research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[{μ3-(E)-3-[3-(carboxyl­atometh­­oxy)phen­yl]acrylato-κ3O,O′:O′′:O′′′}[μ2-3-(pyridin-4-yl)-1H-pyrazole-κ2N:N′]cobalt(II)]

CROSSMARK_Color_square_no_text.svg

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: wyh@zjnu.edu.cn

Edited by S. Parkin, University of Kentucky, USA (Received 14 August 2016; accepted 2 September 2016; online 9 September 2016)

The title compound, [Co(C11H8O5)(C8H7N3)]n, which is based on (E)-3-[3-(carb­oxy­meth­oxy)phen­yl]acrylic acid (H2L) and 3-(pyridin-4-yl)pyrazole (pp) ligands, has been synthesized under solvothermal conditions. The dihedral angle between pyrazole and pyridine rings in the pp ligands is 23.1 (2)°. In the crystal, helical chains formed by pp and L ligands connected to the CoII atom propagate parallel to the c axis. CoII atoms of adjacent chains are bridged by the acrylic acid groups of L ligands into corrugated polymeric sheets in the ac plane.

1. Chemical context

The rational design and synthesis of metal–organic frameworks (MOFs) with multi-carboxyl­ate ligands and metal atoms has attracted much attention in coordination chemistry due to the varied topologies and potential applications in catalysis, gas adsorption, photochemistry etc (Fernández et al., 2016[Fernández, B., Beobide, G., Sánchez, I., Carrasco-Marín, F., Seco, J. M., Calahorro, A. J., Cepeda, J. & Rodríguez-Diéguez, A. (2016). CrystEngComm, 18, 1282-1294.]). The versatility of metal–organic chemistry offers the opportunity to construct multifunctional materials based on the assembly of mol­ecular building blocks. Much attention has been devoted to the cogitative design and control of self-assembly of infinite coordination networks by careful selection of ligand geometry (Liu et al., 2016[Liu, X. B., Lin, H., Xiao, Z. Y., Fan, W. D., Huang, A., Wang, R. M., Zhang, L. L. & Sun, D. F. (2016). Dalton Trans. 45, 3743-3749.]; Yoon et al., 2012[Yoon, M., Srirambalaji, R. & Kim, K. (2012). Chem. Rev. 112, 1196-1231.]). In this regard, the use of symmetrical ligands has been a successful paradigm because of their structural predictability (Rosi et al., 2003[Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, M. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127-1129.]; Luo et al., 2003[Luo, J. H., Hong, M. C., Wang, R. H., Cao, R., Han, L., Yuan, D. Q., Lin, Z. Z. & Zhou, Y. F. (2003). Inorg. Chem. 42, 4486-4488.]). Incorporation of unsymmetrical ligands in such systems, however, is relatively recent (Wang et al., 2004[Wang, X. L., Qin, C., Wang, E. B., Li, Y. G., Hao, N., Hu, C. & Xu, L. (2004). Inorg. Chem. 43, 1850-1856.]; Chen et al., 2003[Chen, W., Yue, Q., Chen, C., Yuan, H. M., Xu, W., Chen, J. S. & Wang, S. N. (2003). Dalton Trans. pp. 28-30.]; Qin et al., 2005[Qin, C., Wang, X. L., Li, Y. G., Wang, E. B., Su, Z. M., Xu, L. & Clérac, R. (2005). Dalton Trans. pp. 2609-2614.]). Compared to symmetrical ligands, ligands with two or more coordination sites with differing donor ability can lead to unsymmetrical ligands being assembled around metal atoms in diverse arrangements. This can result in unprecedented structures with novel topological features, such as a clay-like double layer (Pan et al., 2000[Pan, L., Huang, X. Y., Li, J., Wu, Y. G. & Zheng, N. W. (2000). Angew. Chem. 112, 537-540.]), large spherical cavities and functional 1D channels (Shin et al., 2003[Shin, D. M., Lee, I. S., Chung, Y. K. & Lah, M. S. (2003). Inorg. Chem. 42, 5459-5461.]). Although important progress has been made in the construction of coordination polymers by applying a single type of organic ligand, research involving a combination of more than one ligand is an especially attractive target, as it allows the construction of an almost infinite number of frameworks with different crystal structures.

In our work, we use (E)-3-[3-(carb­oxy­meth­oxy)phen­yl]acrylic acid (H2L) and 3-(pyridin-4-yl)pyrazole (pp) as ligands to construct novel MOFs that are based on the following considerations: (1) the carboxyl­ate group is conjugated with the benzene ring through a C=C double bond, which makes the electron density delocalized in the ligand so that it may become more rigid when coordinating to metal ions, and have more coordination modes and conformation changes (Kong et al., 2013[Kong, G. Q., Han, Z. D., He, Y. B., Ou, S., Zhou, W., Yildirim, T., Krishna, R., Zou, C., Chen, B. & Wu, C. D. (2013). Chem. Eur. J. 19, 14886-14894.]; Liu et al., 2010[Liu, D. M., Xie, Z. G., Ma, L. Q. & Lin, W. B. (2010). Inorg. Chem. 49, 9107-9109.]); (2) the presence of a phenolic hydroxyl group and benzene ring in the ligand allows the possibility of hydrogen bonding and ππ stacking inter­actions in the crystal lattices; (3) the N-donor ligand could enhance structural stability.

We herein report the synthesis and crystal structure of [Co(C11H8O5)(C8H7N3)]n based on these two mixed ligands.

[Scheme 1]

2. Structural commentary

As shown in Fig. 1[link], the asymmetric unit of the title compound comprises one Co2+ cation, one fully deprotonated L2− anion, and one pp ligand. The CoII atom has a distorted octa­hedral geometry, coordinated by four O atoms from three L2− ligands, with CoII—O distances of 2.037 (2)–2.252 (2) Å, and two N atoms from two pp ligands with CoII—N distances of 2.130 (2) and 2.158 (3) Å. The L2− ligand adopts two different coordination modes. In this structure, the dihedral angles between the rings in the pp ligands is 23.1 (2)°. The 1D helical chains (Fig. 2[link]) are assembled by Co2+ cations, pp ligands and L ligands. Helical chains along the c axis are connected to adjacent chains by L ligands that bridge the CoII atoms, forming a two-dimensional polymeric structure in the ac plane (Fig. 3[link]).

[Figure 1]
Figure 1
The coordination environment of the Co2+ ion in the title complex (omitting all H atoms), showing the atom-numbering scheme for non-H atoms. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes: (i) x, y, z − 1; (ii) x − [{1\over 4}], [{1\over 4}] − y, z + [{3\over 4}]; (iii) x + [{1\over 4}], [{1\over 4}] − y, z + [{1\over 4}].]
[Figure 2]
Figure 2
The helical chain in the title compound (omitting all H atoms). The yellow rod indicates the direction of propagation of the helix (i.e. parallel to the c axis).
[Figure 3]
Figure 3
The two-dimensional packing of the title compound. Hydrogen bonds are depicted as dashed lines.

In the structure, every η3-(E)-3-[3-(carb­oxy­meth­oxy)phen­yl]acrylic acid ligand is connected to three Co atoms, while every η3-3-(pyridin-4-yl)pyrazole is connected to two Co atoms. The CoII atom connects three L2− ligands and two pp ligands, and so can be described as a five-connected node. Thus, the topology of the structure could be given simply as a (2,3,5)-connected network.

3. Supra­molecular features

In this structure, L ligands form hydrogen bonds to the pp ligands, thereby enhancing the polymer stability (Table 1[link] and Fig. 3[link]). The polymer inter­actions consist of N1(pyrazole)—H1A⋯O5(x − [{1\over 4}], −y + [{1\over 4}], z − [{1\over 4}]) hydrogen bonds where each L ligand makes a hydrogen bond with a neighboring pp ligand.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.86 2.05 2.869 (3) 159
Symmetry code: (i) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z-{\script{1\over 4}}].

4. Database survey

The crystal structure of a 2D polymeric Cd-containing compound with (E)-3-(3-carb­oxy­meth­oxy)phen­yl)acrylic acid and 1,3-di-pyridin-4-yl­propane ligands (the Cd-crystal), recently reported by Wang et al. (2014[Wang, G. X., Zhang, Q. W. & Wen, Y. H. (2014). Chinese J. Inorg. Chem. 30, 2571-2576.]), has a similar structure to the title compound. Both structures include hydrogen bonds, though in the Cd-crystal, these are O—H⋯O hydrogen bonds rather than N—H⋯O as in the title compound.

5. Synthesis and crystallization

All of the chemical reagents and solvents are commercially available and used without further purification. Elemental analyses were carried out on a Perkin–Elmer 2400 Series II analyzer.

Synthesis of [Co(C11H8O5)(C8H7N3)]n

(1): A mixture of CoCl2·6H2O (0.1185 g, 0.5 mmol), H2L (Zheng et al., 2011[Zheng, X. Y., Ye, L. & Wen, Y. H. (2011). J. Mol. Struct. 987, 132-137.]; Fu & Wen, 2011[Fu, J.-D. & Wen, Y.-H. (2011). Acta Cryst. E67, o167.]) (0.222 g, 1 mmol) and pp (0.1451 g, 1 mmol) were dissolved in 22 mL H2O/CH3OH (v/v, 10:1) mixed solvent. The pH value was adjusted to 7 by adding to a few drops of an aqueous NaOH solution (2.0 mol L−1). It was then sealed in a 25 mL stainless steel reactor and heated to 433 K for three days. The mixture was then cooled to room temperature at a rate of 5 K h−1, and red block-shaped crystals were obtained (yield: 62% based on Co). Analysis calculated (%) for C19H15CoN3O5 (424.27): C 53.81, H 3.62, N 9.85; found (%): C 53.79, H 3.56, N 9.90. IR data (KBr, cm−1): 3432, 1649, 1501, 1407, 1274, 1206, 1180, 1086, 978, 844, 724, 603.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms attached to carbon atoms were refined using a riding-model approximation, with Uiso(H) = 1.2Ueq(C) and C—H = 0.93 Å (aromatic and carbene) and 0.97 Å (methyl­ene). Other hydrogen atoms were located in difference electron-density maps and refined freely.

Table 2
Experimental details

Crystal data
Chemical formula [Co(C11H8O5)(C8H7N3)]
Mr 424.27
Crystal system, space group Orthorhombic, Fdd2
Temperature (K) 296
a, b, c (Å) 35.4631 (11), 40.2873 (12), 4.8423 (1)
V3) 6918.3 (3)
Z 16
Radiation type Mo Kα
μ (mm−1) 1.03
Crystal size (mm) 0.24 × 0.12 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.861, 0.943
No. of measured, independent and observed [I > 2σ(I)] reflections 15248, 3915, 3425
Rint 0.036
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.061, 1.02
No. of reflections 3915
No. of parameters 253
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.24
Absolute structure Flack x determined using 1316 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.025 (8)
Computer programs: APEX2 and SAINT-Plus (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT-Plus (Bruker, 2014); data reduction: SAINT-Plus (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[{µ3-(E)-3-[3-(carboxylatomethoxy)phenyl]acrylato-κ3O,O':O'':O'''}[µ2-3-(pyridin-4-yl)-1H-pyrazole-κ2N:N']cobalt(II)] top
Crystal data top
[Co(C11H8O5)(C8H7N3)]Dx = 1.629 Mg m3
Mr = 424.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 4631 reflections
a = 35.4631 (11) Åθ = 1.5–27.6°
b = 40.2873 (12) ŵ = 1.03 mm1
c = 4.8423 (1) ÅT = 296 K
V = 6918.3 (3) Å3Block, red
Z = 160.24 × 0.12 × 0.06 mm
F(000) = 3472
Data collection top
Bruker APEXII CCD
diffractometer
3425 reflections with I > 2σ(I)
ω and φ scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 27.6°, θmin = 1.5°
Tmin = 0.861, Tmax = 0.943h = 4640
15248 measured reflectionsk = 4852
3915 independent reflectionsl = 66
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0282P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3915 reflectionsΔρmax = 0.18 e Å3
253 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack x determined using 1316 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.025 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.43282 (2)0.10099 (2)0.42130 (8)0.02757 (11)
N10.25519 (6)0.16432 (6)0.8665 (5)0.0315 (6)
H1A0.24980.14810.75760.038*
N20.23011 (7)0.17869 (6)1.0382 (6)0.0344 (6)
N30.38578 (7)0.13040 (6)0.5432 (5)0.0302 (6)
O10.65789 (6)0.15999 (5)1.3036 (4)0.0351 (5)
O20.66654 (5)0.18826 (5)0.9144 (4)0.0334 (5)
O30.63324 (6)0.24391 (5)1.1390 (5)0.0379 (5)
O40.45839 (6)0.14604 (5)0.2794 (4)0.0361 (5)
O50.47664 (6)0.12681 (5)0.6803 (5)0.0359 (5)
C10.54127 (9)0.24388 (8)0.6113 (6)0.0388 (8)
H1B0.52140.24450.48580.047*
C20.54793 (8)0.21527 (7)0.7657 (6)0.0317 (7)
C30.64159 (9)0.21627 (7)1.3104 (6)0.0353 (7)
H3A0.61880.21001.40850.042*
H3B0.66000.22311.44700.042*
C40.59389 (9)0.27054 (8)0.8261 (7)0.0376 (8)
H4A0.60880.28930.84920.045*
C50.56410 (9)0.27116 (8)0.6447 (8)0.0418 (8)
H5A0.55930.29030.54320.050*
C60.60175 (8)0.24195 (7)0.9746 (6)0.0307 (7)
C70.57842 (8)0.21459 (7)0.9493 (7)0.0319 (7)
H7A0.58300.19571.05450.038*
C80.65663 (7)0.18596 (7)1.1621 (7)0.0280 (6)
C90.28655 (9)0.20335 (8)1.0763 (8)0.0433 (9)
H9A0.30540.21781.13460.052*
C100.24921 (9)0.20257 (8)1.1639 (8)0.0421 (8)
H10A0.23900.21701.29400.050*
C110.35849 (9)0.17039 (8)0.8458 (7)0.0374 (8)
H11A0.36210.18650.98090.045*
C120.28963 (8)0.17826 (7)0.8854 (7)0.0319 (7)
C130.35135 (8)0.12506 (8)0.4394 (7)0.0362 (7)
H13A0.34880.10990.29610.043*
C140.50252 (9)0.17858 (8)0.5230 (7)0.0370 (7)
H14A0.50280.19350.37630.044*
C150.52392 (8)0.18555 (8)0.7372 (6)0.0342 (8)
H15A0.52390.17050.88270.041*
C160.38898 (9)0.15306 (7)0.7424 (6)0.0352 (8)
H16A0.41280.15740.81500.042*
C170.31952 (9)0.14106 (8)0.5349 (7)0.0363 (8)
H17A0.29610.13660.45680.044*
C180.47794 (8)0.14901 (8)0.4955 (6)0.0313 (7)
C190.32276 (8)0.16387 (8)0.7491 (6)0.0309 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02385 (19)0.0318 (2)0.02701 (18)0.00149 (18)0.00226 (17)0.00073 (18)
N10.0247 (13)0.0366 (15)0.0333 (15)0.0018 (11)0.0050 (10)0.0072 (11)
N20.0285 (14)0.0358 (15)0.0387 (14)0.0004 (12)0.0066 (12)0.0056 (12)
N30.0253 (14)0.0347 (14)0.0306 (12)0.0022 (12)0.0030 (11)0.0001 (11)
O10.0423 (13)0.0337 (12)0.0295 (10)0.0020 (10)0.0026 (10)0.0017 (10)
O20.0352 (11)0.0390 (12)0.0260 (10)0.0035 (9)0.0074 (10)0.0010 (10)
O30.0402 (12)0.0299 (11)0.0436 (13)0.0026 (9)0.0066 (11)0.0044 (10)
O40.0354 (13)0.0376 (13)0.0353 (11)0.0051 (10)0.0053 (10)0.0027 (10)
O50.0340 (12)0.0394 (12)0.0344 (11)0.0054 (9)0.0011 (10)0.0060 (11)
C10.0398 (19)0.0368 (19)0.040 (2)0.0030 (15)0.0050 (14)0.0001 (14)
C20.0291 (17)0.0310 (17)0.0350 (16)0.0008 (14)0.0033 (12)0.0033 (13)
C30.0378 (18)0.0386 (19)0.0296 (15)0.0037 (15)0.0030 (14)0.0058 (14)
C40.044 (2)0.0277 (17)0.0409 (19)0.0048 (15)0.0034 (15)0.0002 (13)
C50.051 (2)0.0308 (17)0.0437 (19)0.0012 (15)0.0009 (17)0.0048 (16)
C60.0306 (17)0.0311 (16)0.0304 (17)0.0005 (14)0.0024 (11)0.0074 (12)
C70.0356 (17)0.0272 (15)0.0328 (16)0.0013 (12)0.0008 (14)0.0012 (13)
C80.0219 (14)0.0351 (16)0.0268 (14)0.0016 (12)0.0028 (13)0.0022 (14)
C90.0301 (19)0.0379 (19)0.062 (2)0.0087 (15)0.0071 (16)0.0138 (16)
C100.0426 (19)0.0348 (17)0.0488 (18)0.0030 (15)0.0095 (18)0.0110 (18)
C110.0329 (18)0.0360 (18)0.043 (2)0.0054 (15)0.0019 (13)0.0144 (14)
C120.0243 (16)0.0316 (16)0.0399 (18)0.0013 (13)0.0045 (13)0.0033 (14)
C130.0281 (17)0.0462 (18)0.0343 (16)0.0019 (14)0.0006 (14)0.0098 (16)
C140.0370 (18)0.0350 (18)0.0388 (17)0.0061 (15)0.0014 (14)0.0035 (14)
C150.0313 (17)0.0331 (18)0.0383 (19)0.0017 (14)0.0015 (13)0.0001 (13)
C160.0264 (17)0.0401 (19)0.039 (2)0.0046 (14)0.0011 (12)0.0058 (13)
C170.0238 (17)0.043 (2)0.0422 (17)0.0014 (14)0.0007 (13)0.0082 (16)
C180.0239 (16)0.0350 (18)0.0351 (18)0.0007 (14)0.0046 (12)0.0021 (13)
C190.0251 (16)0.0315 (17)0.0362 (18)0.0001 (14)0.0040 (11)0.0005 (13)
Geometric parameters (Å, º) top
Co1—O1i2.037 (2)C3—C81.514 (4)
Co1—O2ii2.054 (2)C3—H3A0.9700
Co1—N32.130 (2)C3—H3B0.9700
Co1—O42.142 (2)C4—C51.374 (4)
Co1—N2iii2.158 (3)C4—C61.386 (4)
Co1—O52.252 (2)C4—H4A0.9300
N1—C121.347 (4)C5—H5A0.9300
N1—N21.348 (3)C6—C71.384 (4)
N1—H1A0.8600C7—H7A0.9300
N2—C101.325 (4)C9—C121.374 (4)
N2—Co1iv2.158 (3)C9—C101.391 (4)
N3—C161.333 (4)C9—H9A0.9300
N3—C131.338 (4)C10—H10A0.9300
O1—C81.251 (3)C11—C191.376 (4)
O1—Co1v2.037 (2)C11—C161.381 (4)
O2—C81.253 (4)C11—H11A0.9300
O2—Co1vi2.054 (2)C12—C191.467 (4)
O3—C61.374 (3)C13—C171.380 (4)
O3—C31.420 (3)C13—H13A0.9300
O4—C181.261 (4)C14—C151.316 (4)
O5—C181.266 (3)C14—C181.482 (4)
C1—C51.375 (4)C14—H14A0.9300
C1—C21.394 (4)C15—H15A0.9300
C1—H1B0.9300C16—H16A0.9300
C2—C71.400 (4)C17—C191.390 (4)
C2—C151.476 (4)C17—H17A0.9300
O1i—Co1—O2ii102.24 (8)C4—C5—H5A119.5
O1i—Co1—N391.33 (9)C1—C5—H5A119.5
O2ii—Co1—N392.82 (9)O3—C6—C7125.7 (3)
O1i—Co1—O495.01 (8)O3—C6—C4114.6 (3)
O2ii—Co1—O4162.75 (8)C7—C6—C4119.7 (3)
N3—Co1—O487.08 (9)C6—C7—C2120.1 (3)
O1i—Co1—N2iii87.48 (10)C6—C7—H7A119.9
O2ii—Co1—N2iii87.89 (9)C2—C7—H7A119.9
N3—Co1—N2iii178.72 (11)O1—C8—O2125.2 (3)
O4—Co1—N2iii92.56 (9)O1—C8—C3115.3 (3)
O1i—Co1—O5152.48 (8)O2—C8—C3119.5 (3)
O2ii—Co1—O5103.33 (8)C12—C9—C10105.3 (3)
N3—Co1—O597.42 (9)C12—C9—H9A127.3
O4—Co1—O559.66 (8)C10—C9—H9A127.3
N2iii—Co1—O583.45 (9)N2—C10—C9111.3 (3)
C12—N1—N2112.2 (2)N2—C10—H10A124.4
C12—N1—H1A123.9C9—C10—H10A124.4
N2—N1—H1A123.9C19—C11—C16120.1 (3)
C10—N2—N1104.9 (2)C19—C11—H11A120.0
C10—N2—Co1iv131.5 (2)C16—C11—H11A120.0
N1—N2—Co1iv117.32 (19)N1—C12—C9106.3 (3)
C16—N3—C13117.4 (3)N1—C12—C19122.1 (3)
C16—N3—Co1121.0 (2)C9—C12—C19131.1 (3)
C13—N3—Co1121.4 (2)N3—C13—C17123.1 (3)
C8—O1—Co1v132.5 (2)N3—C13—H13A118.5
C8—O2—Co1vi124.8 (2)C17—C13—H13A118.5
C6—O3—C3117.6 (2)C15—C14—C18125.6 (3)
C18—O4—Co192.70 (18)C15—C14—H14A117.2
C18—O5—Co187.59 (18)C18—C14—H14A117.2
C5—C1—C2119.9 (3)C14—C15—C2125.4 (3)
C5—C1—H1B120.1C14—C15—H15A117.3
C2—C1—H1B120.1C2—C15—H15A117.3
C1—C2—C7119.2 (3)N3—C16—C11122.8 (3)
C1—C2—C15121.5 (3)N3—C16—H16A118.6
C7—C2—C15119.3 (3)C11—C16—H16A118.6
O3—C3—C8115.4 (3)C13—C17—C19119.4 (3)
O3—C3—H3A108.4C13—C17—H17A120.3
C8—C3—H3A108.4C19—C17—H17A120.3
O3—C3—H3B108.4O4—C18—O5120.0 (3)
C8—C3—H3B108.4O4—C18—C14118.3 (3)
H3A—C3—H3B107.5O5—C18—C14121.7 (3)
C5—C4—C6120.1 (3)C11—C19—C17117.1 (3)
C5—C4—H4A120.0C11—C19—C12120.6 (3)
C6—C4—H4A120.0C17—C19—C12122.0 (3)
C4—C5—C1120.9 (3)
C12—N1—N2—C101.1 (3)C10—C9—C12—N10.5 (4)
C12—N1—N2—Co1iv154.4 (2)C10—C9—C12—C19170.5 (3)
C5—C1—C2—C71.3 (5)C16—N3—C13—C172.1 (5)
C5—C1—C2—C15179.6 (3)Co1—N3—C13—C17172.6 (3)
C6—O3—C3—C873.1 (3)C18—C14—C15—C2179.0 (3)
C6—C4—C5—C11.2 (5)C1—C2—C15—C1421.2 (5)
C2—C1—C5—C40.9 (5)C7—C2—C15—C14157.9 (3)
C3—O3—C6—C73.8 (4)C13—N3—C16—C111.1 (4)
C3—O3—C6—C4176.1 (3)Co1—N3—C16—C11173.7 (2)
C5—C4—C6—O3177.0 (3)C19—C11—C16—N32.0 (5)
C5—C4—C6—C73.1 (5)N3—C13—C17—C190.0 (5)
O3—C6—C7—C2177.4 (3)Co1—O4—C18—O53.0 (3)
C4—C6—C7—C22.7 (4)Co1—O4—C18—C14178.0 (2)
C1—C2—C7—C60.5 (4)Co1—O5—C18—O42.8 (3)
C15—C2—C7—C6178.6 (3)Co1—O5—C18—C14178.2 (3)
Co1v—O1—C8—O2124.6 (3)C15—C14—C18—O4178.6 (3)
Co1v—O1—C8—C355.7 (3)C15—C14—C18—O52.4 (5)
Co1vi—O2—C8—O15.7 (4)C16—C11—C19—C174.0 (5)
Co1vi—O2—C8—C3174.00 (19)C16—C11—C19—C12170.6 (3)
O3—C3—C8—O1168.3 (2)C13—C17—C19—C113.0 (5)
O3—C3—C8—O211.4 (4)C13—C17—C19—C12171.4 (3)
N1—N2—C10—C90.7 (4)N1—C12—C19—C11156.1 (3)
Co1iv—N2—C10—C9149.7 (3)C9—C12—C19—C1113.7 (5)
C12—C9—C10—N20.2 (4)N1—C12—C19—C1718.2 (5)
N2—N1—C12—C91.0 (4)C9—C12—C19—C17172.0 (3)
N2—N1—C12—C19171.0 (3)
Symmetry codes: (i) x1/4, y+1/4, z5/4; (ii) x1/4, y+1/4, z1/4; (iii) x+1/4, y+1/4, z3/4; (iv) x1/4, y+1/4, z+3/4; (v) x+1/4, y+1/4, z+5/4; (vi) x+1/4, y+1/4, z+1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5ii0.862.052.869 (3)159
Symmetry code: (ii) x1/4, y+1/4, z1/4.
 

Acknowledgements

This work was supported financially by the Open Research Fund of Top Key Discipline of Chemistry in Zhejiang Provincial Colleges and the Key Laboratory of the Ministry of Education for Advanced Catalysis Materials (ZJHX201515).

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W., Yue, Q., Chen, C., Yuan, H. M., Xu, W., Chen, J. S. & Wang, S. N. (2003). Dalton Trans. pp. 28–30.  Web of Science CSD CrossRef Google Scholar
First citationFernández, B., Beobide, G., Sánchez, I., Carrasco-Marín, F., Seco, J. M., Calahorro, A. J., Cepeda, J. & Rodríguez-Diéguez, A. (2016). CrystEngComm, 18, 1282–1294.  Google Scholar
First citationFu, J.-D. & Wen, Y.-H. (2011). Acta Cryst. E67, o167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKong, G. Q., Han, Z. D., He, Y. B., Ou, S., Zhou, W., Yildirim, T., Krishna, R., Zou, C., Chen, B. & Wu, C. D. (2013). Chem. Eur. J. 19, 14886–14894.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, X. B., Lin, H., Xiao, Z. Y., Fan, W. D., Huang, A., Wang, R. M., Zhang, L. L. & Sun, D. F. (2016). Dalton Trans. 45, 3743–3749.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, D. M., Xie, Z. G., Ma, L. Q. & Lin, W. B. (2010). Inorg. Chem. 49, 9107–9109.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLuo, J. H., Hong, M. C., Wang, R. H., Cao, R., Han, L., Yuan, D. Q., Lin, Z. Z. & Zhou, Y. F. (2003). Inorg. Chem. 42, 4486–4488.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPan, L., Huang, X. Y., Li, J., Wu, Y. G. & Zheng, N. W. (2000). Angew. Chem. 112, 537–540.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQin, C., Wang, X. L., Li, Y. G., Wang, E. B., Su, Z. M., Xu, L. & Clérac, R. (2005). Dalton Trans. pp. 2609–2614.  Web of Science CSD CrossRef Google Scholar
First citationRosi, N. L., Eckert, J., Eddaoudi, M., Vodak, M. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, D. M., Lee, I. S., Chung, Y. K. & Lah, M. S. (2003). Inorg. Chem. 42, 5459–5461.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, X. L., Qin, C., Wang, E. B., Li, Y. G., Hao, N., Hu, C. & Xu, L. (2004). Inorg. Chem. 43, 1850–1856.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, G. X., Zhang, Q. W. & Wen, Y. H. (2014). Chinese J. Inorg. Chem. 30, 2571–2576.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoon, M., Srirambalaji, R. & Kim, K. (2012). Chem. Rev. 112, 1196–1231.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZheng, X. Y., Ye, L. & Wen, Y. H. (2011). J. Mol. Struct. 987, 132–137.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds