research communications
Crystal structures of 2-acetyl-4-ethynylphenol and 2-acetyl-4-(3-hydroxy-3-methylbut-1-yn-1-yl)phenol
aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie-tu.freiberg.de
In the title compounds, C10H8O2, (I), and C13H14O3, (II), the 2-acetyl-4-ethynylphenol unit displays a planar geometry, which is stabilized by an intramolecular O—H⋯O hydrogen bond. The of (I) is constructed of infinite strands, along [101], of C—H⋯O=C hydrogen-bonded molecules, which in turn are linked by C—H⋯π interactions. In the crystal of (II), which crystallized with three independent molecules per the non-polar parts of the molecules form hydrophobic layered domains, parallel to (10-1), which are separated by the polar groups. While the 2-acetylphenol part of the molecules are involved in O—H⋯O=C hydrogen bonding, the ternary OH groups creates a cyclic pattern of O—H⋯O hydrogen bonds.
1. Chemical context
2-Acetylphenol and its derivatives are well known for their efficiency in the complexation of transition metal ions (Weber, 1977; Duckworth & Stephenson, 1969; Ali et al., 2005). Such molecules, endowed with a 2-acetylphenol moiety, have been used as molecular linkers for the construction of coordination polymers and related porous framework structures (Hübscher et al., 2013; Günthel et al., 2015) that are the subject of great topical interest (MacGillivray, 2010; Furukawa et al., 2013; Eddaoudi et al., 2015). A corresponding linker design features a structure with terminal chelating 2-acetylphenol units attached to a linear central segment. In the course of the synthesis of respective linkers, the 2-acetylphenol derivatives (I) and (II), being substituted acetylenically in the 4-position, are important intermediates (Hübscher et al., 2013). However, these compounds are not only of experimental preparative relevance but also show interesting structures in the crystalline state, as discussed in the present communication.
2. Structural commentary
The crystal structures of the title compounds (I) and (II), crystallize in the space groups P and P21/c, respectively. Perspective views of the molecules are depicted in Fig. 1. In (I) the asymmetric part of the contains one molecule (Fig. 1a). As a result of the presence of an intramolecular O–H⋯O hydrogen bond, the molecule has an almost planar geometry with largest atomic distances from the mean plane being −0.034 (1) Å for atom C5 and 0.069 (1) Å for atom O1. Because of substituent effects, the bond distances within the aromatic ring of the molecule deviate significantly from those observed in the polymorphous structures of ethynylbenzene (Dziubek et al. 2007; Thakur et al. 2010). Compound (II) crystallizes with three independent and conformationally non-equivalent molecules in the The molecules differ in their geometries around the dimethylhydroxymethyl structural element. These differences are expressed by the torsion angle along the atomic sequences Cethynyl—C—O—H which are 72.1 (2) and 83.9 (2)° (gauche) for molecules 1 and 3 and 173.0 (2)° (anti) for molecule 2 (Fig. 1b). The ethynyl segment of the molecules also deviates from linearity, possibly because of packing forces and intermolecular interactions.
3. Supramolecular features
Infinite strands of C—H⋯O hydrogen-bonded molecules [d(H⋯O) 2.28 Å] (Desiraju & Steiner, 1999) running along [101] represent the basic supramolecular aggregates of the of (I). Within a given strand, the acetylenic hydrogen acts as a donor and the acyl oxygen as an acceptor site (Fig. 2 and Table 1). A view of the crystal packing reveals a layered arrangement of the molecular chains in the ac plane. As depicted in Fig. 2, the crystal of (I) lacks π–π arene stacking (Martinez & Iverson, 2012). Instead, the methyl hydrogen H8C forms a weak C—H⋯π contact [d(H⋯π) 2.72 Å; Table 1] (Nishio et al., 2009), which connects the chains of consecutive layers.
Because of the presence of a dimethylhydroxymethyl residue as a terminal group, the is composed of hexamers of O—H⋯O hydrogen-bonded molecules [d(H⋯O) 1.90, 1.99 Å], which create a cyclic hydrogen-bond motif of graph set R66(12) (Table 2 and Fig. 3). Furthermore, the hexamers are interconnected by weaker O—H⋯O hydrogen bonds involving the phenolic OH hydrogens H1 and H1A as donors and the acyl oxygen atoms O2A and O2B as acceptors [d(H⋯O) 2.60, 2.53 Å], forming layers parallel to (10). The molecules pack with the dimethylhydroxymethyl groups assembled in layered structure domains, separated by the non-polar parts of the molecules (Fig. 3).
of (II)
|
4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.37, update November 2015; Groom et al., 2016) for p-substituted 2-acetylphenols excluding their co-crystals and complexes yielded 23 hits, only two of them containing the 4-ethynyl-2-acetylphenol element, namely 1,1′-[1,4-phenylenebis(ethyne-2,1-diyl(6-hydroxy-3,1-phenylene)]diethanone and 1,1′-[ethyne-1,2-diylbis(6-hydroxy-3,1-phenylene)]diethanone [CSD refcodes: TEVLAJ and TEVLEN; Hübscher et al., 2013]. The presence of an acceptor instead of a donor substituent in p-position of the phenolic OH as in 4-cyano-2-acetophenol [LIWFUT; Filarowski et al., 2007)], 4-nitro-2-acetophenol [GADBAP; Hibbs et al., 2003)] and 4-chloro-2-acetophenol [DACGOE; Filarowski et al., 2004)] markedly influences the pattern of non-covalent intermolecular bonding. In the first two cases, the crystal is constructed of the same kind of molecular strands in which the molecules are linked via C—Harene⋯O=C bonding. Inter-strand association is accomplished by π–π stacking forces. In these structures, the p-substituents are excluded from intermolecular interactions. In the latter compound, the chlorine atom acts as a bifurcated acceptor for C—H⋯Cl bonding (Thallapally & Nangia, 2001), thus creating double strand-like supramolecular aggregates. Neither the OH nor the acetyl group are involved in intermolecular bonding.
5. Synthesis and crystallization
Compounds (I) and (II) were synthesized following a literature procedure (Hübscher et al., 2013). This involves the reaction of 2-acetyl-4-bromophenol with 2-methylbut-3-yn-2-ol (MEBYNOL) using a Sonogashira–Hagihara coupling process to give (II). A deblocking reaction of (II) under basic conditions yielded (I). Crystals of (I) and (II), suitable for X-ray were obtained from solutions of n-hexane/ethyl acetate (3:1, v/v) and cyclohexane, respectively, upon slow evaporation of the solvents at room temperature.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed geometrically in idealized positions and allowed to ride on their parent atoms: O—H = 0.84 and C—H = 0.95–98 Å with Uiso(H) = 1.5Ueq(C-methyl and O) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989016013451/su5317sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016013451/su5317Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989016013451/su5317IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016013451/su5317Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989016013451/su5317IIsup5.cml
For both compounds, data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C10H8O2 | Z = 2 |
Mr = 160.16 | F(000) = 168 |
Triclinic, P1 | Dx = 1.332 Mg m−3 |
a = 6.9725 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.3174 (1) Å | Cell parameters from 4876 reflections |
c = 8.9189 (2) Å | θ = 2.5–33.3° |
α = 69.241 (1)° | µ = 0.09 mm−1 |
β = 79.975 (1)° | T = 153 K |
γ = 70.127 (1)° | Irregular, colourless |
V = 399.42 (1) Å3 | 0.55 × 0.41 × 0.15 mm |
Bruker APEXII CCD area detector diffractometer | 1881 reflections with I > 2σ(I) |
phi and ω scans | Rint = 0.018 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 29.1°, θmin = 2.5° |
Tmin = 0.956, Tmax = 0.988 | h = −9→9 |
8959 measured reflections | k = −10→9 |
2133 independent reflections | l = −12→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.0597P)2 + 0.0965P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2133 reflections | Δρmax = 0.39 e Å−3 |
111 parameters | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.41916 (10) | 0.74175 (12) | 0.41955 (9) | 0.0302 (2) | |
H1 | 1.3947 | 0.7603 | 0.3254 | 0.045* | |
O2 | 1.20310 (12) | 0.78960 (13) | 0.19487 (9) | 0.0330 (2) | |
C1 | 1.24964 (13) | 0.73237 (14) | 0.51663 (11) | 0.0216 (2) | |
C2 | 1.06267 (13) | 0.75622 (13) | 0.45971 (10) | 0.01892 (19) | |
C3 | 0.89112 (13) | 0.75319 (13) | 0.56854 (10) | 0.01892 (19) | |
H3 | 0.7646 | 0.7693 | 0.5317 | 0.023* | |
C4 | 0.90292 (13) | 0.72710 (13) | 0.72934 (11) | 0.01990 (19) | |
C5 | 1.09230 (14) | 0.69865 (14) | 0.78338 (11) | 0.0229 (2) | |
H5 | 1.1027 | 0.6783 | 0.8933 | 0.027* | |
C6 | 1.26244 (14) | 0.70005 (15) | 0.67882 (12) | 0.0245 (2) | |
H6 | 1.3895 | 0.6788 | 0.7174 | 0.029* | |
C7 | 1.04995 (14) | 0.78735 (14) | 0.28831 (11) | 0.0219 (2) | |
C8 | 0.85185 (15) | 0.81574 (16) | 0.22710 (11) | 0.0260 (2) | |
H8A | 0.8665 | 0.8497 | 0.1099 | 0.039* | |
H8B | 0.7450 | 0.9274 | 0.2564 | 0.039* | |
H8C | 0.8142 | 0.6887 | 0.2748 | 0.039* | |
C9 | 0.72595 (14) | 0.73051 (15) | 0.83939 (11) | 0.0233 (2) | |
C10 | 0.58198 (16) | 0.73495 (18) | 0.93333 (12) | 0.0303 (2) | |
H10 | 0.4670 | 0.7385 | 1.0084 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0169 (3) | 0.0405 (4) | 0.0325 (4) | −0.0114 (3) | 0.0054 (3) | −0.0114 (3) |
O2 | 0.0275 (4) | 0.0478 (5) | 0.0258 (4) | −0.0153 (3) | 0.0108 (3) | −0.0163 (3) |
C1 | 0.0160 (4) | 0.0208 (4) | 0.0276 (5) | −0.0062 (3) | 0.0026 (3) | −0.0084 (3) |
C2 | 0.0178 (4) | 0.0195 (4) | 0.0200 (4) | −0.0062 (3) | 0.0015 (3) | −0.0075 (3) |
C3 | 0.0165 (4) | 0.0209 (4) | 0.0198 (4) | −0.0060 (3) | 0.0003 (3) | −0.0073 (3) |
C4 | 0.0188 (4) | 0.0204 (4) | 0.0197 (4) | −0.0055 (3) | 0.0005 (3) | −0.0066 (3) |
C5 | 0.0234 (4) | 0.0245 (4) | 0.0216 (4) | −0.0065 (3) | −0.0038 (3) | −0.0080 (3) |
C6 | 0.0186 (4) | 0.0268 (5) | 0.0299 (5) | −0.0069 (3) | −0.0049 (3) | −0.0093 (4) |
C7 | 0.0227 (4) | 0.0230 (4) | 0.0208 (4) | −0.0084 (3) | 0.0043 (3) | −0.0091 (3) |
C8 | 0.0269 (5) | 0.0333 (5) | 0.0207 (4) | −0.0104 (4) | 0.0005 (3) | −0.0117 (4) |
C9 | 0.0229 (4) | 0.0286 (5) | 0.0181 (4) | −0.0072 (3) | −0.0019 (3) | −0.0073 (3) |
C10 | 0.0241 (5) | 0.0454 (6) | 0.0199 (4) | −0.0100 (4) | 0.0018 (3) | −0.0107 (4) |
O1—C1 | 1.3447 (10) | C4—C9 | 1.4357 (12) |
O1—H1 | 0.8400 | C5—C6 | 1.3760 (13) |
O2—C7 | 1.2359 (11) | C5—H5 | 0.9500 |
C1—C6 | 1.3945 (13) | C6—H6 | 0.9500 |
C1—C2 | 1.4144 (12) | C7—C8 | 1.4954 (13) |
C2—C3 | 1.4043 (11) | C8—H8A | 0.9800 |
C2—C7 | 1.4776 (12) | C8—H8B | 0.9800 |
C3—C4 | 1.3915 (12) | C8—H8C | 0.9800 |
C3—H3 | 0.9500 | C9—C10 | 1.1896 (14) |
C4—C5 | 1.4081 (13) | C10—H10 | 0.9500 |
C1—O1—H1 | 109.5 | C4—C5—H5 | 119.6 |
O1—C1—C6 | 117.45 (8) | C5—C6—C1 | 120.47 (8) |
O1—C1—C2 | 122.56 (8) | C5—C6—H6 | 119.8 |
C6—C1—C2 | 119.99 (8) | C1—C6—H6 | 119.8 |
C3—C2—C1 | 118.61 (8) | O2—C7—C2 | 120.17 (8) |
C3—C2—C7 | 121.40 (8) | O2—C7—C8 | 119.66 (8) |
C1—C2—C7 | 119.98 (8) | C2—C7—C8 | 120.17 (8) |
C4—C3—C2 | 121.23 (8) | C7—C8—H8A | 109.5 |
C4—C3—H3 | 119.4 | C7—C8—H8B | 109.5 |
C2—C3—H3 | 119.4 | H8A—C8—H8B | 109.5 |
C3—C4—C5 | 118.87 (8) | C7—C8—H8C | 109.5 |
C3—C4—C9 | 121.18 (8) | H8A—C8—H8C | 109.5 |
C5—C4—C9 | 119.94 (8) | H8B—C8—H8C | 109.5 |
C6—C5—C4 | 120.77 (8) | C10—C9—C4 | 178.07 (10) |
C6—C5—H5 | 119.6 | C9—C10—H10 | 180.0 |
O1—C1—C2—C3 | −177.21 (8) | C9—C4—C5—C6 | −178.37 (8) |
C6—C1—C2—C3 | 2.03 (13) | C4—C5—C6—C1 | 0.82 (14) |
O1—C1—C2—C7 | 1.68 (14) | O1—C1—C6—C5 | 176.86 (8) |
C6—C1—C2—C7 | −179.08 (8) | C2—C1—C6—C5 | −2.41 (14) |
C1—C2—C3—C4 | −0.09 (13) | C3—C2—C7—O2 | 179.92 (8) |
C7—C2—C3—C4 | −178.96 (8) | C1—C2—C7—O2 | 1.07 (14) |
C2—C3—C4—C5 | −1.46 (13) | C3—C2—C7—C8 | −0.24 (13) |
C2—C3—C4—C9 | 178.01 (8) | C1—C2—C7—C8 | −179.09 (8) |
C3—C4—C5—C6 | 1.11 (14) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.84 | 1.83 | 2.5696 (11) | 146 |
C10—H10···O2i | 0.95 | 2.28 | 3.2214 (14) | 171 |
C8—H8C···Cg1ii | 0.97 | 2.72 | 3.6024 (12) | 150 |
Symmetry codes: (i) x−1, y, z+1; (ii) −x+2, −y+3, −z+1. |
C13H14O3 | F(000) = 1392 |
Mr = 218.24 | Dx = 1.252 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 22.5787 (6) Å | Cell parameters from 5422 reflections |
b = 16.9306 (4) Å | θ = 2.5–30.0° |
c = 9.2849 (2) Å | µ = 0.09 mm−1 |
β = 101.815 (1)° | T = 153 K |
V = 3474.15 (14) Å3 | Irregular, colourless |
Z = 12 | 0.36 × 0.18 × 0.09 mm |
Bruker APEXII CCD area detector diffractometer | 5584 reflections with I > 2σ(I) |
phi and ω scans | Rint = 0.043 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 29.1°, θmin = 1.5° |
Tmin = 0.969, Tmax = 0.992 | h = −30→30 |
37857 measured reflections | k = −22→15 |
9244 independent reflections | l = −12→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.117 | w = 1/[σ2(Fo2) + (0.0549P)2 + 0.7504P] where P = (Fo2 + 2Fc2)/3 |
S = 0.89 | (Δ/σ)max < 0.001 |
9244 reflections | Δρmax = 0.28 e Å−3 |
448 parameters | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.89700 (5) | 0.94178 (6) | 0.79757 (13) | 0.0366 (3) | |
H1 | 0.9285 | 0.9250 | 0.7731 | 0.055* | |
O2 | 0.96006 (5) | 0.84850 (7) | 0.67152 (12) | 0.0346 (3) | |
O3 | 0.56111 (4) | 0.64727 (5) | 0.60432 (10) | 0.0205 (2) | |
H3 | 0.5789 | 0.6073 | 0.6458 | 0.031* | |
C1 | 0.85079 (7) | 0.89274 (9) | 0.74568 (17) | 0.0269 (3) | |
C2 | 0.85610 (6) | 0.82660 (8) | 0.65630 (15) | 0.0211 (3) | |
C3 | 0.80510 (6) | 0.77861 (8) | 0.60989 (15) | 0.0215 (3) | |
H3A | 0.8082 | 0.7340 | 0.5498 | 0.026* | |
C4 | 0.75036 (7) | 0.79445 (9) | 0.64918 (17) | 0.0263 (3) | |
C5 | 0.74677 (7) | 0.86060 (11) | 0.7373 (2) | 0.0421 (5) | |
H5 | 0.7095 | 0.8724 | 0.7652 | 0.051* | |
C6 | 0.79568 (7) | 0.90872 (10) | 0.7843 (2) | 0.0431 (5) | |
H6 | 0.7919 | 0.9534 | 0.8438 | 0.052* | |
C7 | 0.91531 (7) | 0.80842 (9) | 0.61934 (16) | 0.0240 (3) | |
C8 | 0.92118 (7) | 0.74117 (9) | 0.51956 (17) | 0.0307 (4) | |
H8A | 0.9608 | 0.7434 | 0.4922 | 0.046* | |
H8B | 0.8892 | 0.7447 | 0.4307 | 0.046* | |
H8C | 0.9173 | 0.6912 | 0.5702 | 0.046* | |
C9 | 0.69681 (7) | 0.74734 (9) | 0.59880 (17) | 0.0268 (3) | |
C10 | 0.65027 (7) | 0.71275 (8) | 0.55868 (16) | 0.0249 (3) | |
C11 | 0.59180 (6) | 0.67451 (8) | 0.49244 (15) | 0.0203 (3) | |
C12 | 0.54963 (7) | 0.73505 (9) | 0.40490 (18) | 0.0314 (4) | |
H12A | 0.5115 | 0.7095 | 0.3593 | 0.047* | |
H12B | 0.5686 | 0.7576 | 0.3281 | 0.047* | |
H12C | 0.5417 | 0.7772 | 0.4707 | 0.047* | |
C13 | 0.60249 (7) | 0.60527 (9) | 0.39664 (17) | 0.0323 (4) | |
H13A | 0.6330 | 0.5700 | 0.4534 | 0.048* | |
H13B | 0.6168 | 0.6250 | 0.3106 | 0.048* | |
H13C | 0.5646 | 0.5762 | 0.3641 | 0.048* | |
O1A | 0.09288 (5) | 0.39654 (6) | 0.19886 (12) | 0.0314 (3) | |
H1A | 0.0606 | 0.4125 | 0.2208 | 0.047* | |
O2A | 0.02652 (5) | 0.48991 (6) | 0.31900 (12) | 0.0314 (3) | |
O3A | 0.44017 (4) | 0.60416 (6) | 0.48406 (11) | 0.0266 (2) | |
H3A1 | 0.4762 | 0.6151 | 0.5226 | 0.040* | |
C1A | 0.13877 (6) | 0.44376 (8) | 0.26152 (15) | 0.0223 (3) | |
C2A | 0.13134 (6) | 0.50939 (8) | 0.35040 (15) | 0.0201 (3) | |
C3A | 0.18251 (6) | 0.55480 (8) | 0.40964 (15) | 0.0218 (3) | |
H3A2 | 0.1782 | 0.5995 | 0.4685 | 0.026* | |
C4A | 0.23926 (6) | 0.53601 (8) | 0.38434 (16) | 0.0225 (3) | |
C5A | 0.24516 (7) | 0.47049 (8) | 0.29560 (16) | 0.0255 (3) | |
H5A | 0.2838 | 0.4572 | 0.2770 | 0.031* | |
C6A | 0.19582 (7) | 0.42545 (9) | 0.23548 (17) | 0.0278 (3) | |
H6A | 0.2006 | 0.3814 | 0.1755 | 0.033* | |
C7A | 0.07086 (6) | 0.52920 (8) | 0.37736 (16) | 0.0229 (3) | |
C8A | 0.06356 (7) | 0.59680 (9) | 0.47539 (17) | 0.0281 (3) | |
H8A1 | 0.0217 | 0.5987 | 0.4889 | 0.042* | |
H8A2 | 0.0733 | 0.6462 | 0.4305 | 0.042* | |
H8A3 | 0.0909 | 0.5898 | 0.5711 | 0.042* | |
C9A | 0.29267 (7) | 0.57970 (8) | 0.45030 (16) | 0.0238 (3) | |
C10A | 0.33979 (6) | 0.60994 (8) | 0.50234 (16) | 0.0222 (3) | |
C11A | 0.40037 (6) | 0.64057 (8) | 0.56760 (15) | 0.0197 (3) | |
C12A | 0.41846 (7) | 0.61565 (9) | 0.72763 (16) | 0.0274 (3) | |
H12D | 0.4181 | 0.5579 | 0.7341 | 0.041* | |
H12E | 0.3898 | 0.6377 | 0.7830 | 0.041* | |
H12F | 0.4592 | 0.6352 | 0.7691 | 0.041* | |
C13A | 0.40330 (7) | 0.73018 (8) | 0.55269 (19) | 0.0344 (4) | |
H13D | 0.4440 | 0.7487 | 0.5977 | 0.052* | |
H13E | 0.3737 | 0.7548 | 0.6025 | 0.052* | |
H13F | 0.3941 | 0.7446 | 0.4483 | 0.052* | |
O1B | 0.09750 (5) | 0.76866 (6) | 0.69610 (12) | 0.0308 (3) | |
H1B | 0.0648 | 0.7519 | 0.7142 | 0.046* | |
O2B | 0.02975 (5) | 0.67941 (6) | 0.81596 (12) | 0.0312 (3) | |
O3B | 0.39230 (5) | 0.49085 (5) | 1.26894 (10) | 0.0223 (2) | |
H3B | 0.4058 | 0.5279 | 1.3266 | 0.033* | |
C1B | 0.14361 (6) | 0.72470 (8) | 0.76915 (16) | 0.0231 (3) | |
C2B | 0.13506 (6) | 0.66126 (8) | 0.86175 (15) | 0.0197 (3) | |
C3B | 0.18585 (6) | 0.61886 (8) | 0.93290 (15) | 0.0207 (3) | |
H3B1 | 0.1805 | 0.5758 | 0.9947 | 0.025* | |
C4B | 0.24368 (6) | 0.63788 (8) | 0.91583 (16) | 0.0225 (3) | |
C5B | 0.25058 (7) | 0.70103 (9) | 0.82282 (18) | 0.0318 (4) | |
H5B | 0.2899 | 0.7147 | 0.8095 | 0.038* | |
C6B | 0.20166 (7) | 0.74333 (9) | 0.75085 (18) | 0.0326 (4) | |
H6B | 0.2074 | 0.7857 | 0.6880 | 0.039* | |
C7B | 0.07363 (7) | 0.64181 (8) | 0.88234 (15) | 0.0218 (3) | |
C8B | 0.06475 (7) | 0.57612 (8) | 0.98361 (16) | 0.0260 (3) | |
H8B1 | 0.0226 | 0.5756 | 0.9951 | 0.039* | |
H8B2 | 0.0915 | 0.5841 | 1.0798 | 0.039* | |
H8B3 | 0.0744 | 0.5256 | 0.9422 | 0.039* | |
C9B | 0.29578 (6) | 0.59485 (8) | 0.99253 (16) | 0.0234 (3) | |
C10B | 0.33953 (7) | 0.56037 (8) | 1.05638 (16) | 0.0220 (3) | |
C11B | 0.39376 (6) | 0.51369 (8) | 1.12051 (15) | 0.0192 (3) | |
C12B | 0.39370 (8) | 0.43695 (8) | 1.03571 (17) | 0.0321 (4) | |
H12G | 0.4307 | 0.4073 | 1.0753 | 0.048* | |
H12H | 0.3919 | 0.4487 | 0.9316 | 0.048* | |
H12I | 0.3584 | 0.4053 | 1.0455 | 0.048* | |
C13B | 0.45099 (7) | 0.56111 (9) | 1.11999 (16) | 0.0263 (3) | |
H13G | 0.4512 | 0.6084 | 1.1809 | 0.039* | |
H13H | 0.4521 | 0.5767 | 1.0189 | 0.039* | |
H13I | 0.4865 | 0.5287 | 1.1598 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0213 (6) | 0.0381 (6) | 0.0493 (7) | −0.0113 (5) | 0.0050 (6) | −0.0164 (6) |
O2 | 0.0213 (6) | 0.0484 (7) | 0.0351 (7) | −0.0103 (5) | 0.0080 (5) | −0.0079 (5) |
O3 | 0.0189 (5) | 0.0210 (5) | 0.0220 (5) | 0.0017 (4) | 0.0049 (4) | 0.0048 (4) |
C1 | 0.0189 (8) | 0.0300 (8) | 0.0299 (8) | −0.0060 (6) | 0.0006 (7) | −0.0063 (6) |
C2 | 0.0171 (7) | 0.0260 (7) | 0.0191 (7) | −0.0034 (6) | 0.0009 (6) | 0.0023 (6) |
C3 | 0.0198 (7) | 0.0232 (7) | 0.0204 (7) | −0.0028 (6) | 0.0017 (6) | 0.0008 (6) |
C4 | 0.0184 (8) | 0.0301 (7) | 0.0283 (8) | −0.0069 (6) | 0.0002 (7) | −0.0013 (6) |
C5 | 0.0186 (8) | 0.0521 (11) | 0.0565 (12) | −0.0055 (8) | 0.0097 (8) | −0.0235 (9) |
C6 | 0.0238 (9) | 0.0481 (10) | 0.0576 (12) | −0.0044 (8) | 0.0091 (9) | −0.0309 (9) |
C7 | 0.0216 (8) | 0.0315 (7) | 0.0189 (7) | −0.0017 (6) | 0.0038 (6) | 0.0036 (6) |
C8 | 0.0274 (9) | 0.0356 (8) | 0.0305 (9) | 0.0002 (7) | 0.0090 (7) | −0.0021 (7) |
C9 | 0.0208 (8) | 0.0298 (8) | 0.0292 (8) | −0.0033 (6) | 0.0037 (7) | 0.0004 (6) |
C10 | 0.0221 (8) | 0.0256 (7) | 0.0266 (8) | −0.0013 (6) | 0.0041 (7) | 0.0019 (6) |
C11 | 0.0178 (7) | 0.0233 (7) | 0.0198 (7) | −0.0054 (6) | 0.0038 (6) | 0.0018 (6) |
C12 | 0.0248 (8) | 0.0315 (8) | 0.0348 (9) | −0.0078 (7) | −0.0015 (7) | 0.0154 (7) |
C13 | 0.0264 (9) | 0.0423 (9) | 0.0297 (9) | −0.0057 (7) | 0.0091 (7) | −0.0122 (7) |
O1A | 0.0187 (6) | 0.0355 (6) | 0.0388 (7) | −0.0094 (5) | 0.0029 (5) | −0.0100 (5) |
O2A | 0.0163 (5) | 0.0419 (6) | 0.0355 (6) | −0.0057 (5) | 0.0044 (5) | −0.0029 (5) |
O3A | 0.0160 (5) | 0.0374 (6) | 0.0272 (6) | −0.0055 (5) | 0.0062 (5) | −0.0113 (5) |
C1A | 0.0178 (7) | 0.0254 (7) | 0.0223 (8) | −0.0052 (6) | 0.0007 (6) | 0.0027 (6) |
C2A | 0.0159 (7) | 0.0254 (7) | 0.0182 (7) | −0.0015 (6) | 0.0018 (6) | 0.0043 (6) |
C3A | 0.0205 (8) | 0.0234 (7) | 0.0211 (7) | −0.0007 (6) | 0.0035 (6) | 0.0008 (6) |
C4A | 0.0170 (7) | 0.0243 (7) | 0.0248 (8) | −0.0040 (6) | 0.0009 (6) | 0.0027 (6) |
C5A | 0.0162 (7) | 0.0291 (7) | 0.0315 (8) | −0.0008 (6) | 0.0058 (7) | −0.0006 (6) |
C6A | 0.0248 (8) | 0.0277 (7) | 0.0309 (9) | −0.0018 (6) | 0.0059 (7) | −0.0069 (6) |
C7A | 0.0180 (7) | 0.0295 (7) | 0.0205 (7) | −0.0009 (6) | 0.0023 (6) | 0.0055 (6) |
C8A | 0.0202 (8) | 0.0329 (8) | 0.0319 (9) | 0.0007 (7) | 0.0074 (7) | 0.0004 (7) |
C9A | 0.0191 (8) | 0.0251 (7) | 0.0270 (8) | −0.0004 (6) | 0.0046 (6) | 0.0000 (6) |
C10A | 0.0188 (7) | 0.0234 (7) | 0.0244 (8) | −0.0003 (6) | 0.0044 (6) | −0.0019 (6) |
C11A | 0.0154 (7) | 0.0217 (6) | 0.0215 (7) | −0.0001 (6) | 0.0025 (6) | −0.0025 (6) |
C12A | 0.0267 (8) | 0.0315 (8) | 0.0236 (8) | −0.0001 (7) | 0.0041 (7) | −0.0034 (6) |
C13A | 0.0286 (9) | 0.0226 (7) | 0.0484 (11) | −0.0029 (7) | −0.0008 (8) | 0.0019 (7) |
O1B | 0.0201 (6) | 0.0336 (6) | 0.0370 (6) | 0.0063 (5) | 0.0018 (5) | 0.0147 (5) |
O2B | 0.0178 (5) | 0.0398 (6) | 0.0348 (6) | 0.0047 (5) | 0.0025 (5) | 0.0082 (5) |
O3B | 0.0278 (6) | 0.0200 (5) | 0.0186 (5) | 0.0002 (4) | 0.0036 (5) | 0.0013 (4) |
C1B | 0.0200 (8) | 0.0244 (7) | 0.0228 (8) | 0.0039 (6) | −0.0008 (6) | 0.0043 (6) |
C2B | 0.0178 (7) | 0.0219 (6) | 0.0184 (7) | 0.0001 (6) | 0.0011 (6) | −0.0016 (5) |
C3B | 0.0207 (8) | 0.0203 (6) | 0.0202 (7) | 0.0002 (6) | 0.0024 (6) | 0.0016 (5) |
C4B | 0.0187 (7) | 0.0247 (7) | 0.0224 (8) | 0.0038 (6) | 0.0005 (6) | 0.0027 (6) |
C5B | 0.0181 (8) | 0.0376 (9) | 0.0389 (10) | 0.0003 (7) | 0.0041 (7) | 0.0123 (7) |
C6B | 0.0227 (8) | 0.0365 (8) | 0.0385 (10) | 0.0022 (7) | 0.0061 (7) | 0.0188 (7) |
C7B | 0.0202 (7) | 0.0256 (7) | 0.0190 (7) | −0.0004 (6) | 0.0028 (6) | −0.0038 (6) |
C8B | 0.0215 (8) | 0.0296 (7) | 0.0271 (8) | −0.0029 (6) | 0.0055 (7) | 0.0011 (6) |
C9B | 0.0182 (8) | 0.0251 (7) | 0.0259 (8) | −0.0010 (6) | 0.0022 (6) | 0.0026 (6) |
C10B | 0.0194 (7) | 0.0230 (7) | 0.0231 (8) | −0.0013 (6) | 0.0033 (6) | 0.0015 (6) |
C11B | 0.0199 (7) | 0.0202 (6) | 0.0168 (7) | 0.0024 (6) | 0.0018 (6) | 0.0001 (5) |
C12B | 0.0419 (10) | 0.0257 (7) | 0.0267 (9) | 0.0038 (7) | 0.0021 (7) | −0.0059 (6) |
C13B | 0.0199 (8) | 0.0331 (8) | 0.0251 (8) | 0.0013 (6) | 0.0029 (6) | 0.0058 (6) |
O1—C1 | 1.3432 (17) | C6A—H6A | 0.9500 |
O1—H1 | 0.8400 | C7A—C8A | 1.492 (2) |
O2—C7 | 1.2311 (17) | C8A—H8A1 | 0.9800 |
O3—C11 | 1.4376 (16) | C8A—H8A2 | 0.9800 |
O3—H3 | 0.8400 | C8A—H8A3 | 0.9800 |
C1—C6 | 1.390 (2) | C9A—C10A | 1.1903 (19) |
C1—C2 | 1.413 (2) | C10A—C11A | 1.472 (2) |
C2—C3 | 1.4031 (19) | C11A—C12A | 1.518 (2) |
C2—C7 | 1.479 (2) | C11A—C13A | 1.5261 (19) |
C3—C4 | 1.385 (2) | C12A—H12D | 0.9800 |
C3—H3A | 0.9500 | C12A—H12E | 0.9800 |
C4—C5 | 1.399 (2) | C12A—H12F | 0.9800 |
C4—C9 | 1.444 (2) | C13A—H13D | 0.9800 |
C5—C6 | 1.370 (2) | C13A—H13E | 0.9800 |
C5—H5 | 0.9500 | C13A—H13F | 0.9800 |
C6—H6 | 0.9500 | O1B—C1B | 1.3448 (16) |
C7—C8 | 1.491 (2) | O1B—H1B | 0.8400 |
C8—H8A | 0.9800 | O2B—C7B | 1.2314 (17) |
C8—H8B | 0.9800 | O3B—C11B | 1.4382 (16) |
C8—H8C | 0.9800 | O3B—H3B | 0.8400 |
C9—C10 | 1.194 (2) | C1B—C6B | 1.392 (2) |
C10—C11 | 1.486 (2) | C1B—C2B | 1.4135 (19) |
C11—C12 | 1.517 (2) | C2B—C3B | 1.3988 (19) |
C11—C13 | 1.520 (2) | C2B—C7B | 1.476 (2) |
C12—H12A | 0.9800 | C3B—C4B | 1.3849 (19) |
C12—H12B | 0.9800 | C3B—H3B1 | 0.9500 |
C12—H12C | 0.9800 | C4B—C5B | 1.403 (2) |
C13—H13A | 0.9800 | C4B—C9B | 1.442 (2) |
C13—H13B | 0.9800 | C5B—C6B | 1.370 (2) |
C13—H13C | 0.9800 | C5B—H5B | 0.9500 |
O1A—C1A | 1.3434 (16) | C6B—H6B | 0.9500 |
O1A—H1A | 0.8400 | C7B—C8B | 1.4962 (19) |
O2A—C7A | 1.2313 (17) | C8B—H8B1 | 0.9800 |
O3A—C11A | 1.4403 (16) | C8B—H8B2 | 0.9800 |
O3A—H3A1 | 0.8400 | C8B—H8B3 | 0.9800 |
C1A—C6A | 1.393 (2) | C9B—C10B | 1.1951 (19) |
C1A—C2A | 1.4144 (19) | C10B—C11B | 1.4765 (19) |
C2A—C3A | 1.4030 (19) | C11B—C12B | 1.5189 (19) |
C2A—C7A | 1.477 (2) | C11B—C13B | 1.5221 (19) |
C3A—C4A | 1.3862 (19) | C12B—H12G | 0.9800 |
C3A—H3A2 | 0.9500 | C12B—H12H | 0.9800 |
C4A—C5A | 1.404 (2) | C12B—H12I | 0.9800 |
C4A—C9A | 1.440 (2) | C13B—H13G | 0.9800 |
C5A—C6A | 1.371 (2) | C13B—H13H | 0.9800 |
C5A—H5A | 0.9500 | C13B—H13I | 0.9800 |
C1—O1—H1 | 109.5 | H8A1—C8A—H8A2 | 109.5 |
C11—O3—H3 | 109.5 | C7A—C8A—H8A3 | 109.5 |
O1—C1—C6 | 117.24 (13) | H8A1—C8A—H8A3 | 109.5 |
O1—C1—C2 | 123.17 (13) | H8A2—C8A—H8A3 | 109.5 |
C6—C1—C2 | 119.58 (13) | C10A—C9A—C4A | 174.00 (16) |
C3—C2—C1 | 118.43 (13) | C9A—C10A—C11A | 175.11 (15) |
C3—C2—C7 | 122.16 (13) | O3A—C11A—C10A | 104.90 (11) |
C1—C2—C7 | 119.37 (13) | O3A—C11A—C12A | 109.62 (11) |
C4—C3—C2 | 121.85 (13) | C10A—C11A—C12A | 110.24 (12) |
C4—C3—H3A | 119.1 | O3A—C11A—C13A | 109.47 (12) |
C2—C3—H3A | 119.1 | C10A—C11A—C13A | 111.50 (12) |
C3—C4—C5 | 118.10 (13) | C12A—C11A—C13A | 110.93 (12) |
C3—C4—C9 | 122.75 (14) | C11A—C12A—H12D | 109.5 |
C5—C4—C9 | 119.12 (14) | C11A—C12A—H12E | 109.5 |
C6—C5—C4 | 121.52 (15) | H12D—C12A—H12E | 109.5 |
C6—C5—H5 | 119.2 | C11A—C12A—H12F | 109.5 |
C4—C5—H5 | 119.2 | H12D—C12A—H12F | 109.5 |
C5—C6—C1 | 120.52 (15) | H12E—C12A—H12F | 109.5 |
C5—C6—H6 | 119.7 | C11A—C13A—H13D | 109.5 |
C1—C6—H6 | 119.7 | C11A—C13A—H13E | 109.5 |
O2—C7—C2 | 120.13 (13) | H13D—C13A—H13E | 109.5 |
O2—C7—C8 | 119.69 (14) | C11A—C13A—H13F | 109.5 |
C2—C7—C8 | 120.18 (13) | H13D—C13A—H13F | 109.5 |
C7—C8—H8A | 109.5 | H13E—C13A—H13F | 109.5 |
C7—C8—H8B | 109.5 | C1B—O1B—H1B | 109.5 |
H8A—C8—H8B | 109.5 | C11B—O3B—H3B | 109.5 |
C7—C8—H8C | 109.5 | O1B—C1B—C6B | 117.64 (13) |
H8A—C8—H8C | 109.5 | O1B—C1B—C2B | 122.65 (13) |
H8B—C8—H8C | 109.5 | C6B—C1B—C2B | 119.71 (13) |
C10—C9—C4 | 175.55 (16) | C3B—C2B—C1B | 118.45 (13) |
C9—C10—C11 | 173.44 (16) | C3B—C2B—C7B | 121.72 (12) |
O3—C11—C10 | 111.07 (11) | C1B—C2B—C7B | 119.82 (13) |
O3—C11—C12 | 105.15 (11) | C4B—C3B—C2B | 121.84 (13) |
C10—C11—C12 | 109.53 (11) | C4B—C3B—H3B1 | 119.1 |
O3—C11—C13 | 109.47 (11) | C2B—C3B—H3B1 | 119.1 |
C10—C11—C13 | 110.13 (12) | C3B—C4B—C5B | 118.28 (13) |
C12—C11—C13 | 111.41 (13) | C3B—C4B—C9B | 121.27 (13) |
C11—C12—H12A | 109.5 | C5B—C4B—C9B | 120.44 (13) |
C11—C12—H12B | 109.5 | C6B—C5B—C4B | 121.22 (14) |
H12A—C12—H12B | 109.5 | C6B—C5B—H5B | 119.4 |
C11—C12—H12C | 109.5 | C4B—C5B—H5B | 119.4 |
H12A—C12—H12C | 109.5 | C5B—C6B—C1B | 120.48 (14) |
H12B—C12—H12C | 109.5 | C5B—C6B—H6B | 119.8 |
C11—C13—H13A | 109.5 | C1B—C6B—H6B | 119.8 |
C11—C13—H13B | 109.5 | O2B—C7B—C2B | 120.07 (13) |
H13A—C13—H13B | 109.5 | O2B—C7B—C8B | 120.09 (13) |
C11—C13—H13C | 109.5 | C2B—C7B—C8B | 119.84 (13) |
H13A—C13—H13C | 109.5 | C7B—C8B—H8B1 | 109.5 |
H13B—C13—H13C | 109.5 | C7B—C8B—H8B2 | 109.5 |
C1A—O1A—H1A | 109.5 | H8B1—C8B—H8B2 | 109.5 |
C11A—O3A—H3A1 | 109.5 | C7B—C8B—H8B3 | 109.5 |
O1A—C1A—C6A | 116.82 (13) | H8B1—C8B—H8B3 | 109.5 |
O1A—C1A—C2A | 123.16 (13) | H8B2—C8B—H8B3 | 109.5 |
C6A—C1A—C2A | 120.02 (13) | C10B—C9B—C4B | 178.88 (16) |
C3A—C2A—C1A | 118.21 (13) | C9B—C10B—C11B | 174.01 (15) |
C3A—C2A—C7A | 121.67 (13) | O3B—C11B—C10B | 110.51 (11) |
C1A—C2A—C7A | 120.12 (12) | O3B—C11B—C12B | 105.61 (11) |
C4A—C3A—C2A | 121.56 (13) | C10B—C11B—C12B | 109.64 (12) |
C4A—C3A—H3A2 | 119.2 | O3B—C11B—C13B | 109.33 (11) |
C2A—C3A—H3A2 | 119.2 | C10B—C11B—C13B | 110.54 (11) |
C3A—C4A—C5A | 118.87 (13) | C12B—C11B—C13B | 111.12 (12) |
C3A—C4A—C9A | 122.18 (13) | C11B—C12B—H12G | 109.5 |
C5A—C4A—C9A | 118.91 (13) | C11B—C12B—H12H | 109.5 |
C6A—C5A—C4A | 120.76 (14) | H12G—C12B—H12H | 109.5 |
C6A—C5A—H5A | 119.6 | C11B—C12B—H12I | 109.5 |
C4A—C5A—H5A | 119.6 | H12G—C12B—H12I | 109.5 |
C5A—C6A—C1A | 120.58 (14) | H12H—C12B—H12I | 109.5 |
C5A—C6A—H6A | 119.7 | C11B—C13B—H13G | 109.5 |
C1A—C6A—H6A | 119.7 | C11B—C13B—H13H | 109.5 |
O2A—C7A—C2A | 119.97 (13) | H13G—C13B—H13H | 109.5 |
O2A—C7A—C8A | 120.10 (13) | C11B—C13B—H13I | 109.5 |
C2A—C7A—C8A | 119.94 (13) | H13G—C13B—H13I | 109.5 |
C7A—C8A—H8A1 | 109.5 | H13H—C13B—H13I | 109.5 |
C7A—C8A—H8A2 | 109.5 | ||
O1—C1—C2—C3 | 179.09 (14) | C9A—C4A—C5A—C6A | 177.42 (14) |
C6—C1—C2—C3 | −0.3 (2) | C4A—C5A—C6A—C1A | −0.1 (2) |
O1—C1—C2—C7 | 1.3 (2) | O1A—C1A—C6A—C5A | −179.82 (13) |
C6—C1—C2—C7 | −178.10 (15) | C2A—C1A—C6A—C5A | 0.1 (2) |
C1—C2—C3—C4 | 0.0 (2) | C3A—C2A—C7A—O2A | 177.17 (13) |
C7—C2—C3—C4 | 177.71 (13) | C1A—C2A—C7A—O2A | −2.1 (2) |
C2—C3—C4—C5 | 0.2 (2) | C3A—C2A—C7A—C8A | −2.9 (2) |
C2—C3—C4—C9 | 177.97 (13) | C1A—C2A—C7A—C8A | 177.88 (13) |
C3—C4—C5—C6 | −0.1 (3) | O1B—C1B—C2B—C3B | 179.88 (13) |
C9—C4—C5—C6 | −177.96 (17) | C6B—C1B—C2B—C3B | 0.1 (2) |
C4—C5—C6—C1 | −0.2 (3) | O1B—C1B—C2B—C7B | −0.7 (2) |
O1—C1—C6—C5 | −179.02 (17) | C6B—C1B—C2B—C7B | 179.48 (14) |
C2—C1—C6—C5 | 0.4 (3) | C1B—C2B—C3B—C4B | 0.6 (2) |
C3—C2—C7—O2 | −174.40 (13) | C7B—C2B—C3B—C4B | −178.83 (13) |
C1—C2—C7—O2 | 3.3 (2) | C2B—C3B—C4B—C5B | −0.7 (2) |
C3—C2—C7—C8 | 5.2 (2) | C2B—C3B—C4B—C9B | 178.53 (13) |
C1—C2—C7—C8 | −177.15 (13) | C3B—C4B—C5B—C6B | 0.3 (2) |
O1A—C1A—C2A—C3A | −179.71 (13) | C9B—C4B—C5B—C6B | −178.99 (15) |
C6A—C1A—C2A—C3A | 0.3 (2) | C4B—C5B—C6B—C1B | 0.3 (3) |
O1A—C1A—C2A—C7A | −0.4 (2) | O1B—C1B—C6B—C5B | 179.67 (15) |
C6A—C1A—C2A—C7A | 179.61 (13) | C2B—C1B—C6B—C5B | −0.5 (2) |
C1A—C2A—C3A—C4A | −0.8 (2) | C3B—C2B—C7B—O2B | −178.68 (13) |
C7A—C2A—C3A—C4A | 179.90 (13) | C1B—C2B—C7B—O2B | 1.9 (2) |
C2A—C3A—C4A—C5A | 0.9 (2) | C3B—C2B—C7B—C8B | 1.1 (2) |
C2A—C3A—C4A—C9A | −176.86 (13) | C1B—C2B—C7B—C8B | −178.30 (13) |
C3A—C4A—C5A—C6A | −0.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.84 | 1.83 | 2.5639 (16) | 145 |
O1—H1···O2Ai | 0.84 | 2.60 | 3.1129 (15) | 121 |
O3—H3···O3Bii | 0.84 | 1.90 | 2.7300 (12) | 171 |
O1A—H1A···O2A | 0.84 | 1.85 | 2.5832 (15) | 145 |
O1A—H1A···O2Biii | 0.84 | 2.53 | 3.0303 (16) | 119 |
O3A—H3A1···O3 | 0.84 | 1.99 | 2.8262 (13) | 176 |
O1B—H1B···O2B | 0.84 | 1.83 | 2.5611 (16) | 145 |
O3B—H3B···O3Aiv | 0.84 | 1.99 | 2.8203 (13) | 172 |
Symmetry codes: (i) x+1, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+2; (iii) −x, −y+1, −z+1; (iv) x, y, z+1. |
Acknowledgements
We acknowledge the financial support within the Cluster of Excellence `Structure Design of Novel High-Performance Materials via Atomic Design and Defect Engineering (ADDE)' provided to us by the European Union (European Regional Development Fund) and by the Ministry of Science and Art of Saxony (SMWK) as well as by the Deutsche Forschungsgemeinschaft (DFG Priority Program 1362 `Porous Metal-Organic Frameworks').
References
Ali, H. M., Abdul Halim, S. N. & Ng, S. W. (2005). Acta Cryst. E61, m1429–m1430. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press. Google Scholar
Duckworth, V. F. & Stephenson, N. C. (1969). Acta Cryst. B25, 2245–2254. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Dziubek, K., Podsiadło, M. & Katrusiak, A. (2007). J. Am. Chem. Soc. 129, 12620–12621. Web of Science CSD CrossRef PubMed CAS Google Scholar
Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. & Guillerm, V. (2015). Chem. Soc. Rev. 44, 228–249. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Filarowski, A., Kochel, A., Hansen, P. E., Urbanowicz, A. & Szymborska, K. (2007). J. Mol. Struct. 844–845, 77–82. Web of Science CSD CrossRef CAS Google Scholar
Filarowski, A., Koll, A., Kochel, A., Kalenik, J. & Hansen, P. E. (2004). J. Mol. Struct. 700, 67–72. Web of Science CSD CrossRef CAS Google Scholar
Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444. Web of Science CrossRef PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Günthel, M., Hübscher, J., Dittrich, R., Weber, E., Joseph, Y. & Mertens, F. (2015). J. Polym. Sci. Part B Polym. Phys. 53, 335–344. Google Scholar
Hibbs, D. E., Overgaard, J. & Piltz, R. O. (2003). Org. Biomol. Chem. 1, 1191–1198. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hübscher, J., Günthel, M., Rosin, R., Seichter, W., Mertens, F. & Weber, E. (2013). Z. Naturforsch. Teil B, 68, 214–222. Google Scholar
MacGillivray, L. R. (2010). Metal-Organic Frameworks. Hoboken: Wiley. Google Scholar
Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191–2201. Web of Science CrossRef CAS Google Scholar
Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Thakur, T. S., Sathishkumar, R., Dikundwar, A. G., Guru Row, T. N. & Desiraju, G. R. (2010). Cryst. Growth Des. 10, 4246–4249. Web of Science CSD CrossRef CAS Google Scholar
Thallapally, P. K. & Nangia, A. (2001). CrystEngComm, 3, 114–119. CrossRef Google Scholar
Weber, J. H. (1977). Synth. React. Inorg. Met.-Org. Chem. 7, 243–252. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.