research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N,N′-bis­­(pyridin-4-ylmeth­yl)cyclo­hexane-1,4-di­ammonium dichloride dihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bDepartment of Science Education, Kyungnam University, Changwon 51767, Republic of Korea, and cResearch institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: dh2232@kyungnam.ac.kr, kmpark@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 14 September 2016; accepted 15 September 2016; online 23 September 2016)

Treatment of N,N-bis­(pyridin-4-ylmeth­yl)cyclo­hexane-1,4-di­amine with hydro­chloric acid in ethanol led to the formation of the title salt, C18H26N42+·2Cl·2H2O, which lies about a crystallographic inversion center at the center of the cyclo­hexyl ring. The asymmetric unit therefore comprises one half of the N,N-bis­(pyridin-4-ylmeth­yl)cyclo­hexane-1,4-di­ammonium dication, a chloride anion, and a solvent water mol­ecule. In the dication, the two trans-(4-pyridine)–CH2–NH2– moieties occupy equatorial sites at the 1- and 4-positions of the central cyclo­hexyl ring, which is in a chair conformation. The terminal pyridine ring is tilted by 27.98 (5)° with respect to the mean plane of the central cyclo­hexyl moiety (r.m.s. deviation = 0.2379 Å). In the crystal, dications, anions, and solvent water mol­ecules are connected via N/C/O—H⋯Cl and N—H⋯O hydrogen bonds together with C—H⋯π inter­actions, forming a three-dimensional network.

1. Chemical context

An enormous number of metal–organic frameworks (MOFs) have been developed over the last two decades because of their attractive topologies and their desirable applications in a wide range of fields (Silva et al., 2015[Silva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774-6803.]; Furukawa et al., 2014[Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. (2014). Chem. Soc. Rev. 43, 5700-5734.]). For the development of these MOFs, many chemists have designed and prepared various dipyridyl-type ligands (Robin & Fromm, 2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]; Robson, 2008[Robson, R. (2008). Dalton Trans. pp. 5113-5131.]; Leong & Vittal, 2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]). Our group has also focused on the search for extended dipyridyl-type ligands with a bulky central section for the development of MOFs with intriguing topologies or useful properties. As a part of our ongoing efforts, we prepared just such a dipyridyl-type ligand with a central cyclo­hexyl moiety, namely N,N-bis­(pyridin-4-ylmeth­yl)cyclo­hexane-1,4-di­amine, synthesized by a condensation reaction between 1,4-cyclo­hexa­nedi­amine and 4-pyridine­carboxaldehyde according to a literature procedure (Huh & Lee, 2007[Huh, H. S. & Lee, S. W. (2007). Inorg. Chem. Commun. 10, 1244-1248.]). Herein we report on the crystal structure of the title salt obtained by the protonation of both amine groups in this mol­ecule.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the centrosymmetric title salt, C18H26N42+.2Cl−.2H2O, comprises one half of N,N-bis­(pyridin-4-ylmeth­yl)cyclo­hexane-1,4-di­ammonium dication, a chloride anion and a solvent water mol­ecule (Fig. 1[link]) due to the crystallographic inversion center located at the center of the cyclo­hexyl ring. The central cyclo­hexyl moiety of the dication adopts a chair conformation. The two trans-(4-pyridine)–CH2–NH2– moieties at the 1- and 4-positions of the central cyclo­hexyl ring occupy equatorial positions. The terminal pyridine ring is tilted by 27.98 (5)° with respect to the mean plane through the central cyclo­hexyl moiety (r.m.s. deviation = 0.2379 Å). The distance between the two terminal pyridine nitro­gen atoms in the dication is 15.864 (2) Å. This is slightly shorter than the N⋯N separation [15.970 (3) Å] in the dication ligand of a one-dimensional zigzag-like CoII coordination polymer built up from alternate CoII ions and the dication of the title salt (Lee & Lee, 2010[Lee, K.-E. & Lee, S. W. (2010). J. Mol. Struct. 975, 247-255.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title salt with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and yellow dashed lines represent the inter­molecular N—H⋯O and N—H⋯Cl hydrogen bonds. [Symmetry code: (i) −x + 1, −y + 1, −z + 2.]

3. Supra­molecular features

In the crystal, adjacent dications are linked by weak C—H⋯π inter­actions, Table 1[link] (light-blue dashed lines in Figs. 2[link] and 3[link]), resulting in the formation of a two-dimensional undulating layer-like structure extending parallel to the bc plane. The undulating layer is further stabilized by N—H⋯O/Cl and C—H⋯Cl hydrogen bonds (yellow dashed lines in Fig. 2[link]) between the dications and the solvent water mol­ecules/chloride anions, respectively. Furthermore, neighboring undulating layers are connected through O—H⋯N hydrogen bonds (black dashed lines in Fig. 3[link]) between the solvent water mol­ecules and the pyridine nitro­gen atoms, forming a three-dimensional supra­molecular network. In addition, O—H⋯Cl hydrogen bonds (Fig. 1[link] and Table 1[link]) between the solvent water mol­ecules and the chloride anions are also found in the crystal.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N2/C5–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O1W 0.878 (18) 1.881 (18) 2.7456 (15) 168.1 (16)
N1—H1NB⋯Cl1 0.952 (17) 2.167 (18) 3.1166 (11) 174.8 (13)
C4—H4A⋯Cl1i 0.99 2.64 3.6133 (13) 168
C4—H4B⋯Cl1ii 0.99 2.64 3.5788 (13) 158
O1W—H1WA⋯Cl1iii 0.78 (2) 2.37 (2) 3.1444 (11) 170.8 (18)
O1W—H1WB⋯N2iv 0.86 (2) 1.99 (2) 2.8242 (15) 161 (2)
C8—H8⋯Cg1v 0.95 2.74 3.3882 (15) 126
Symmetry codes: (i) x, y, z-1; (ii) -x, -y+1, -z+2; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x+1, y, z; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The two-dimensional undulating layer formed through inter­molecular C—H⋯π inter­actions (light-blue dashed lines) and N—H⋯O/Cl and C—H⋯Cl hydrogen bonds (yellow dashed lines). H atoms not involved in inter­molecular inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
The three-dimensional supra­molecular network formed through inter­molecular N—H⋯O hydrogen bonds (black dashed lines). Inter­molecular C—H⋯π inter­actions, and N—H⋯O/Cl and C—H⋯Cl hydrogen bonds within the two-dimensional undulating layer are shown as light-blue and yellow dashed lines, respectively. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

4. Synthesis and crystallization

2 M hydro­chloric acid in ethanol was added to an ethanol solution of N,N-bis­(pyridin-4-yl­methyl­ene)cyclo­hexane-1,4-di­amine, synthesized according to a literature method (Huh & Lee, 2007[Huh, H. S. & Lee, S. W. (2007). Inorg. Chem. Commun. 10, 1244-1248.]), until pH = 4-5. The resulting mixture was left to evaporate slowly over several days, resulting in the formation of X-ray quality single crystals of the title salt.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were positioned geometrically with d(C–H) = 0.95 Å for Csp2—H, 0.99 Å for methyl­ene, 1.00 Å for methine H atoms, and were refined as riding with Uiso(H) = 1.2Ueq(C). The N- and O-bound H atoms involved in hydrogen bonding were located in difference Fourier maps and refined freely [N—H = 0.878 (18) and 0.952 (17) Å; O—H = 0.78 (2) and 0.86 (2) Å].

Table 2
Experimental details

Crystal data
Chemical formula C18H26N42+·2Cl·2H2O
Mr 405.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 8.2739 (2), 17.4955 (5), 7.2365 (2)
β (°) 108.756 (1)
V3) 991.90 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.45 × 0.38 × 0.28
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.663, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9616, 2475, 2199
Rint 0.026
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.04
No. of reflections 2475
No. of parameters 134
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N,N'-Bis(pyridin-4-ylmethyl)cyclohexane-1,4-diammonium dichloride dihydrate top
Crystal data top
C18H26N42+·2(Cl)·2H2OF(000) = 432
Mr = 405.36Dx = 1.357 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2739 (2) ÅCell parameters from 4837 reflections
b = 17.4955 (5) Åθ = 2.6–28.3°
c = 7.2365 (2) ŵ = 0.35 mm1
β = 108.756 (1)°T = 173 K
V = 991.90 (5) Å3Block, colourless
Z = 20.45 × 0.38 × 0.28 mm
Data collection top
Bruker APEXII CCD
diffractometer
2199 reflections with I > 2σ(I)
φ and ω scansRint = 0.026
Absorption correction: multi-scan
(SADABS; Bruker 2013)
θmax = 28.4°, θmin = 2.6°
Tmin = 0.663, Tmax = 0.746h = 1011
9616 measured reflectionsk = 2318
2475 independent reflectionsl = 79
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.3432P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2475 reflectionsΔρmax = 0.33 e Å3
134 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16235 (4)0.40135 (2)1.27614 (5)0.02515 (11)
N10.21335 (12)0.39798 (6)0.86785 (16)0.0163 (2)
H1NA0.243 (2)0.3529 (10)0.836 (2)0.029 (4)*
H1NB0.198 (2)0.3956 (9)0.993 (3)0.027 (4)*
N20.38725 (13)0.28164 (7)0.67407 (17)0.0249 (3)
C10.48104 (14)0.58254 (7)0.96734 (19)0.0195 (3)
H1A0.50160.58820.84060.023*
H1B0.45820.63391.01050.023*
C20.32520 (14)0.53131 (7)0.94108 (19)0.0193 (3)
H2A0.29810.52921.06470.023*
H2B0.22540.55300.83900.023*
C30.36023 (14)0.45089 (7)0.88272 (17)0.0162 (2)
H30.37910.45320.75310.019*
C40.05169 (14)0.42138 (7)0.71776 (18)0.0195 (3)
H4A0.06880.42170.58850.023*
H4B0.02330.47410.74600.023*
C50.09626 (14)0.36983 (7)0.70865 (17)0.0172 (2)
C60.25944 (15)0.39624 (7)0.60508 (18)0.0202 (3)
H60.27430.44510.54460.024*
C70.39921 (15)0.35070 (8)0.59139 (19)0.0228 (3)
H70.50940.36940.51960.027*
C80.23028 (16)0.25662 (8)0.7712 (2)0.0259 (3)
H80.21910.20730.82910.031*
C90.08246 (15)0.29821 (8)0.79263 (19)0.0221 (3)
H90.02610.27780.86380.027*
O1W0.28682 (13)0.26372 (6)0.71524 (16)0.0265 (2)
H1WA0.263 (2)0.2234 (13)0.743 (3)0.043 (6)*
H1WB0.388 (3)0.2576 (12)0.707 (3)0.056 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02915 (18)0.02300 (19)0.02559 (18)0.00706 (12)0.01200 (13)0.00199 (12)
N10.0129 (4)0.0159 (5)0.0193 (5)0.0018 (4)0.0040 (4)0.0008 (4)
N20.0176 (5)0.0311 (6)0.0261 (6)0.0060 (4)0.0073 (4)0.0029 (5)
C10.0153 (5)0.0144 (6)0.0260 (6)0.0004 (4)0.0027 (5)0.0002 (5)
C20.0131 (5)0.0156 (6)0.0275 (6)0.0000 (4)0.0042 (4)0.0017 (5)
C30.0129 (5)0.0158 (6)0.0197 (6)0.0025 (4)0.0049 (4)0.0009 (4)
C40.0137 (5)0.0208 (6)0.0214 (6)0.0016 (4)0.0021 (4)0.0027 (5)
C50.0154 (5)0.0204 (6)0.0161 (5)0.0022 (4)0.0052 (4)0.0044 (5)
C60.0186 (6)0.0201 (6)0.0202 (6)0.0007 (5)0.0040 (4)0.0024 (5)
C70.0147 (5)0.0288 (7)0.0237 (6)0.0005 (5)0.0044 (4)0.0051 (5)
C80.0226 (6)0.0269 (7)0.0272 (7)0.0053 (5)0.0068 (5)0.0041 (5)
C90.0158 (5)0.0251 (7)0.0234 (6)0.0015 (5)0.0034 (5)0.0030 (5)
O1W0.0232 (5)0.0182 (5)0.0418 (6)0.0017 (4)0.0155 (4)0.0001 (4)
Geometric parameters (Å, º) top
N1—C41.4839 (15)C3—H31.0000
N1—C31.5037 (14)C4—C51.5047 (16)
N1—H1NA0.878 (18)C4—H4A0.9900
N1—H1NB0.952 (17)C4—H4B0.9900
N2—C81.3361 (17)C5—C91.3812 (18)
N2—C71.3378 (18)C5—C61.3955 (16)
C1—C3i1.5257 (16)C6—C71.3814 (17)
C1—C21.5311 (16)C6—H60.9500
C1—H1A0.9900C7—H70.9500
C1—H1B0.9900C8—C91.3883 (17)
C2—C31.5234 (17)C8—H80.9500
C2—H2A0.9900C9—H90.9500
C2—H2B0.9900O1W—H1WA0.78 (2)
C3—C1i1.5257 (16)O1W—H1WB0.86 (2)
C4—N1—C3113.58 (9)C1i—C3—H3108.9
C4—N1—H1NA108.5 (11)N1—C4—C5113.32 (10)
C3—N1—H1NA106.7 (11)N1—C4—H4A108.9
C4—N1—H1NB110.1 (10)C5—C4—H4A108.9
C3—N1—H1NB108.0 (10)N1—C4—H4B108.9
H1NA—N1—H1NB109.9 (14)C5—C4—H4B108.9
C8—N2—C7116.79 (11)H4A—C4—H4B107.7
C3i—C1—C2111.21 (10)C9—C5—C6117.74 (11)
C3i—C1—H1A109.4C9—C5—C4124.99 (11)
C2—C1—H1A109.4C6—C5—C4117.26 (11)
C3i—C1—H1B109.4C7—C6—C5119.38 (12)
C2—C1—H1B109.4C7—C6—H6120.3
H1A—C1—H1B108.0C5—C6—H6120.3
C3—C2—C1110.33 (9)N2—C7—C6123.30 (12)
C3—C2—H2A109.6N2—C7—H7118.3
C1—C2—H2A109.6C6—C7—H7118.3
C3—C2—H2B109.6N2—C8—C9124.02 (13)
C1—C2—H2B109.6N2—C8—H8118.0
H2A—C2—H2B108.1C9—C8—H8118.0
N1—C3—C2111.53 (9)C5—C9—C8118.76 (12)
N1—C3—C1i107.82 (9)C5—C9—H9120.6
C2—C3—C1i110.72 (10)C8—C9—H9120.6
N1—C3—H3108.9H1WA—O1W—H1WB104 (2)
C2—C3—H3108.9
C3i—C1—C2—C356.73 (15)C9—C5—C6—C70.35 (18)
C4—N1—C3—C261.58 (13)C4—C5—C6—C7179.52 (12)
C4—N1—C3—C1i176.66 (10)C8—N2—C7—C61.06 (19)
C1—C2—C3—N1176.51 (10)C5—C6—C7—N20.4 (2)
C1—C2—C3—C1i56.44 (15)C7—N2—C8—C91.0 (2)
C3—N1—C4—C5177.89 (10)C6—C5—C9—C80.41 (19)
N1—C4—C5—C914.96 (18)C4—C5—C9—C8179.51 (12)
N1—C4—C5—C6165.94 (11)N2—C8—C9—C50.3 (2)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2/C5–C9 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O1W0.878 (18)1.881 (18)2.7456 (15)168.1 (16)
N1—H1NB···Cl10.952 (17)2.167 (18)3.1166 (11)174.8 (13)
C4—H4A···Cl1ii0.992.643.6133 (13)168
C4—H4B···Cl1iii0.992.643.5788 (13)158
O1W—H1WA···Cl1iv0.78 (2)2.37 (2)3.1444 (11)170.8 (18)
O1W—H1WB···N2v0.86 (2)1.99 (2)2.8242 (15)161 (2)
C8—H8···Cg1vi0.952.743.3882 (15)126
Symmetry codes: (ii) x, y, z1; (iii) x, y+1, z+2; (iv) x, y+1/2, z1/2; (v) x+1, y, z; (vi) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) project (2015R1D1A3A01020410).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFurukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. (2014). Chem. Soc. Rev. 43, 5700–5734.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHuh, H. S. & Lee, S. W. (2007). Inorg. Chem. Commun. 10, 1244–1248.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, K.-E. & Lee, S. W. (2010). J. Mol. Struct. 975, 247–255.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationRobson, R. (2008). Dalton Trans. pp. 5113–5131.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774–6803.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds