research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and C—H⋯F hydrogen bonding in the fluorinated bis-benzoxazine: 3,3′-(ethane-1,2-di­yl)bis­­(6-fluoro-3,4-di­hydro-2H-1,3-benzoxazine)

CROSSMARK_Color_square_no_text.svg

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Strasse, 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by J. Simpson, University of Otago, New Zealand (Received 14 September 2016; accepted 28 September 2016; online 30 September 2016)

The title fluorinated bis­benzoxazine, C18H18F2N2O2, crystallizes with one half-mol­ecule in the asymmetric unit, which is completed by inversion symmetry. The fused oxazine ring adopts an approximately half-chair conformation. The two benzoxazine rings are oriented anti to one another around the central C—C bond. The dominant inter­molecular inter­action in the crystal structure is a C—H⋯F hydrogen bond between the F atoms and the axial H atoms of the OCH2N methyl­ene group in the oxazine rings of neighbouring mol­ecules. C—H⋯π contacts further stabilize the crystal packing.

1. Chemical context

Even though benzoxazines have been known for more than 60 years, a cursory look at the literature cited in relation to the polybenzoxazines in recent years reveals increasing inter­est in polybenzoxazine chemistry (Demir et al., 2013[Demir, K. D., Kiskan, B., Aydogan, B. & Yagci, Y. (2013). React. Funct. Polym. 73, 346-359.]). Mannich condensation of a phenol and a primary amine with formaldehyde is perhaps the best synthetic route widely employed for the preparation of a variety of benzoxazine monomers. Mono-functional benzoxazines with one oxazine ring yield linear polymers, while bi- and polyfunctional benzoxazines produce cross-linked polymers. As a result, many kinds of benzoxazine monomers, including both mono-benzoxazines and bis-benzoxazines, have been synthesized. For composite applications, bifunctional benzoxazines are important as they produce fillers with good adhesion properties that in turn give high modulus composite materials (Santhosh-Kumar & Reghunadhan-Nair, 2014[Santhosh-Kumar, K. S. & Reghunadhan-Nair, C. P. (2014). 3-Polybenzoxazine - new generation phenolics, in Handbook of Thermoset Plastics, 3rd ed., edited by H. Dodiuk & S. H. Goodman, pp. 45-73. Amsterdam: Elsevier Inc.]).

[Scheme 1]

Much work in our group has been directed at the synthesis of a wide variety of bis-benzoxazines from ethyl­endi­amine, formaldehyde and phenols in the molar ratio of 1:4:2 using a conventional method and solvent-free conditions (Rivera et al., 1989[Rivera, A., Aguilar, Z., Clavijo, D. & Joseph-Nathan, P. (1989). An. Quim. Ser. C, 85, 9-10]). Recently, we have also investigated the crystal structures of several bis-benzoxazines namely 3,3′-(ethane-1,2-di­yl)bis­(6-substituted-3,4-di­hydro-2H-1,3-benzoxazine) derivatives (Rivera et al., 2010[Rivera, A., Rojas, J. J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o1134.], 2011[Rivera, A., Camacho, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2028.], 2012a[Rivera, A., Camacho, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o148.],b[Rivera, A., Camacho, J., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2012b). Acta Cryst. E68, o2734.]). These were prepared to determine whether replacement of the substit­uents at the para position of the phenol affects the mol­ecular conformation and possible supra­molecular aggregation. In this context, the title compound is a model for studying non-conventional mol­ecular inter­actions where the halogen atom may act as a hydrogen-bond acceptor. Although debate has surrounded the role of fluorine as a hydrogen-bond (HB) acceptor, the presence of such weak mol­ecular inter­actions in the solid state has been the subject of both theoretical and spectroscopic studies (Dalvit & Vulpetti, 2016[Dalvit, C. & Vulpetti, A. (2016). Chem. Eur. J. 22, 7592-7601.]). However, to the best of our knowledge, there are few examples of X-ray studies. On the other hand, polymers containing fluorinated aromatic systems often exhibit exceptional thermal stability and show good water-repellent properties (Su & Chang, 2003[Su, Y. C. & Chang, F. C. (2003). Polymer, 44, 7989-7996.]). Therefore we report herein the crystal structure of 3,3′-(ethane-1,2-di­yl)bis­(6-fluoro-3,4-di­hydro-2H-1,3-benzoxazine) (I)[link], which is a very good candidate as a monomer for the investigation of the polymerization of fluorine-containing bis-benzoxazine monomers.

