table 3
Experimental details

Crystal data
Chemical formula [Fe(N3)(C9H8N2)2]
Mr 428.26
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 8.1798 (8), 15.8675 (13), 27.775 (4)
V3) 3605.0 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.87
Crystal size (mm) 0.35 × 0.21 × 0.11
 
Data collection
Diffractometer Bruker–Nonius Kappa CCD with an APEXII detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.606, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 16951, 4100, 2081
Rint 0.092
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.121, 0.97
No. of reflections 4100
No. of parameters 262
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(azido-κN)bis(quinolin-8-amine-κ2N,N')iron(II) top
Crystal data top
[Fe(N3)(C9H8N2)2]Dx = 1.578 Mg m3
Mr = 428.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1795 reflections
a = 8.1798 (8) Åθ = 2.4–26.9°
b = 15.8675 (13) ŵ = 0.87 mm1
c = 27.775 (4) ÅT = 296 K
V = 3605.0 (6) Å3Prism, red
Z = 80.35 × 0.21 × 0.11 mm
F(000) = 1760
Data collection top
Bruker–Nonius Kappa CCD with an APEXII detector
diffractometer
4100 independent reflections
Radiation source: fine focus sealed tube2081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
φ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 109
Tmin = 0.606, Tmax = 0.746k = 2020
16951 measured reflectionsl = 3435
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0475P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
4100 reflectionsΔρmax = 0.32 e Å3
262 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50883 (5)0.47368 (3)0.61957 (2)0.03352 (17)
N10.3287 (3)0.49268 (15)0.68146 (12)0.0413 (8)
H1A0.23160.47180.67330.050*
H1B0.36370.46490.70730.050*
N20.4757 (3)0.60857 (16)0.62329 (10)0.0327 (7)
N30.3216 (3)0.44621 (15)0.56279 (11)0.0341 (7)
H3A0.22370.46340.57280.041*
H3B0.34610.47450.53610.041*
N40.4890 (3)0.33703 (15)0.62114 (10)0.0309 (6)
N50.6707 (3)0.47625 (17)0.55749 (12)0.0482 (9)
N60.8137 (3)0.47003 (15)0.56124 (12)0.0387 (8)
N70.9542 (3)0.4642 (2)0.56381 (16)0.0735 (13)
N80.7006 (4)0.4793 (2)0.66995 (14)0.0680 (11)
N90.8201 (4)0.46219 (18)0.68843 (14)0.0522 (9)
N100.9391 (5)0.4460 (3)0.70919 (18)0.1184 (19)
C10.3122 (4)0.58115 (19)0.69286 (14)0.0337 (8)
C20.2228 (4)0.6099 (2)0.73119 (14)0.0439 (10)
H20.16800.57190.75090.053*
C30.2137 (4)0.6972 (3)0.74073 (15)0.0512 (11)
H30.15400.71620.76710.061*
C40.2909 (4)0.7538 (2)0.71204 (15)0.0458 (10)
H40.28480.81100.71910.055*
C50.3793 (4)0.7268 (2)0.67206 (14)0.0359 (9)
C60.4590 (4)0.7814 (2)0.64010 (15)0.0408 (10)
H60.45560.83920.64550.049*
C70.5399 (4)0.7512 (2)0.60195 (15)0.0444 (10)
H70.59180.78780.58070.053*
C80.5459 (4)0.6630 (2)0.59412 (14)0.0417 (9)
H80.60160.64290.56730.050*
C90.3901 (3)0.63909 (18)0.66224 (12)0.0277 (7)
C100.3161 (3)0.35638 (18)0.55234 (12)0.0276 (8)
C110.2290 (4)0.3235 (2)0.51487 (13)0.0378 (9)
H110.17050.35910.49460.045*
C120.2274 (4)0.2361 (2)0.50673 (15)0.0460 (10)
H120.16780.21450.48100.055*
C130.3114 (4)0.1829 (2)0.53578 (15)0.0437 (10)
H130.31080.12530.52940.052*
C140.3997 (4)0.21408 (19)0.57561 (14)0.0330 (8)
C150.4861 (4)0.1629 (2)0.60823 (14)0.0427 (10)
H150.48630.10470.60430.051*
C160.5685 (4)0.1980 (2)0.64518 (16)0.0493 (11)
H160.62580.16430.66680.059*
C170.5670 (4)0.2858 (2)0.65075 (15)0.0437 (10)
H170.62370.30910.67650.052*
C180.4037 (3)0.30219 (19)0.58328 (12)0.0280 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0268 (2)0.0307 (3)0.0430 (3)0.0016 (2)0.0010 (3)0.0070 (2)
N10.0433 (17)0.0335 (16)0.047 (2)0.0018 (13)0.0047 (16)0.0042 (14)
N20.0287 (14)0.0356 (15)0.0339 (18)0.0009 (11)0.0033 (15)0.0009 (14)
N30.0251 (13)0.0356 (15)0.042 (2)0.0024 (11)0.0027 (14)0.0039 (14)
N40.0314 (13)0.0311 (14)0.0302 (17)0.0058 (12)0.0011 (15)0.0012 (13)
N50.0304 (15)0.061 (2)0.054 (2)0.0014 (14)0.0045 (15)0.0090 (17)
N60.0358 (16)0.0280 (15)0.052 (2)0.0033 (13)0.0083 (15)0.0075 (14)
N70.0288 (16)0.073 (2)0.119 (4)0.0023 (15)0.007 (2)0.026 (2)
N80.0478 (19)0.094 (3)0.062 (3)0.0134 (19)0.025 (2)0.020 (2)
N90.0447 (19)0.051 (2)0.061 (3)0.0080 (16)0.0083 (19)0.0333 (18)
N100.084 (3)0.155 (4)0.116 (4)0.068 (3)0.053 (3)0.080 (3)
C10.0308 (17)0.0343 (19)0.036 (2)0.0068 (14)0.0010 (17)0.0049 (17)
C20.0412 (19)0.058 (2)0.033 (2)0.0112 (18)0.0085 (19)0.010 (2)
C30.054 (2)0.065 (3)0.034 (3)0.025 (2)0.006 (2)0.004 (2)
C40.051 (2)0.041 (2)0.045 (3)0.0187 (18)0.006 (2)0.008 (2)
C50.0359 (18)0.040 (2)0.032 (2)0.0067 (15)0.0071 (18)0.0013 (18)
C60.044 (2)0.0315 (18)0.047 (3)0.0025 (15)0.012 (2)0.0004 (19)
C70.043 (2)0.038 (2)0.052 (3)0.0060 (16)0.001 (2)0.013 (2)
C80.044 (2)0.047 (2)0.034 (2)0.0027 (16)0.0071 (18)0.0066 (19)
C90.0254 (15)0.0319 (18)0.026 (2)0.0081 (13)0.0032 (15)0.0002 (16)
C100.0241 (15)0.0314 (17)0.027 (2)0.0040 (13)0.0042 (15)0.0001 (16)
C110.0338 (18)0.051 (2)0.029 (2)0.0030 (16)0.0022 (17)0.0013 (19)
C120.043 (2)0.058 (3)0.037 (3)0.0142 (19)0.001 (2)0.014 (2)
C130.041 (2)0.038 (2)0.052 (3)0.0121 (17)0.013 (2)0.012 (2)
C140.0307 (17)0.0318 (19)0.036 (2)0.0013 (14)0.0095 (17)0.0008 (17)
C150.0441 (19)0.0313 (18)0.053 (3)0.0008 (17)0.012 (2)0.0004 (17)
C160.050 (2)0.040 (2)0.057 (3)0.0112 (17)0.000 (2)0.014 (2)
C170.0431 (19)0.046 (2)0.042 (3)0.0032 (17)0.0066 (19)0.001 (2)
C180.0236 (15)0.0353 (18)0.025 (2)0.0013 (14)0.0085 (15)0.0023 (16)
Geometric parameters (Å, º) top
Fe1—N82.104 (3)C3—H30.9300
Fe1—N22.160 (3)C4—C51.392 (5)
Fe1—N52.174 (3)C4—H40.9300
Fe1—N42.175 (2)C5—C61.401 (5)
Fe1—N32.241 (3)C5—C91.421 (4)
Fe1—N12.284 (3)C6—C71.338 (5)
N1—C11.445 (4)C6—H60.9300
N1—H1A0.8900C7—C81.416 (5)
N1—H1B0.8900C7—H70.9300
N2—C81.316 (4)C8—H80.9300
N2—C91.377 (4)C10—C111.365 (4)
N3—C101.455 (4)C10—C181.411 (4)
N3—H3A0.8900C11—C121.405 (4)
N3—H3B0.8900C11—H110.9300
N4—C171.321 (4)C12—C131.355 (5)
N4—C181.378 (4)C12—H120.9300
N5—N61.179 (3)C13—C141.411 (5)
N6—N71.155 (3)C13—H130.9300
N8—N91.136 (4)C14—C151.407 (5)
N9—N101.160 (4)C14—C181.415 (4)
C1—C21.370 (4)C15—C161.349 (5)
C1—C91.405 (4)C15—H150.9300
C2—C31.412 (5)C16—C171.401 (4)
C2—H20.9300C16—H160.9300
C3—C41.357 (5)C17—H170.9300
N8—Fe1—N291.14 (12)C3—C4—C5120.4 (3)
N8—Fe1—N594.16 (13)C3—C4—H4119.8
N2—Fe1—N595.49 (10)C5—C4—H4119.8
N8—Fe1—N494.82 (12)C4—C5—C6123.8 (3)
N2—Fe1—N4167.88 (9)C4—C5—C9119.1 (3)
N5—Fe1—N494.59 (10)C6—C5—C9117.0 (3)
N8—Fe1—N3170.31 (11)C7—C6—C5120.7 (3)
N2—Fe1—N398.09 (9)C7—C6—H6119.6
N5—Fe1—N382.06 (11)C5—C6—H6119.6
N4—Fe1—N376.67 (9)C6—C7—C8119.5 (3)
N8—Fe1—N188.56 (13)C6—C7—H7120.3
N2—Fe1—N175.65 (10)C8—C7—H7120.3
N5—Fe1—N1170.81 (10)N2—C8—C7122.6 (3)
N4—Fe1—N193.92 (9)N2—C8—H8118.7
N3—Fe1—N196.56 (10)C7—C8—H8118.7
C1—N1—Fe1110.7 (2)N2—C9—C1118.4 (3)
C1—N1—H1A109.5N2—C9—C5121.8 (3)
Fe1—N1—H1A109.5C1—C9—C5119.8 (3)
C1—N1—H1B109.5C11—C10—C18119.8 (3)
Fe1—N1—H1B109.5C11—C10—N3122.8 (3)
H1A—N1—H1B108.1C18—C10—N3117.4 (3)
C8—N2—C9118.3 (3)C10—C11—C12120.3 (3)
C8—N2—Fe1124.5 (2)C10—C11—H11119.8
C9—N2—Fe1116.8 (2)C12—C11—H11119.8
C10—N3—Fe1110.59 (18)C13—C12—C11121.0 (3)
C10—N3—H3A109.5C13—C12—H12119.5
Fe1—N3—H3A109.5C11—C12—H12119.5
C10—N3—H3B109.5C12—C13—C14120.5 (3)
Fe1—N3—H3B109.5C12—C13—H13119.7
H3A—N3—H3B108.1C14—C13—H13119.7
C17—N4—C18118.2 (3)C15—C14—C13124.0 (3)
C17—N4—Fe1126.2 (2)C15—C14—C18117.5 (3)
C18—N4—Fe1115.0 (2)C13—C14—C18118.5 (3)
N6—N5—Fe1122.2 (3)C16—C15—C14120.2 (3)
N7—N6—N5178.5 (5)C16—C15—H15119.9
N9—N8—Fe1158.7 (3)C14—C15—H15119.9
N8—N9—N10177.0 (5)C15—C16—C17119.3 (3)
C2—C1—C9119.7 (3)C15—C16—H16120.3
C2—C1—N1122.9 (3)C17—C16—H16120.3
C9—C1—N1117.4 (3)N4—C17—C16123.2 (4)
C1—C2—C3120.0 (3)N4—C17—H17118.4
C1—C2—H2120.0C16—C17—H17118.4
C3—C2—H2120.0N4—C18—C10118.5 (3)
C4—C3—C2121.0 (4)N4—C18—C14121.5 (3)
C4—C3—H3119.5C10—C18—C14119.9 (3)
C2—C3—H3119.5
Fe1—N1—C1—C2174.2 (3)Fe1—N3—C10—C11171.0 (2)
Fe1—N1—C1—C96.9 (3)Fe1—N3—C10—C189.9 (3)
C9—C1—C2—C32.1 (5)C18—C10—C11—C120.5 (5)
N1—C1—C2—C3179.0 (3)N3—C10—C11—C12179.6 (3)
C1—C2—C3—C40.9 (5)C10—C11—C12—C130.1 (5)
C2—C3—C4—C50.8 (6)C11—C12—C13—C141.4 (5)
C3—C4—C5—C6178.4 (3)C12—C13—C14—C15178.1 (3)
C3—C4—C5—C91.2 (5)C12—C13—C14—C182.5 (5)
C4—C5—C6—C7179.0 (3)C13—C14—C15—C16179.5 (3)
C9—C5—C6—C70.6 (5)C18—C14—C15—C160.1 (5)
C5—C6—C7—C80.5 (5)C14—C15—C16—C170.1 (5)
C9—N2—C8—C71.6 (5)C18—N4—C17—C160.7 (5)
Fe1—N2—C8—C7170.7 (2)Fe1—N4—C17—C16169.8 (3)
C6—C7—C8—N20.6 (5)C15—C16—C17—N40.5 (6)
C8—N2—C9—C1178.7 (3)C17—N4—C18—C10178.1 (3)
Fe1—N2—C9—C18.4 (3)Fe1—N4—C18—C1010.3 (3)
C8—N2—C9—C51.5 (4)C17—N4—C18—C140.5 (4)
Fe1—N2—C9—C5171.4 (2)Fe1—N4—C18—C14171.1 (2)
C2—C1—C9—N2178.4 (3)C11—C10—C18—N4179.3 (3)
N1—C1—C9—N20.5 (4)N3—C10—C18—N40.2 (4)
C2—C1—C9—C51.8 (5)C11—C10—C18—C140.6 (4)
N1—C1—C9—C5179.3 (3)N3—C10—C18—C14178.5 (3)
C4—C5—C9—N2180.0 (3)C15—C14—C18—N40.1 (4)
C6—C5—C9—N20.4 (4)C13—C14—C18—N4179.3 (3)
C4—C5—C9—C10.1 (5)C15—C14—C18—C10178.5 (3)
C6—C5—C9—C1179.7 (3)C13—C14—C18—C102.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N10i0.892.623.361 (6)141
N1—H1B···N10ii0.892.423.254 (6)157
N3—H3A···N7i0.892.223.019 (4)149
N3—H3B···N5iii0.892.723.561 (4)159
Symmetry codes: (i) x1, y, z; (ii) x1/2, y, z+3/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and Université Ferhat Abbas Sétif 1 for financial support.

References

First citationAddala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856–3862.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S., Thétiot, F., Sala-Pala, J., Gómez-García, C. J. & Colacio, E. (2009). Polyhedron, 28, 1308–1314.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044–m1045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, E.-Q., Yue, Y.-F., Bai, S.-Q., He, Z., Zhang, S.-W. & Yan, C.-H. (2004). Chem. Mater. 16, 1590–1596.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKahn, O. (1993). In Molecular Magnetism. New York: VCH.  Google Scholar
First citationLiu, F.-C., Zeng, Y.-F., Zhao, J.-P., Hu, B.-W., Bu, X.-H., Ribas, J. & Cano, J. (2007). Inorg. Chem. 46, 1520–1522.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMautner, F. A., Egger, A., Sodin, B., Goher, M. A. S., Abu-Youssef, M. A. M., Massoud, A., Escuer, A. & Vicente, R. (2010). J. Mol. Struct. 969, 192–196.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiller, J. S. & Gatteschi, D. (2011). Chem. Soc. Rev. 40, 3065–3066.  Web of Science CrossRef PubMed Google Scholar
First citationMiyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196.  Web of Science CrossRef CAS Google Scholar
First citationPaira, M. K., Dinda, J., Lu, T. H., Paital, A. R. & Sinha, C. (2007). Polyhedron, 26, 4131–4140.  Web of Science CSD CrossRef CAS Google Scholar
First citationRibas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193–195, 1027–1068.  Web of Science CrossRef CAS Google Scholar
First citationSetifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, F., Ota, A., Ouahab, L., Golhen, S., Yamochi, A. & Saito, G. (2002). J. Solid State Chem. 168, 450–456.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, F., Ouahab, L., Golhen, S., Miyazaki, A., Enoki, A. & Yamada, J. I. (2003). C. R. Chim. 6, 309–316.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12–m13.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H., Huang, L.-F., Guo, L.-M., Zhang, Y.-G., Ren, X.-M., Song, Y. & Xie, J. (2008). J. Lumin. 128, 1665–1672.  CSD CrossRef CAS Google Scholar
First citationYuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds