research communications
μ3-(E)-3-[3-(carboxylatomethoxy)phenyl]acrylato-κ3O,O′:O′′:O′′′}[μ2-3-(pyridin-4-yl)-1H-pyrazole-κ2N:N′]cobalt(II)]
of poly[{aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: wyh@zjnu.edu.cn
The title compound, [Co(C11H8O5)(C8H7N3)]n, which is based on (E)-3-[3-(carboxymethoxy)phenyl]acrylic acid (H2L) and 3-(pyridin-4-yl)pyrazole (pp) ligands, has been synthesized under solvothermal conditions. The dihedral angle between pyrazole and pyridine rings in the pp ligands is 23.1 (2)°. In the crystal, helical chains formed by pp and L ligands connected to the CoII atom propagate parallel to the c axis. CoII atoms of adjacent chains are bridged by the acrylic acid groups of L ligands into corrugated polymeric sheets in the ac plane.
Keywords: crystal structure; metal–organic coordination compounds; two-dimensional polymeric structure; one-dimensional helical chain; (E)-3-[3-(carboxymethoxy)phenyl]acrylic acid.
CCDC reference: 1502210
1. Chemical context
The rational design and synthesis of metal–organic frameworks (MOFs) with multi-carboxylate ligands and metal atoms has attracted much attention in coordination chemistry due to the varied topologies and potential applications in catalysis, gas adsorption, etc (Fernández et al., 2016). The versatility of metal–organic chemistry offers the opportunity to construct multifunctional materials based on the assembly of molecular building blocks. Much attention has been devoted to the cogitative design and control of self-assembly of infinite coordination networks by careful selection of ligand geometry (Liu et al., 2016; Yoon et al., 2012). In this regard, the use of symmetrical ligands has been a successful paradigm because of their structural predictability (Rosi et al., 2003; Luo et al., 2003). Incorporation of unsymmetrical ligands in such systems, however, is relatively recent (Wang et al., 2004; Chen et al., 2003; Qin et al., 2005). Compared to symmetrical ligands, ligands with two or more coordination sites with differing donor ability can lead to unsymmetrical ligands being assembled around metal atoms in diverse arrangements. This can result in unprecedented structures with novel topological features, such as a clay-like double layer (Pan et al., 2000), large spherical cavities and functional 1D channels (Shin et al., 2003). Although important progress has been made in the construction of coordination polymers by applying a single type of organic ligand, research involving a combination of more than one ligand is an especially attractive target, as it allows the construction of an almost infinite number of frameworks with different crystal structures.
In our work, we use (E)-3-[3-(carboxymethoxy)phenyl]acrylic acid (H2L) and 3-(pyridin-4-yl)pyrazole (pp) as ligands to construct novel MOFs that are based on the following considerations: (1) the carboxylate group is conjugated with the benzene ring through a C=C double bond, which makes the electron density delocalized in the ligand so that it may become more rigid when coordinating to metal ions, and have more coordination modes and conformation changes (Kong et al., 2013; Liu et al., 2010); (2) the presence of a phenolic hydroxyl group and benzene ring in the ligand allows the possibility of hydrogen bonding and π–π stacking interactions in the crystal lattices; (3) the N-donor ligand could enhance structural stability.
We herein report the synthesis and 11H8O5)(C8H7N3)]n based on these two mixed ligands.
of [Co(C2. Structural commentary
As shown in Fig. 1, the of the title compound comprises one Co2+ cation, one fully deprotonated L2− anion, and one pp ligand. The CoII atom has a distorted octahedral geometry, coordinated by four O atoms from three L2− ligands, with CoII—O distances of 2.037 (2)–2.252 (2) Å, and two N atoms from two pp ligands with CoII—N distances of 2.130 (2) and 2.158 (3) Å. The L2− ligand adopts two different coordination modes. In this structure, the dihedral angles between the rings in the pp ligands is 23.1 (2)°. The 1D helical chains (Fig. 2) are assembled by Co2+ cations, pp ligands and L ligands. Helical chains along the c axis are connected to adjacent chains by L ligands that bridge the CoII atoms, forming a two-dimensional polymeric structure in the ac plane (Fig. 3).
In the structure, every η3-(E)-3-[3-(carboxymethoxy)phenyl]acrylic acid ligand is connected to three Co atoms, while every η3-3-(pyridin-4-yl)pyrazole is connected to two Co atoms. The CoII atom connects three L2− ligands and two pp ligands, and so can be described as a five-connected node. Thus, the topology of the structure could be given simply as a (2,3,5)-connected network.
3. Supramolecular features
In this structure, L ligands form hydrogen bonds to the pp ligands, thereby enhancing the polymer stability (Table 1 and Fig. 3). The polymer interactions consist of N1(pyrazole)—H1A⋯O5(x − , −y + , z − ) hydrogen bonds where each L ligand makes a hydrogen bond with a neighboring pp ligand.
4. Database survey
The E)-3-(3-carboxymethoxy)phenyl)acrylic acid and 1,3-di-pyridin-4-ylpropane ligands (the Cd-crystal), recently reported by Wang et al. (2014), has a similar structure to the title compound. Both structures include hydrogen bonds, though in the Cd-crystal, these are O—H⋯O hydrogen bonds rather than N—H⋯O as in the title compound.
of a 2D polymeric Cd-containing compound with (5. Synthesis and crystallization
All of the chemical reagents and solvents are commercially available and used without further purification. Elemental analyses were carried out on a Perkin–Elmer 2400 Series II analyzer.
Synthesis of [Co(C11H8O5)(C8H7N3)]n
(1): A mixture of CoCl2·6H2O (0.1185 g, 0.5 mmol), H2L (Zheng et al., 2011; Fu & Wen, 2011) (0.222 g, 1 mmol) and pp (0.1451 g, 1 mmol) were dissolved in 22 mL H2O/CH3OH (v/v, 10:1) mixed solvent. The pH value was adjusted to 7 by adding to a few drops of an aqueous NaOH solution (2.0 mol L−1). It was then sealed in a 25 mL stainless steel reactor and heated to 433 K for three days. The mixture was then cooled to room temperature at a rate of 5 K h−1, and red block-shaped crystals were obtained (yield: 62% based on Co). Analysis calculated (%) for C19H15CoN3O5 (424.27): C 53.81, H 3.62, N 9.85; found (%): C 53.79, H 3.56, N 9.90. IR data (KBr, cm−1): 3432, 1649, 1501, 1407, 1274, 1206, 1180, 1086, 978, 844, 724, 603.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms attached to carbon atoms were refined using a riding-model approximation, with Uiso(H) = 1.2Ueq(C) and C—H = 0.93 Å (aromatic and carbene) and 0.97 Å (methylene). Other hydrogen atoms were located in difference electron-density maps and refined freely.
details are summarized in Table 2Supporting information
CCDC reference: 1502210
https://doi.org/10.1107/S205698901601402X/pk2590sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901601402X/pk2590Isup3.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT-Plus (Bruker, 2014); data reduction: SAINT-Plus (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Co(C11H8O5)(C8H7N3)] | Dx = 1.629 Mg m−3 |
Mr = 424.27 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Fdd2 | Cell parameters from 4631 reflections |
a = 35.4631 (11) Å | θ = 1.5–27.6° |
b = 40.2873 (12) Å | µ = 1.03 mm−1 |
c = 4.8423 (1) Å | T = 296 K |
V = 6918.3 (3) Å3 | Block, red |
Z = 16 | 0.24 × 0.12 × 0.06 mm |
F(000) = 3472 |
Bruker APEXII CCD diffractometer | 3425 reflections with I > 2σ(I) |
ω and φ scans | Rint = 0.036 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 27.6°, θmin = 1.5° |
Tmin = 0.861, Tmax = 0.943 | h = −46→40 |
15248 measured reflections | k = −48→52 |
3915 independent reflections | l = −6→6 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.061 | w = 1/[σ2(Fo2) + (0.0282P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
3915 reflections | Δρmax = 0.18 e Å−3 |
253 parameters | Δρmin = −0.24 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1316 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.025 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.43282 (2) | 0.10099 (2) | 0.42130 (8) | 0.02757 (11) | |
N1 | 0.25519 (6) | 0.16432 (6) | 0.8665 (5) | 0.0315 (6) | |
H1A | 0.2498 | 0.1481 | 0.7576 | 0.038* | |
N2 | 0.23011 (7) | 0.17869 (6) | 1.0382 (6) | 0.0344 (6) | |
N3 | 0.38578 (7) | 0.13040 (6) | 0.5432 (5) | 0.0302 (6) | |
O1 | 0.65789 (6) | 0.15999 (5) | 1.3036 (4) | 0.0351 (5) | |
O2 | 0.66654 (5) | 0.18826 (5) | 0.9144 (4) | 0.0334 (5) | |
O3 | 0.63324 (6) | 0.24391 (5) | 1.1390 (5) | 0.0379 (5) | |
O4 | 0.45839 (6) | 0.14604 (5) | 0.2794 (4) | 0.0361 (5) | |
O5 | 0.47664 (6) | 0.12681 (5) | 0.6803 (5) | 0.0359 (5) | |
C1 | 0.54127 (9) | 0.24388 (8) | 0.6113 (6) | 0.0388 (8) | |
H1B | 0.5214 | 0.2445 | 0.4858 | 0.047* | |
C2 | 0.54793 (8) | 0.21527 (7) | 0.7657 (6) | 0.0317 (7) | |
C3 | 0.64159 (9) | 0.21627 (7) | 1.3104 (6) | 0.0353 (7) | |
H3A | 0.6188 | 0.2100 | 1.4085 | 0.042* | |
H3B | 0.6600 | 0.2231 | 1.4470 | 0.042* | |
C4 | 0.59389 (9) | 0.27054 (8) | 0.8261 (7) | 0.0376 (8) | |
H4A | 0.6088 | 0.2893 | 0.8492 | 0.045* | |
C5 | 0.56410 (9) | 0.27116 (8) | 0.6447 (8) | 0.0418 (8) | |
H5A | 0.5593 | 0.2903 | 0.5432 | 0.050* | |
C6 | 0.60175 (8) | 0.24195 (7) | 0.9746 (6) | 0.0307 (7) | |
C7 | 0.57842 (8) | 0.21459 (7) | 0.9493 (7) | 0.0319 (7) | |
H7A | 0.5830 | 0.1957 | 1.0545 | 0.038* | |
C8 | 0.65663 (7) | 0.18596 (7) | 1.1621 (7) | 0.0280 (6) | |
C9 | 0.28655 (9) | 0.20335 (8) | 1.0763 (8) | 0.0433 (9) | |
H9A | 0.3054 | 0.2178 | 1.1346 | 0.052* | |
C10 | 0.24921 (9) | 0.20257 (8) | 1.1639 (8) | 0.0421 (8) | |
H10A | 0.2390 | 0.2170 | 1.2940 | 0.050* | |
C11 | 0.35849 (9) | 0.17039 (8) | 0.8458 (7) | 0.0374 (8) | |
H11A | 0.3621 | 0.1865 | 0.9809 | 0.045* | |
C12 | 0.28963 (8) | 0.17826 (7) | 0.8854 (7) | 0.0319 (7) | |
C13 | 0.35135 (8) | 0.12506 (8) | 0.4394 (7) | 0.0362 (7) | |
H13A | 0.3488 | 0.1099 | 0.2961 | 0.043* | |
C14 | 0.50252 (9) | 0.17858 (8) | 0.5230 (7) | 0.0370 (7) | |
H14A | 0.5028 | 0.1935 | 0.3763 | 0.044* | |
C15 | 0.52392 (8) | 0.18555 (8) | 0.7372 (6) | 0.0342 (8) | |
H15A | 0.5239 | 0.1705 | 0.8827 | 0.041* | |
C16 | 0.38898 (9) | 0.15306 (7) | 0.7424 (6) | 0.0352 (8) | |
H16A | 0.4128 | 0.1574 | 0.8150 | 0.042* | |
C17 | 0.31952 (9) | 0.14106 (8) | 0.5349 (7) | 0.0363 (8) | |
H17A | 0.2961 | 0.1366 | 0.4568 | 0.044* | |
C18 | 0.47794 (8) | 0.14901 (8) | 0.4955 (6) | 0.0313 (7) | |
C19 | 0.32276 (8) | 0.16387 (8) | 0.7491 (6) | 0.0309 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02385 (19) | 0.0318 (2) | 0.02701 (18) | −0.00149 (18) | 0.00226 (17) | 0.00073 (18) |
N1 | 0.0247 (13) | 0.0366 (15) | 0.0333 (15) | −0.0018 (11) | 0.0050 (10) | −0.0072 (11) |
N2 | 0.0285 (14) | 0.0358 (15) | 0.0387 (14) | 0.0004 (12) | 0.0066 (12) | −0.0056 (12) |
N3 | 0.0253 (14) | 0.0347 (14) | 0.0306 (12) | −0.0022 (12) | 0.0030 (11) | 0.0001 (11) |
O1 | 0.0423 (13) | 0.0337 (12) | 0.0295 (10) | 0.0020 (10) | −0.0026 (10) | 0.0017 (10) |
O2 | 0.0352 (11) | 0.0390 (12) | 0.0260 (10) | 0.0035 (9) | 0.0074 (10) | −0.0010 (10) |
O3 | 0.0402 (12) | 0.0299 (11) | 0.0436 (13) | −0.0026 (9) | −0.0066 (11) | −0.0044 (10) |
O4 | 0.0354 (13) | 0.0376 (13) | 0.0353 (11) | −0.0051 (10) | −0.0053 (10) | 0.0027 (10) |
O5 | 0.0340 (12) | 0.0394 (12) | 0.0344 (11) | −0.0054 (9) | 0.0011 (10) | 0.0060 (11) |
C1 | 0.0398 (19) | 0.0368 (19) | 0.040 (2) | 0.0030 (15) | −0.0050 (14) | 0.0001 (14) |
C2 | 0.0291 (17) | 0.0310 (17) | 0.0350 (16) | 0.0008 (14) | 0.0033 (12) | −0.0033 (13) |
C3 | 0.0378 (18) | 0.0386 (19) | 0.0296 (15) | 0.0037 (15) | −0.0030 (14) | −0.0058 (14) |
C4 | 0.044 (2) | 0.0277 (17) | 0.0409 (19) | −0.0048 (15) | 0.0034 (15) | −0.0002 (13) |
C5 | 0.051 (2) | 0.0308 (17) | 0.0437 (19) | 0.0012 (15) | −0.0009 (17) | 0.0048 (16) |
C6 | 0.0306 (17) | 0.0311 (16) | 0.0304 (17) | 0.0005 (14) | 0.0024 (11) | −0.0074 (12) |
C7 | 0.0356 (17) | 0.0272 (15) | 0.0328 (16) | 0.0013 (12) | 0.0008 (14) | −0.0012 (13) |
C8 | 0.0219 (14) | 0.0351 (16) | 0.0268 (14) | −0.0016 (12) | −0.0028 (13) | −0.0022 (14) |
C9 | 0.0301 (19) | 0.0379 (19) | 0.062 (2) | −0.0087 (15) | 0.0071 (16) | −0.0138 (16) |
C10 | 0.0426 (19) | 0.0348 (17) | 0.0488 (18) | 0.0030 (15) | 0.0095 (18) | −0.0110 (18) |
C11 | 0.0329 (18) | 0.0360 (18) | 0.043 (2) | −0.0054 (15) | 0.0019 (13) | −0.0144 (14) |
C12 | 0.0243 (16) | 0.0316 (16) | 0.0399 (18) | −0.0013 (13) | 0.0045 (13) | −0.0033 (14) |
C13 | 0.0281 (17) | 0.0462 (18) | 0.0343 (16) | −0.0019 (14) | −0.0006 (14) | −0.0098 (16) |
C14 | 0.0370 (18) | 0.0350 (18) | 0.0388 (17) | −0.0061 (15) | 0.0014 (14) | 0.0035 (14) |
C15 | 0.0313 (17) | 0.0331 (18) | 0.0383 (19) | 0.0017 (14) | 0.0015 (13) | −0.0001 (13) |
C16 | 0.0264 (17) | 0.0401 (19) | 0.039 (2) | −0.0046 (14) | 0.0011 (12) | −0.0058 (13) |
C17 | 0.0238 (17) | 0.043 (2) | 0.0422 (17) | 0.0014 (14) | −0.0007 (13) | −0.0082 (16) |
C18 | 0.0239 (16) | 0.0350 (18) | 0.0351 (18) | 0.0007 (14) | 0.0046 (12) | −0.0021 (13) |
C19 | 0.0251 (16) | 0.0315 (17) | 0.0362 (18) | −0.0001 (14) | 0.0040 (11) | 0.0005 (13) |
Co1—O1i | 2.037 (2) | C3—C8 | 1.514 (4) |
Co1—O2ii | 2.054 (2) | C3—H3A | 0.9700 |
Co1—N3 | 2.130 (2) | C3—H3B | 0.9700 |
Co1—O4 | 2.142 (2) | C4—C5 | 1.374 (4) |
Co1—N2iii | 2.158 (3) | C4—C6 | 1.386 (4) |
Co1—O5 | 2.252 (2) | C4—H4A | 0.9300 |
N1—C12 | 1.347 (4) | C5—H5A | 0.9300 |
N1—N2 | 1.348 (3) | C6—C7 | 1.384 (4) |
N1—H1A | 0.8600 | C7—H7A | 0.9300 |
N2—C10 | 1.325 (4) | C9—C12 | 1.374 (4) |
N2—Co1iv | 2.158 (3) | C9—C10 | 1.391 (4) |
N3—C16 | 1.333 (4) | C9—H9A | 0.9300 |
N3—C13 | 1.338 (4) | C10—H10A | 0.9300 |
O1—C8 | 1.251 (3) | C11—C19 | 1.376 (4) |
O1—Co1v | 2.037 (2) | C11—C16 | 1.381 (4) |
O2—C8 | 1.253 (4) | C11—H11A | 0.9300 |
O2—Co1vi | 2.054 (2) | C12—C19 | 1.467 (4) |
O3—C6 | 1.374 (3) | C13—C17 | 1.380 (4) |
O3—C3 | 1.420 (3) | C13—H13A | 0.9300 |
O4—C18 | 1.261 (4) | C14—C15 | 1.316 (4) |
O5—C18 | 1.266 (3) | C14—C18 | 1.482 (4) |
C1—C5 | 1.375 (4) | C14—H14A | 0.9300 |
C1—C2 | 1.394 (4) | C15—H15A | 0.9300 |
C1—H1B | 0.9300 | C16—H16A | 0.9300 |
C2—C7 | 1.400 (4) | C17—C19 | 1.390 (4) |
C2—C15 | 1.476 (4) | C17—H17A | 0.9300 |
O1i—Co1—O2ii | 102.24 (8) | C4—C5—H5A | 119.5 |
O1i—Co1—N3 | 91.33 (9) | C1—C5—H5A | 119.5 |
O2ii—Co1—N3 | 92.82 (9) | O3—C6—C7 | 125.7 (3) |
O1i—Co1—O4 | 95.01 (8) | O3—C6—C4 | 114.6 (3) |
O2ii—Co1—O4 | 162.75 (8) | C7—C6—C4 | 119.7 (3) |
N3—Co1—O4 | 87.08 (9) | C6—C7—C2 | 120.1 (3) |
O1i—Co1—N2iii | 87.48 (10) | C6—C7—H7A | 119.9 |
O2ii—Co1—N2iii | 87.89 (9) | C2—C7—H7A | 119.9 |
N3—Co1—N2iii | 178.72 (11) | O1—C8—O2 | 125.2 (3) |
O4—Co1—N2iii | 92.56 (9) | O1—C8—C3 | 115.3 (3) |
O1i—Co1—O5 | 152.48 (8) | O2—C8—C3 | 119.5 (3) |
O2ii—Co1—O5 | 103.33 (8) | C12—C9—C10 | 105.3 (3) |
N3—Co1—O5 | 97.42 (9) | C12—C9—H9A | 127.3 |
O4—Co1—O5 | 59.66 (8) | C10—C9—H9A | 127.3 |
N2iii—Co1—O5 | 83.45 (9) | N2—C10—C9 | 111.3 (3) |
C12—N1—N2 | 112.2 (2) | N2—C10—H10A | 124.4 |
C12—N1—H1A | 123.9 | C9—C10—H10A | 124.4 |
N2—N1—H1A | 123.9 | C19—C11—C16 | 120.1 (3) |
C10—N2—N1 | 104.9 (2) | C19—C11—H11A | 120.0 |
C10—N2—Co1iv | 131.5 (2) | C16—C11—H11A | 120.0 |
N1—N2—Co1iv | 117.32 (19) | N1—C12—C9 | 106.3 (3) |
C16—N3—C13 | 117.4 (3) | N1—C12—C19 | 122.1 (3) |
C16—N3—Co1 | 121.0 (2) | C9—C12—C19 | 131.1 (3) |
C13—N3—Co1 | 121.4 (2) | N3—C13—C17 | 123.1 (3) |
C8—O1—Co1v | 132.5 (2) | N3—C13—H13A | 118.5 |
C8—O2—Co1vi | 124.8 (2) | C17—C13—H13A | 118.5 |
C6—O3—C3 | 117.6 (2) | C15—C14—C18 | 125.6 (3) |
C18—O4—Co1 | 92.70 (18) | C15—C14—H14A | 117.2 |
C18—O5—Co1 | 87.59 (18) | C18—C14—H14A | 117.2 |
C5—C1—C2 | 119.9 (3) | C14—C15—C2 | 125.4 (3) |
C5—C1—H1B | 120.1 | C14—C15—H15A | 117.3 |
C2—C1—H1B | 120.1 | C2—C15—H15A | 117.3 |
C1—C2—C7 | 119.2 (3) | N3—C16—C11 | 122.8 (3) |
C1—C2—C15 | 121.5 (3) | N3—C16—H16A | 118.6 |
C7—C2—C15 | 119.3 (3) | C11—C16—H16A | 118.6 |
O3—C3—C8 | 115.4 (3) | C13—C17—C19 | 119.4 (3) |
O3—C3—H3A | 108.4 | C13—C17—H17A | 120.3 |
C8—C3—H3A | 108.4 | C19—C17—H17A | 120.3 |
O3—C3—H3B | 108.4 | O4—C18—O5 | 120.0 (3) |
C8—C3—H3B | 108.4 | O4—C18—C14 | 118.3 (3) |
H3A—C3—H3B | 107.5 | O5—C18—C14 | 121.7 (3) |
C5—C4—C6 | 120.1 (3) | C11—C19—C17 | 117.1 (3) |
C5—C4—H4A | 120.0 | C11—C19—C12 | 120.6 (3) |
C6—C4—H4A | 120.0 | C17—C19—C12 | 122.0 (3) |
C4—C5—C1 | 120.9 (3) | ||
C12—N1—N2—C10 | 1.1 (3) | C10—C9—C12—N1 | 0.5 (4) |
C12—N1—N2—Co1iv | −154.4 (2) | C10—C9—C12—C19 | −170.5 (3) |
C5—C1—C2—C7 | −1.3 (5) | C16—N3—C13—C17 | −2.1 (5) |
C5—C1—C2—C15 | 179.6 (3) | Co1—N3—C13—C17 | 172.6 (3) |
C6—O3—C3—C8 | 73.1 (3) | C18—C14—C15—C2 | −179.0 (3) |
C6—C4—C5—C1 | 1.2 (5) | C1—C2—C15—C14 | 21.2 (5) |
C2—C1—C5—C4 | 0.9 (5) | C7—C2—C15—C14 | −157.9 (3) |
C3—O3—C6—C7 | −3.8 (4) | C13—N3—C16—C11 | 1.1 (4) |
C3—O3—C6—C4 | 176.1 (3) | Co1—N3—C16—C11 | −173.7 (2) |
C5—C4—C6—O3 | 177.0 (3) | C19—C11—C16—N3 | 2.0 (5) |
C5—C4—C6—C7 | −3.1 (5) | N3—C13—C17—C19 | 0.0 (5) |
O3—C6—C7—C2 | −177.4 (3) | Co1—O4—C18—O5 | 3.0 (3) |
C4—C6—C7—C2 | 2.7 (4) | Co1—O4—C18—C14 | −178.0 (2) |
C1—C2—C7—C6 | −0.5 (4) | Co1—O5—C18—O4 | −2.8 (3) |
C15—C2—C7—C6 | 178.6 (3) | Co1—O5—C18—C14 | 178.2 (3) |
Co1v—O1—C8—O2 | 124.6 (3) | C15—C14—C18—O4 | 178.6 (3) |
Co1v—O1—C8—C3 | −55.7 (3) | C15—C14—C18—O5 | −2.4 (5) |
Co1vi—O2—C8—O1 | 5.7 (4) | C16—C11—C19—C17 | −4.0 (5) |
Co1vi—O2—C8—C3 | −174.00 (19) | C16—C11—C19—C12 | 170.6 (3) |
O3—C3—C8—O1 | −168.3 (2) | C13—C17—C19—C11 | 3.0 (5) |
O3—C3—C8—O2 | 11.4 (4) | C13—C17—C19—C12 | −171.4 (3) |
N1—N2—C10—C9 | −0.7 (4) | N1—C12—C19—C11 | −156.1 (3) |
Co1iv—N2—C10—C9 | 149.7 (3) | C9—C12—C19—C11 | 13.7 (5) |
C12—C9—C10—N2 | 0.2 (4) | N1—C12—C19—C17 | 18.2 (5) |
N2—N1—C12—C9 | −1.0 (4) | C9—C12—C19—C17 | −172.0 (3) |
N2—N1—C12—C19 | 171.0 (3) |
Symmetry codes: (i) x−1/4, −y+1/4, z−5/4; (ii) x−1/4, −y+1/4, z−1/4; (iii) x+1/4, −y+1/4, z−3/4; (iv) x−1/4, −y+1/4, z+3/4; (v) x+1/4, −y+1/4, z+5/4; (vi) x+1/4, −y+1/4, z+1/4. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O5ii | 0.86 | 2.05 | 2.869 (3) | 159 |
Symmetry code: (ii) x−1/4, −y+1/4, z−1/4. |
Acknowledgements
This work was supported financially by the Open Research Fund of Top Key Discipline of Chemistry in Zhejiang Provincial Colleges and the Key Laboratory of the Ministry of Education for Advanced Catalysis Materials (ZJHX201515).
References
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, W., Yue, Q., Chen, C., Yuan, H. M., Xu, W., Chen, J. S. & Wang, S. N. (2003). Dalton Trans. pp. 28–30. Web of Science CSD CrossRef Google Scholar
Fernández, B., Beobide, G., Sánchez, I., Carrasco-Marín, F., Seco, J. M., Calahorro, A. J., Cepeda, J. & Rodríguez-Diéguez, A. (2016). CrystEngComm, 18, 1282–1294. Google Scholar
Fu, J.-D. & Wen, Y.-H. (2011). Acta Cryst. E67, o167. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kong, G. Q., Han, Z. D., He, Y. B., Ou, S., Zhou, W., Yildirim, T., Krishna, R., Zou, C., Chen, B. & Wu, C. D. (2013). Chem. Eur. J. 19, 14886–14894. Web of Science CSD CrossRef CAS PubMed Google Scholar
Liu, X. B., Lin, H., Xiao, Z. Y., Fan, W. D., Huang, A., Wang, R. M., Zhang, L. L. & Sun, D. F. (2016). Dalton Trans. 45, 3743–3749. Web of Science CSD CrossRef CAS PubMed Google Scholar
Liu, D. M., Xie, Z. G., Ma, L. Q. & Lin, W. B. (2010). Inorg. Chem. 49, 9107–9109. Web of Science CSD CrossRef CAS PubMed Google Scholar
Luo, J. H., Hong, M. C., Wang, R. H., Cao, R., Han, L., Yuan, D. Q., Lin, Z. Z. & Zhou, Y. F. (2003). Inorg. Chem. 42, 4486–4488. Web of Science CSD CrossRef PubMed CAS Google Scholar
Pan, L., Huang, X. Y., Li, J., Wu, Y. G. & Zheng, N. W. (2000). Angew. Chem. 112, 537–540. CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Qin, C., Wang, X. L., Li, Y. G., Wang, E. B., Su, Z. M., Xu, L. & Clérac, R. (2005). Dalton Trans. pp. 2609–2614. Web of Science CSD CrossRef Google Scholar
Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, M. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, D. M., Lee, I. S., Chung, Y. K. & Lah, M. S. (2003). Inorg. Chem. 42, 5459–5461. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wang, X. L., Qin, C., Wang, E. B., Li, Y. G., Hao, N., Hu, C. & Xu, L. (2004). Inorg. Chem. 43, 1850–1856. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wang, G. X., Zhang, Q. W. & Wen, Y. H. (2014). Chinese J. Inorg. Chem. 30, 2571–2576. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yoon, M., Srirambalaji, R. & Kim, K. (2012). Chem. Rev. 112, 1196–1231. Web of Science CrossRef CAS PubMed Google Scholar
Zheng, X. Y., Ye, L. & Wen, Y. H. (2011). J. Mol. Struct. 987, 132–137. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.