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The asymmetric unit contains one-half of the formula unit; a centre of inversion located at the mid-point of the central C1—C1i bond generates the other half of the bis-benzoxazine compound [symmetry code: (i) 1 − x, 1 − y, 1 − z]. Bond lengths in the benzoxazine moiety in (I)[link] are within normal ranges and are comparable to those found in related structures (Rivera et al., 2012a[Rivera, A., Camacho, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o148.],b[Rivera, A., Camacho, J., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2012b). Acta Cryst. E68, o2734.], 2011[Rivera, A., Camacho, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2028.]; Chen & Wu, 2007[Chen, X.-L. & Wu, M.-H. (2007). Acta Cryst. E63, o3684.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Atoms labelled with the suffix A are generated using the symmetry operator (−x + 1, −y + 1, −z + 1).

The fused six-membered heterocyclic rings exist in an approximately half-chair conformation, characterized by a puckering amplitude Q = 0.4913 (15) Å, and θ = 52.03 (17)° and φ = 98.3 (2)°, with C2 and N1 displaced from the mean plane by −0.299 (2) and 0.331 (1) Å, respectively. The C1—C1A bond is in an axial position with a C5—N1—C1—C1A torsion angle of 75.45 (18)°. The two benzoxazine rings are oriented anti to one another about the central C1—C1A bond, with an N1—C1—C1A—N1A torsion angle of 180.0 (2)°.

3. Supra­molecular features

The packing of title compound is dominated by C2—H2A⋯F1 hydrogen bonds (Table 1[link]), that connect the mol­ecules into a sheet structure, Fig. 2[link]. Symmetry dictates that both F atoms are involved in these hydrogen bonds. The crystal structure also features two weak C—H⋯π inter­actions (Table 1[link]), as indicated in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), with C—H⋯Cg distances of 3.527 (2) and 3.577 (2) Å and with C—H⋯Cg angles of 126 and 129°, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C3/C4/C6/C7/C8/C9 ring

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯F1i 0.99 2.44 3.300 (2) 145
C6—H6⋯Cg2ii 0.95 2.88 3.527 (2) 126
C9—H9⋯Cg2iii 0.95 2.90 3.577 (2) 129
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Packing diagram for title compound, viewed along the b axis. C—H⋯F and C—F⋯π contacts are drawn as dashed lines.

4. Database survey

A database search yielded four comparable structures, 3,3′-(ethane-1,2-diyl)bis(6-methyl-3,4-di­hydro-2H-1,3-benzoxazine) (AXAKAM; Rivera et al., 2011[Rivera, A., Camacho, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2028.]), 3,3′-ethyl­enebis(3,4-di­hydro-6-chloro-2H-1,3-benzoxazine) (NUQKAM; Rivera et al., 2010[Rivera, A., Rojas, J. J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o1134.]), 3,3′-(ethane-1,2-di­yl)-bis­(6-meth­oxy-3,4-di­hydro-2H-1,3-benzoxazine) monohydrate (QEDDOU; Rivera et al., 2012b[Rivera, A., Camacho, J., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2012b). Acta Cryst. E68, o2734.]), and 3,3′-(ethane-1,2-diyl)bis(3,4-di­hydro-2H-1,3-benz­oxazine) (SAGPUN; Rivera et al., 2012a[Rivera, A., Camacho, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o148.]).

5. Synthesis and crystallization

The title compound was synthesized according to the literature procedure (Rivera et al.,1989[Rivera, A., Aguilar, Z., Clavijo, D. & Joseph-Nathan, P. (1989). An. Quim. Ser. C, 85, 9-10]), and single crystals were obtained by slow evaporation from an ethyl acetate/benzene 1:3 solvent mixture at room temperature.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference electron-density maps. C-bound H atoms were fixed geometrically (C—H = 0.95 or 0.99 Å) and refined using a riding-model approximation, with Uiso(H) set to 1.2Ueq of the parent atom.

Table 2
Experimental details

Crystal data
Chemical formula C18H18F2N2O2
Mr 332.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 7.0242 (6), 6.2316 (6), 17.1574 (15)
β (°) 91.473 (7)
V3) 750.77 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.17 × 0.13 × 0.04
 
Data collection
Diffractometer Stoe IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.362, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7746, 1532, 1285
Rint 0.036
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.08
No. of reflections 1532
No. of parameters 109
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.16
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

3,3'-(Ethane-1,2-diyl)bis(6-fluoro-3,4-dihydro-2H-1,3-benzoxazine) top
Crystal data top
C18H18F2N2O2F(000) = 348
Mr = 332.34Dx = 1.470 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.0242 (6) ÅCell parameters from 7746 reflections
b = 6.2316 (6) Åθ = 3.5–27.8°
c = 17.1574 (15) ŵ = 0.11 mm1
β = 91.473 (7)°T = 173 K
V = 750.77 (12) Å3Plate, colourless
Z = 20.17 × 0.13 × 0.04 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
1285 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.036
ω scansθmax = 26.4°, θmin = 3.5°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 88
Tmin = 0.362, Tmax = 1.000k = 77
7746 measured reflectionsl = 2021
1532 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.1464P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1532 reflectionsΔρmax = 0.18 e Å3
109 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.80087 (14)0.60837 (18)0.86796 (5)0.0408 (3)
O10.69940 (16)0.06550 (17)0.61834 (6)0.0293 (3)
N10.73058 (17)0.3605 (2)0.52754 (7)0.0256 (3)
C10.5232 (2)0.3961 (2)0.52148 (8)0.0260 (3)
H1A0.47060.40200.57440.031*
H1B0.46240.27430.49340.031*
C20.7756 (2)0.1410 (3)0.54504 (9)0.0294 (4)
H2A0.91580.12420.54710.035*
H2B0.72490.04930.50220.035*
C30.72790 (19)0.2069 (2)0.67944 (8)0.0237 (3)
C40.79289 (19)0.4168 (2)0.66810 (8)0.0228 (3)
C50.8283 (2)0.4965 (3)0.58624 (8)0.0267 (3)
H5A0.78200.64590.58090.032*
H5B0.96680.49610.57700.032*
C60.81932 (19)0.5507 (3)0.73252 (8)0.0250 (3)
H60.86470.69310.72630.030*
C70.7786 (2)0.4732 (3)0.80519 (8)0.0273 (3)
C80.7114 (2)0.2675 (3)0.81752 (9)0.0293 (4)
H80.68370.21930.86850.035*
C90.6854 (2)0.1337 (3)0.75374 (9)0.0269 (3)
H90.63860.00790.76060.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0442 (6)0.0526 (7)0.0255 (5)0.0053 (5)0.0007 (4)0.0122 (4)
O10.0393 (6)0.0227 (6)0.0258 (6)0.0001 (4)0.0008 (4)0.0013 (4)
N10.0251 (6)0.0299 (7)0.0217 (6)0.0008 (5)0.0008 (4)0.0007 (5)
C10.0248 (7)0.0289 (8)0.0243 (7)0.0015 (6)0.0006 (5)0.0018 (6)
C20.0338 (8)0.0310 (8)0.0233 (7)0.0046 (6)0.0025 (6)0.0032 (6)
C30.0227 (7)0.0253 (8)0.0231 (7)0.0034 (6)0.0003 (5)0.0000 (6)
C40.0202 (6)0.0264 (8)0.0220 (7)0.0014 (5)0.0008 (5)0.0018 (6)
C50.0273 (7)0.0296 (8)0.0232 (7)0.0033 (6)0.0000 (5)0.0032 (6)
C60.0210 (6)0.0269 (8)0.0271 (7)0.0004 (5)0.0000 (5)0.0003 (6)
C70.0245 (7)0.0351 (9)0.0223 (7)0.0020 (6)0.0019 (5)0.0057 (6)
C80.0262 (7)0.0399 (9)0.0218 (7)0.0026 (6)0.0036 (6)0.0059 (7)
C90.0252 (7)0.0269 (8)0.0287 (8)0.0014 (6)0.0024 (6)0.0060 (6)
Geometric parameters (Å, º) top
F1—C71.3731 (17)C3—C41.401 (2)
O1—C31.3803 (18)C4—C61.393 (2)
O1—C21.4574 (18)C4—C51.5161 (19)
N1—C21.434 (2)C5—H5A0.9900
N1—C51.4721 (19)C5—H5B0.9900
N1—C11.4746 (18)C6—C71.374 (2)
C1—C1i1.522 (3)C6—H60.9500
C1—H1A0.9900C7—C81.384 (2)
C1—H1B0.9900C8—C91.384 (2)
C2—H2A0.9900C8—H80.9500
C2—H2B0.9900C9—H90.9500
C3—C91.393 (2)
C3—O1—C2113.57 (12)C6—C4—C5121.16 (14)
C2—N1—C5108.03 (12)C3—C4—C5119.75 (13)
C2—N1—C1111.72 (12)N1—C5—C4111.15 (12)
C5—N1—C1113.84 (12)N1—C5—H5A109.4
N1—C1—C1i111.15 (14)C4—C5—H5A109.4
N1—C1—H1A109.4N1—C5—H5B109.4
C1i—C1—H1A109.4C4—C5—H5B109.4
N1—C1—H1B109.4H5A—C5—H5B108.0
C1i—C1—H1B109.4C7—C6—C4118.88 (15)
H1A—C1—H1B108.0C7—C6—H6120.6
N1—C2—O1113.88 (12)C4—C6—H6120.6
N1—C2—H2A108.8F1—C7—C6118.28 (15)
O1—C2—H2A108.8F1—C7—C8118.74 (13)
N1—C2—H2B108.8C6—C7—C8122.95 (14)
O1—C2—H2B108.8C7—C8—C9118.40 (13)
H2A—C2—H2B107.7C7—C8—H8120.8
O1—C3—C9117.09 (14)C9—C8—H8120.8
O1—C3—C4122.16 (13)C8—C9—C3119.93 (15)
C9—C3—C4120.75 (14)C8—C9—H9120.0
C6—C4—C3119.07 (13)C3—C9—H9120.0
C2—N1—C1—C1i161.85 (15)C1—N1—C5—C475.31 (15)
C5—N1—C1—C1i75.45 (18)C6—C4—C5—N1160.16 (12)
C5—N1—C2—O165.92 (15)C3—C4—C5—N118.20 (18)
C1—N1—C2—O160.03 (16)C3—C4—C6—C70.8 (2)
C3—O1—C2—N145.71 (17)C5—C4—C6—C7177.62 (13)
C2—O1—C3—C9170.60 (12)C4—C6—C7—F1178.47 (12)
C2—O1—C3—C410.67 (19)C4—C6—C7—C80.3 (2)
O1—C3—C4—C6179.71 (12)F1—C7—C8—C9178.65 (13)
C9—C3—C4—C61.6 (2)C6—C7—C8—C90.5 (2)
O1—C3—C4—C51.9 (2)C7—C8—C9—C30.4 (2)
C9—C3—C4—C5176.79 (13)O1—C3—C9—C8179.82 (13)
C2—N1—C5—C449.39 (15)C4—C3—C9—C81.4 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C3/C4/C6/C7/C8/C9 ring
D—H···AD—HH···AD···AD—H···A
C2—H2A···F1ii0.992.443.300 (2)145
C6—H6···Cg2iii0.952.883.527 (2)126
C9—H9···Cg2iv0.952.903.577 (2)129
Symmetry codes: (ii) x+2, y1/2, z+3/2; (iii) x+2, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work (research project No. 28427). JJR is also grateful to COLCIENCIAS for his doctoral scholarship.

References

First citationChen, X.-L. & Wu, M.-H. (2007). Acta Cryst. E63, o3684.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDalvit, C. & Vulpetti, A. (2016). Chem. Eur. J. 22, 7592–7601.  CrossRef CAS PubMed Google Scholar
First citationDemir, K. D., Kiskan, B., Aydogan, B. & Yagci, Y. (2013). React. Funct. Polym. 73, 346–359.  CrossRef CAS Google Scholar
First citationRivera, A., Aguilar, Z., Clavijo, D. & Joseph-Nathan, P. (1989). An. Quim. Ser. C, 85, 9–10  CAS Google Scholar
First citationRivera, A., Camacho, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o148.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Camacho, J., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2012b). Acta Cryst. E68, o2734.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Camacho, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2028.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Rojas, J. J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o1134.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSanthosh-Kumar, K. S. & Reghunadhan-Nair, C. P. (2014). 3-Polybenzoxazine – new generation phenolics, in Handbook of Thermoset Plastics, 3rd ed., edited by H. Dodiuk & S. H. Goodman, pp. 45–73. Amsterdam: Elsevier Inc.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSu, Y. C. & Chang, F. C. (2003). Polymer, 44, 7989–7996.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds