research communications
κN)bis(quinolin-8-amine-κ2N,N′)iron(II)
of bis(azido-aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, cInstitute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain, 1 Place Louis Pasteur, B 1348 Louvain-la-Neuve, Belgium, dLaboratoire de Chimie Appliquée et Environnement, LCAE-URAC18, COSTE, Faculté des Sciences, Université Mohamed Premier, BP524, 60000, Oujda, Morocco, and eFaculté Pluridisciplinaire Nador BP 300, Selouane, 62702, Nador, Morocco
*Correspondence e-mail: fat_setifi@yahoo.fr, koen.robeyns@uclouvain.be, touzanir@yahoo.fr
The search for new molecular materials with interesting magnetic properties using the pseudohalide azide ion and quinolin-8-amine (aqin, C9H8N2) as a chelating ligand, led to the synthesis and of the title complex, [Fe(N3)2(C9H8N2)2]. The complex shows an octahedral geometry, with the FeII atom surrounded by six N atoms; the two N3− anions coordinate in a cis configuration, while the remaining N atoms originate from the two quinolin-8-amine ligands with the quinoline N atoms lying on opposite sides of the Fe atom. The crystal packing is dominated by layers of hydrophilic and aromatic regions parallel to the ac plane, stabilized by a two-dimensional hydrogen-bonded network and π–π stacking.
Keywords: crystal structure; hydrothermal synthesis; coordination compound; FeII complex; quinolin-8-amine; azide; hydrogen bonding; π–π stacking.
CCDC reference: 1505176
1. Chemical context
In recent years, molecular magnetism has attracted great attention due to the interest in designing new molecular materials with interesting magnetic properties and potential applications (Kahn, 1993; Miller & Gatteschi, 2011). Connecting paramagnetic centers by use of bridging polynitrile or pseudohalide ligands is an important strategy to design such materials (Setifi et al., 2002, 2003; Gaamoune et al., 2010; Miyazaki et al., 2003; Benmansour et al., 2008, 2009; Yuste et al., 2009; Setifi et al., 2013, 2014; Addala et al., 2015). As a short bridging ligand and efficient superexchange mediator, the pseudohalide azide ion has proved to be very versatile and diverse in both coordination chemistry and magnetism. It can link metal ions in μ-1,1 (end-on, EO), μ-1,3 (end-to-end, EE), μ-1,1,1 and other modes, and effectively mediate either ferromagnetic or antiferromagnetic coupling. Many azide-bridged systems with different dimensionality and topologies have been synthesized by using various auxiliary ligands, and a great diversity of magnetic behavior has been demonstrated (Ribas et al., 1999; Gao et al., 2004; Liu et al., 2007; Mautner et al., 2010). In view of the possible roles of the versatile azido ligand, we have been interested in using it in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics in the field of molecular materials exhibiting interesting magnetic exchange coupling. During the course of attempts to prepare such complexes with quinolin-8-amine, we isolated the title compound, whose structure is described herein.
2. Structural commentary
The title compound shows an octahedral coordination around the FeII atom. The Fe complex is a neutral and discrete molecule and the two coordinating N3− anions occupy adjacent sites, classifying the title compound as a cis-complex. Fig. 1 shows the molecular structure.
The octahedral positions are occupied by six nitrogen atoms where the quinoline aromatic nitrogen atoms are found in the trans positions. All six Fe—N bond lengths are essentially uniform [2.104 (3)–2.284 (3) Å] and typical for high-spin iron(II) compounds (Table 1). The Fe—NH2 bond lengths are somewhat longer (∼0.10 Å) than the other Fe—N bonds. As a result of the quinolin-8-amine bite angle of about 75° the octahedral geometry is slightly distorted, allowing better separation of the negative charges on the azide ligands.
|
3. Supramolecular features
Looking down the a axis (Fig. 2) one can notice alternating layers (stacked along the b-axis direction) of hydrophilic and aromatic regions. This layering can also be seen at the level of the complex itself, where the aromatic quinoline moieties are located above and below the hydrophilic plane formed by the NH2 and N3− groups. These latter are engaged in hydrogen bonds expanding along the ac plane (Table 2). Both H atoms of the NH2 group involving N1 form hydrogen bonds with the terminal nitrogen atoms of two neighboring (symmetry-related) azide ligands. The other NH2 group has one of its hydrogen atoms (N3—N3A) involved in a similar interaction, and the other hydrogen (N3—N3B) shows a very weak interaction with the coordinating end of a neighboring azide ion. The aromatic rings on the other hand show parallel displaced π-stacking between pairs of quinoline (Q) moieties, the distance between the two quinoline planes is 3.38 Å (measured as the distance between the centroid of Q1 and the plane through Q2), or 3.35 Å, when interchanging Q1 and Q2. Some of the hydrogen bonds (Table 2) are rather long and the stabilization of the crystal packing comes from the combined effect of the hydrogen-bonding interactions, which direct the orientation of the neighboring complexes and the additional π–π stacking interactions that hold the complexes in place.
4. Database survey
A search in the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016) reveals that only nine FeII complexes with quinolin-8-amine groups have been reported. None of these complexes involve azide groups, neither coordinating nor as a free anion. There is one known Cd complex that contains 8-aminoquinoline and bound azide; rather than forming discrete entities, the Cd complex is polymeric, expanding into chains where the act as bridging ligands [refcodes WIJWES (Paira et al., 2007) and WIJWES01 (Xu et al., 2008)] in the EO mode. Considering the and their coordination modes, the predominant N3− binding mode is as monodentate (2210 entries), among the bridging modes the μ2 modes either 1,1 EO (1652 entries) or 1,3 EE (931 entries) are most favored. The other EO modes μ3 (159 entries) or μ4 (11 entries) are far less frequent. Similar observations are made for the more complex end-to-end bridging modes: μ3-1,1,3 (131), μ4-1,1,3,3 (13), μ4-1,1,1,3 (11), μ5-1,1,1,3,3 (1). For completeness, the occurrence of N3− as a free anion is not so common, as only 92 entries were identified in the CSD database.
5. Synthesis and crystallization
The title compound was synthesized hydrothermally under autogenous pressure from a mixture of iron(II) sulfate heptahydrate (28 mg, 0.1 mmol), quinolin-8-amine (15 mg, 0.1 mmol) and sodium azide NaN3 (13 mg, 0.2 mmol) in water–methanol (4:1 v/v, 20 ml). The mixture was sealed in a Teflon-lined autoclave and heated at 453 K for two days and cooled to room temperature at 10 K h−1. The crystals were obtained in ca 20% yield based on iron and proved to consist of a mononuclear heteroleptic Fe complex rather than the expected polymeric architecture with bridging azides.
CAUTION! Although not encountered in our experiments, azido compounds of metal ions are potentially explosive. Only a small amount of the materials should be prepared, and it should be handled with care.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å, N—H distance of 0.89 Å and with 1.2Ueq of the parent atom.
details are summarized in Table 3Supporting information
CCDC reference: 1505176
https://doi.org/10.1107/S2056989016014808/pj2035sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016014808/pj2035Isup2.hkl
Data collection: APEX2 (Bruker, 2009); cell
APEX2 and SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Fe(N3)(C9H8N2)2] | Dx = 1.578 Mg m−3 |
Mr = 428.26 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 1795 reflections |
a = 8.1798 (8) Å | θ = 2.4–26.9° |
b = 15.8675 (13) Å | µ = 0.87 mm−1 |
c = 27.775 (4) Å | T = 296 K |
V = 3605.0 (6) Å3 | Prism, red |
Z = 8 | 0.35 × 0.21 × 0.11 mm |
F(000) = 1760 |
Bruker–Nonius Kappa CCD with an APEXII detector diffractometer | 4100 independent reflections |
Radiation source: fine focus sealed tube | 2081 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.092 |
φ and ω scans | θmax = 27.5°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −10→9 |
Tmin = 0.606, Tmax = 0.746 | k = −20→20 |
16951 measured reflections | l = −34→35 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.121 | w = 1/[σ2(Fo2) + (0.0475P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max < 0.001 |
4100 reflections | Δρmax = 0.32 e Å−3 |
262 parameters | Δρmin = −0.36 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.50883 (5) | 0.47368 (3) | 0.61957 (2) | 0.03352 (17) | |
N1 | 0.3287 (3) | 0.49268 (15) | 0.68146 (12) | 0.0413 (8) | |
H1A | 0.2316 | 0.4718 | 0.6733 | 0.050* | |
H1B | 0.3637 | 0.4649 | 0.7073 | 0.050* | |
N2 | 0.4757 (3) | 0.60857 (16) | 0.62329 (10) | 0.0327 (7) | |
N3 | 0.3216 (3) | 0.44621 (15) | 0.56279 (11) | 0.0341 (7) | |
H3A | 0.2237 | 0.4634 | 0.5728 | 0.041* | |
H3B | 0.3461 | 0.4745 | 0.5361 | 0.041* | |
N4 | 0.4890 (3) | 0.33703 (15) | 0.62114 (10) | 0.0309 (6) | |
N5 | 0.6707 (3) | 0.47625 (17) | 0.55749 (12) | 0.0482 (9) | |
N6 | 0.8137 (3) | 0.47003 (15) | 0.56124 (12) | 0.0387 (8) | |
N7 | 0.9542 (3) | 0.4642 (2) | 0.56381 (16) | 0.0735 (13) | |
N8 | 0.7006 (4) | 0.4793 (2) | 0.66995 (14) | 0.0680 (11) | |
N9 | 0.8201 (4) | 0.46219 (18) | 0.68843 (14) | 0.0522 (9) | |
N10 | 0.9391 (5) | 0.4460 (3) | 0.70919 (18) | 0.1184 (19) | |
C1 | 0.3122 (4) | 0.58115 (19) | 0.69286 (14) | 0.0337 (8) | |
C2 | 0.2228 (4) | 0.6099 (2) | 0.73119 (14) | 0.0439 (10) | |
H2 | 0.1680 | 0.5719 | 0.7509 | 0.053* | |
C3 | 0.2137 (4) | 0.6972 (3) | 0.74073 (15) | 0.0512 (11) | |
H3 | 0.1540 | 0.7162 | 0.7671 | 0.061* | |
C4 | 0.2909 (4) | 0.7538 (2) | 0.71204 (15) | 0.0458 (10) | |
H4 | 0.2848 | 0.8110 | 0.7191 | 0.055* | |
C5 | 0.3793 (4) | 0.7268 (2) | 0.67206 (14) | 0.0359 (9) | |
C6 | 0.4590 (4) | 0.7814 (2) | 0.64010 (15) | 0.0408 (10) | |
H6 | 0.4556 | 0.8392 | 0.6455 | 0.049* | |
C7 | 0.5399 (4) | 0.7512 (2) | 0.60195 (15) | 0.0444 (10) | |
H7 | 0.5918 | 0.7878 | 0.5807 | 0.053* | |
C8 | 0.5459 (4) | 0.6630 (2) | 0.59412 (14) | 0.0417 (9) | |
H8 | 0.6016 | 0.6429 | 0.5673 | 0.050* | |
C9 | 0.3901 (3) | 0.63909 (18) | 0.66224 (12) | 0.0277 (7) | |
C10 | 0.3161 (3) | 0.35638 (18) | 0.55234 (12) | 0.0276 (8) | |
C11 | 0.2290 (4) | 0.3235 (2) | 0.51487 (13) | 0.0378 (9) | |
H11 | 0.1705 | 0.3591 | 0.4946 | 0.045* | |
C12 | 0.2274 (4) | 0.2361 (2) | 0.50673 (15) | 0.0460 (10) | |
H12 | 0.1678 | 0.2145 | 0.4810 | 0.055* | |
C13 | 0.3114 (4) | 0.1829 (2) | 0.53578 (15) | 0.0437 (10) | |
H13 | 0.3108 | 0.1253 | 0.5294 | 0.052* | |
C14 | 0.3997 (4) | 0.21408 (19) | 0.57561 (14) | 0.0330 (8) | |
C15 | 0.4861 (4) | 0.1629 (2) | 0.60823 (14) | 0.0427 (10) | |
H15 | 0.4863 | 0.1047 | 0.6043 | 0.051* | |
C16 | 0.5685 (4) | 0.1980 (2) | 0.64518 (16) | 0.0493 (11) | |
H16 | 0.6258 | 0.1643 | 0.6668 | 0.059* | |
C17 | 0.5670 (4) | 0.2858 (2) | 0.65075 (15) | 0.0437 (10) | |
H17 | 0.6237 | 0.3091 | 0.6765 | 0.052* | |
C18 | 0.4037 (3) | 0.30219 (19) | 0.58328 (12) | 0.0280 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0268 (2) | 0.0307 (3) | 0.0430 (3) | 0.0016 (2) | −0.0010 (3) | −0.0070 (2) |
N1 | 0.0433 (17) | 0.0335 (16) | 0.047 (2) | 0.0018 (13) | 0.0047 (16) | 0.0042 (14) |
N2 | 0.0287 (14) | 0.0356 (15) | 0.0339 (18) | −0.0009 (11) | 0.0033 (15) | −0.0009 (14) |
N3 | 0.0251 (13) | 0.0356 (15) | 0.042 (2) | 0.0024 (11) | 0.0027 (14) | 0.0039 (14) |
N4 | 0.0314 (13) | 0.0311 (14) | 0.0302 (17) | 0.0058 (12) | −0.0011 (15) | −0.0012 (13) |
N5 | 0.0304 (15) | 0.061 (2) | 0.054 (2) | −0.0014 (14) | 0.0045 (15) | −0.0090 (17) |
N6 | 0.0358 (16) | 0.0280 (15) | 0.052 (2) | −0.0033 (13) | 0.0083 (15) | −0.0075 (14) |
N7 | 0.0288 (16) | 0.073 (2) | 0.119 (4) | 0.0023 (15) | 0.007 (2) | −0.026 (2) |
N8 | 0.0478 (19) | 0.094 (3) | 0.062 (3) | 0.0134 (19) | −0.025 (2) | −0.020 (2) |
N9 | 0.0447 (19) | 0.051 (2) | 0.061 (3) | 0.0080 (16) | −0.0083 (19) | −0.0333 (18) |
N10 | 0.084 (3) | 0.155 (4) | 0.116 (4) | 0.068 (3) | −0.053 (3) | −0.080 (3) |
C1 | 0.0308 (17) | 0.0343 (19) | 0.036 (2) | 0.0068 (14) | 0.0010 (17) | 0.0049 (17) |
C2 | 0.0412 (19) | 0.058 (2) | 0.033 (2) | 0.0112 (18) | 0.0085 (19) | 0.010 (2) |
C3 | 0.054 (2) | 0.065 (3) | 0.034 (3) | 0.025 (2) | 0.006 (2) | −0.004 (2) |
C4 | 0.051 (2) | 0.041 (2) | 0.045 (3) | 0.0187 (18) | −0.006 (2) | −0.008 (2) |
C5 | 0.0359 (18) | 0.040 (2) | 0.032 (2) | 0.0067 (15) | −0.0071 (18) | −0.0013 (18) |
C6 | 0.044 (2) | 0.0315 (18) | 0.047 (3) | −0.0025 (15) | −0.012 (2) | 0.0004 (19) |
C7 | 0.043 (2) | 0.038 (2) | 0.052 (3) | −0.0060 (16) | −0.001 (2) | 0.013 (2) |
C8 | 0.044 (2) | 0.047 (2) | 0.034 (2) | −0.0027 (16) | 0.0071 (18) | 0.0066 (19) |
C9 | 0.0254 (15) | 0.0319 (18) | 0.026 (2) | 0.0081 (13) | −0.0032 (15) | −0.0002 (16) |
C10 | 0.0241 (15) | 0.0314 (17) | 0.027 (2) | −0.0040 (13) | 0.0042 (15) | −0.0001 (16) |
C11 | 0.0338 (18) | 0.051 (2) | 0.029 (2) | −0.0030 (16) | −0.0022 (17) | −0.0013 (19) |
C12 | 0.043 (2) | 0.058 (3) | 0.037 (3) | −0.0142 (19) | −0.001 (2) | −0.014 (2) |
C13 | 0.041 (2) | 0.038 (2) | 0.052 (3) | −0.0121 (17) | 0.013 (2) | −0.012 (2) |
C14 | 0.0307 (17) | 0.0318 (19) | 0.036 (2) | −0.0013 (14) | 0.0095 (17) | −0.0008 (17) |
C15 | 0.0441 (19) | 0.0313 (18) | 0.053 (3) | −0.0008 (17) | 0.012 (2) | 0.0004 (17) |
C16 | 0.050 (2) | 0.040 (2) | 0.057 (3) | 0.0112 (17) | 0.000 (2) | 0.014 (2) |
C17 | 0.0431 (19) | 0.046 (2) | 0.042 (3) | 0.0032 (17) | −0.0066 (19) | 0.001 (2) |
C18 | 0.0236 (15) | 0.0353 (18) | 0.025 (2) | −0.0013 (14) | 0.0085 (15) | −0.0023 (16) |
Fe1—N8 | 2.104 (3) | C3—H3 | 0.9300 |
Fe1—N2 | 2.160 (3) | C4—C5 | 1.392 (5) |
Fe1—N5 | 2.174 (3) | C4—H4 | 0.9300 |
Fe1—N4 | 2.175 (2) | C5—C6 | 1.401 (5) |
Fe1—N3 | 2.241 (3) | C5—C9 | 1.421 (4) |
Fe1—N1 | 2.284 (3) | C6—C7 | 1.338 (5) |
N1—C1 | 1.445 (4) | C6—H6 | 0.9300 |
N1—H1A | 0.8900 | C7—C8 | 1.416 (5) |
N1—H1B | 0.8900 | C7—H7 | 0.9300 |
N2—C8 | 1.316 (4) | C8—H8 | 0.9300 |
N2—C9 | 1.377 (4) | C10—C11 | 1.365 (4) |
N3—C10 | 1.455 (4) | C10—C18 | 1.411 (4) |
N3—H3A | 0.8900 | C11—C12 | 1.405 (4) |
N3—H3B | 0.8900 | C11—H11 | 0.9300 |
N4—C17 | 1.321 (4) | C12—C13 | 1.355 (5) |
N4—C18 | 1.378 (4) | C12—H12 | 0.9300 |
N5—N6 | 1.179 (3) | C13—C14 | 1.411 (5) |
N6—N7 | 1.155 (3) | C13—H13 | 0.9300 |
N8—N9 | 1.136 (4) | C14—C15 | 1.407 (5) |
N9—N10 | 1.160 (4) | C14—C18 | 1.415 (4) |
C1—C2 | 1.370 (4) | C15—C16 | 1.349 (5) |
C1—C9 | 1.405 (4) | C15—H15 | 0.9300 |
C2—C3 | 1.412 (5) | C16—C17 | 1.401 (4) |
C2—H2 | 0.9300 | C16—H16 | 0.9300 |
C3—C4 | 1.357 (5) | C17—H17 | 0.9300 |
N8—Fe1—N2 | 91.14 (12) | C3—C4—C5 | 120.4 (3) |
N8—Fe1—N5 | 94.16 (13) | C3—C4—H4 | 119.8 |
N2—Fe1—N5 | 95.49 (10) | C5—C4—H4 | 119.8 |
N8—Fe1—N4 | 94.82 (12) | C4—C5—C6 | 123.8 (3) |
N2—Fe1—N4 | 167.88 (9) | C4—C5—C9 | 119.1 (3) |
N5—Fe1—N4 | 94.59 (10) | C6—C5—C9 | 117.0 (3) |
N8—Fe1—N3 | 170.31 (11) | C7—C6—C5 | 120.7 (3) |
N2—Fe1—N3 | 98.09 (9) | C7—C6—H6 | 119.6 |
N5—Fe1—N3 | 82.06 (11) | C5—C6—H6 | 119.6 |
N4—Fe1—N3 | 76.67 (9) | C6—C7—C8 | 119.5 (3) |
N8—Fe1—N1 | 88.56 (13) | C6—C7—H7 | 120.3 |
N2—Fe1—N1 | 75.65 (10) | C8—C7—H7 | 120.3 |
N5—Fe1—N1 | 170.81 (10) | N2—C8—C7 | 122.6 (3) |
N4—Fe1—N1 | 93.92 (9) | N2—C8—H8 | 118.7 |
N3—Fe1—N1 | 96.56 (10) | C7—C8—H8 | 118.7 |
C1—N1—Fe1 | 110.7 (2) | N2—C9—C1 | 118.4 (3) |
C1—N1—H1A | 109.5 | N2—C9—C5 | 121.8 (3) |
Fe1—N1—H1A | 109.5 | C1—C9—C5 | 119.8 (3) |
C1—N1—H1B | 109.5 | C11—C10—C18 | 119.8 (3) |
Fe1—N1—H1B | 109.5 | C11—C10—N3 | 122.8 (3) |
H1A—N1—H1B | 108.1 | C18—C10—N3 | 117.4 (3) |
C8—N2—C9 | 118.3 (3) | C10—C11—C12 | 120.3 (3) |
C8—N2—Fe1 | 124.5 (2) | C10—C11—H11 | 119.8 |
C9—N2—Fe1 | 116.8 (2) | C12—C11—H11 | 119.8 |
C10—N3—Fe1 | 110.59 (18) | C13—C12—C11 | 121.0 (3) |
C10—N3—H3A | 109.5 | C13—C12—H12 | 119.5 |
Fe1—N3—H3A | 109.5 | C11—C12—H12 | 119.5 |
C10—N3—H3B | 109.5 | C12—C13—C14 | 120.5 (3) |
Fe1—N3—H3B | 109.5 | C12—C13—H13 | 119.7 |
H3A—N3—H3B | 108.1 | C14—C13—H13 | 119.7 |
C17—N4—C18 | 118.2 (3) | C15—C14—C13 | 124.0 (3) |
C17—N4—Fe1 | 126.2 (2) | C15—C14—C18 | 117.5 (3) |
C18—N4—Fe1 | 115.0 (2) | C13—C14—C18 | 118.5 (3) |
N6—N5—Fe1 | 122.2 (3) | C16—C15—C14 | 120.2 (3) |
N7—N6—N5 | 178.5 (5) | C16—C15—H15 | 119.9 |
N9—N8—Fe1 | 158.7 (3) | C14—C15—H15 | 119.9 |
N8—N9—N10 | 177.0 (5) | C15—C16—C17 | 119.3 (3) |
C2—C1—C9 | 119.7 (3) | C15—C16—H16 | 120.3 |
C2—C1—N1 | 122.9 (3) | C17—C16—H16 | 120.3 |
C9—C1—N1 | 117.4 (3) | N4—C17—C16 | 123.2 (4) |
C1—C2—C3 | 120.0 (3) | N4—C17—H17 | 118.4 |
C1—C2—H2 | 120.0 | C16—C17—H17 | 118.4 |
C3—C2—H2 | 120.0 | N4—C18—C10 | 118.5 (3) |
C4—C3—C2 | 121.0 (4) | N4—C18—C14 | 121.5 (3) |
C4—C3—H3 | 119.5 | C10—C18—C14 | 119.9 (3) |
C2—C3—H3 | 119.5 | ||
Fe1—N1—C1—C2 | −174.2 (3) | Fe1—N3—C10—C11 | −171.0 (2) |
Fe1—N1—C1—C9 | 6.9 (3) | Fe1—N3—C10—C18 | 9.9 (3) |
C9—C1—C2—C3 | −2.1 (5) | C18—C10—C11—C12 | −0.5 (5) |
N1—C1—C2—C3 | 179.0 (3) | N3—C10—C11—C12 | −179.6 (3) |
C1—C2—C3—C4 | 0.9 (5) | C10—C11—C12—C13 | 0.1 (5) |
C2—C3—C4—C5 | 0.8 (6) | C11—C12—C13—C14 | 1.4 (5) |
C3—C4—C5—C6 | 178.4 (3) | C12—C13—C14—C15 | 178.1 (3) |
C3—C4—C5—C9 | −1.2 (5) | C12—C13—C14—C18 | −2.5 (5) |
C4—C5—C6—C7 | −179.0 (3) | C13—C14—C15—C16 | 179.5 (3) |
C9—C5—C6—C7 | 0.6 (5) | C18—C14—C15—C16 | 0.1 (5) |
C5—C6—C7—C8 | −0.5 (5) | C14—C15—C16—C17 | 0.1 (5) |
C9—N2—C8—C7 | 1.6 (5) | C18—N4—C17—C16 | 0.7 (5) |
Fe1—N2—C8—C7 | −170.7 (2) | Fe1—N4—C17—C16 | −169.8 (3) |
C6—C7—C8—N2 | −0.6 (5) | C15—C16—C17—N4 | −0.5 (6) |
C8—N2—C9—C1 | 178.7 (3) | C17—N4—C18—C10 | 178.1 (3) |
Fe1—N2—C9—C1 | −8.4 (3) | Fe1—N4—C18—C10 | −10.3 (3) |
C8—N2—C9—C5 | −1.5 (4) | C17—N4—C18—C14 | −0.5 (4) |
Fe1—N2—C9—C5 | 171.4 (2) | Fe1—N4—C18—C14 | 171.1 (2) |
C2—C1—C9—N2 | −178.4 (3) | C11—C10—C18—N4 | −179.3 (3) |
N1—C1—C9—N2 | 0.5 (4) | N3—C10—C18—N4 | −0.2 (4) |
C2—C1—C9—C5 | 1.8 (5) | C11—C10—C18—C14 | −0.6 (4) |
N1—C1—C9—C5 | −179.3 (3) | N3—C10—C18—C14 | 178.5 (3) |
C4—C5—C9—N2 | −180.0 (3) | C15—C14—C18—N4 | 0.1 (4) |
C6—C5—C9—N2 | 0.4 (4) | C13—C14—C18—N4 | −179.3 (3) |
C4—C5—C9—C1 | −0.1 (5) | C15—C14—C18—C10 | −178.5 (3) |
C6—C5—C9—C1 | −179.7 (3) | C13—C14—C18—C10 | 2.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N10i | 0.89 | 2.62 | 3.361 (6) | 141 |
N1—H1B···N10ii | 0.89 | 2.42 | 3.254 (6) | 157 |
N3—H3A···N7i | 0.89 | 2.22 | 3.019 (4) | 149 |
N3—H3B···N5iii | 0.89 | 2.72 | 3.561 (4) | 159 |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, y, −z+3/2; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
The authors acknowledge the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and Université Ferhat Abbas Sétif 1 for financial support.
References
Addala, A., Setifi, F., Kottrup, K., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856–3862. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Triki, S., Thétiot, F., Sala-Pala, J., Gómez-García, C. J. & Colacio, E. (2009). Polyhedron, 28, 1308–1314. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044–m1045. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gao, E.-Q., Yue, Y.-F., Bai, S.-Q., He, Z., Zhang, S.-W. & Yan, C.-H. (2004). Chem. Mater. 16, 1590–1596. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kahn, O. (1993). In Molecular Magnetism. New York: VCH. Google Scholar
Liu, F.-C., Zeng, Y.-F., Zhao, J.-P., Hu, B.-W., Bu, X.-H., Ribas, J. & Cano, J. (2007). Inorg. Chem. 46, 1520–1522. Web of Science CSD CrossRef PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mautner, F. A., Egger, A., Sodin, B., Goher, M. A. S., Abu-Youssef, M. A. M., Massoud, A., Escuer, A. & Vicente, R. (2010). J. Mol. Struct. 969, 192–196. Web of Science CSD CrossRef CAS Google Scholar
Miller, J. S. & Gatteschi, D. (2011). Chem. Soc. Rev. 40, 3065–3066. Web of Science CrossRef PubMed Google Scholar
Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196. Web of Science CrossRef CAS Google Scholar
Paira, M. K., Dinda, J., Lu, T. H., Paital, A. R. & Sinha, C. (2007). Polyhedron, 26, 4131–4140. Web of Science CSD CrossRef CAS Google Scholar
Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193–195, 1027–1068. Web of Science CrossRef CAS Google Scholar
Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Setifi, F., Ota, A., Ouahab, L., Golhen, S., Yamochi, A. & Saito, G. (2002). J. Solid State Chem. 168, 450–456. Web of Science CSD CrossRef CAS Google Scholar
Setifi, F., Ouahab, L., Golhen, S., Miyazaki, A., Enoki, A. & Yamada, J. I. (2003). C. R. Chim. 6, 309–316. Web of Science CSD CrossRef CAS Google Scholar
Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12–m13. CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, H., Huang, L.-F., Guo, L.-M., Zhang, Y.-G., Ren, X.-M., Song, Y. & Xie, J. (2008). J. Lumin. 128, 1665–1672. CSD CrossRef CAS Google Scholar
Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.