research communications
E,1′E)-[1,4-phenylenebis(azanylylidene)]bis(methanylylidene)}bis(2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol)
of 9,9′-{(1aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of , Oman, bDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, and cDepartment of General and Inorganic Chemistry, National Technical University of Ukraine, Kyiv Polytechnic Institute, 37 Prospect Peremogy, 03056 Kiev, Ukraine
*Correspondence e-mail: potaskalov@xtf.kpi.ua
The whole molecule of the title compound, C32H34N2O2, is generated by inversion symmetry; the central benzene ring being situated about the crystallographic inversion center. The aromatic ring of the julolidine moiety is inclined to the central benzene ring by 33.70 (12)°. There are two intramolecular O—H⋯N hydrogen bonds in the molecule, generating S(6) ring motifs. The conformation about the C=N bonds is E. The fused non-aromatic rings of the julolidine moiety adopt half-chair conformations. In the crystal, adjacent molecules are linked by pairs of C—H⋯π interactions, forming a ladder-like structure propagating along the a-axis direction.
Keywords: crystal structure; julolidine; Schiff base; 8-hydroxyjulolidine-9-carboxaldehyde; p-phenylenediamine; hydrogen bonding; C—H⋯π interactions.
CCDC reference: 1500381
1. Chemical context
8-Hydroxyjulolidine-9-carboxaldehyde is a well-known chromophore used in fluorescence chemosensors; chemosensors with the julolidine moiety are usually soluble in aqueous solutions (Narayanaswamy & Govindaraju, 2012; Maity et al., 2011; Na et al., 2013; Noh et al., 2013). Compounds containing the julolidine group display chromogenic naked-eye detection of copper, zinc, iron, and aluminium ions as well as fluoride ions (Choi et al., 2015; Wang et al., 2013a,b; Kim et al., 2015; Jo et al., 2015). There are many reports in the literature on 8-hydroxyjulolidine-9-carboxaldehyde-based and their applications as sensors for metal ions (Park et al., 2014; Lee et al., 2014; Kim et al., 2016). Intramolecular C—H⋯N hydrogen bonds have been observed in a julolidine-derived structure (Barbero et al., 2012). Julolidine dyes exhibiting excited-state intramolecular proton transfer (Nano et al., 2015) and julolidine ring-containing compounds are also fluorescent probes for the measurement of cell-membrane viscosity. The present work is a part of an ongoing structural study of and their utilization in the synthesis of new organic and polynuclear coordination compounds (Faizi & Sen 2014; Faizi et al., 2016). Recently Choi et al. (2016) have reported on a new chemosensor, similar to the title compound, which is a fluorescent chemosensor for the selective detection of Zn2+ in aqueous solution. This was synthesized by a condensation reaction of 8-hydroxyjulolidine-9-carboxaldehyde with 2-(aminomethyl)benzeneamine in ethanol at room temperature. We report herein on the synthesis and of the title julolidine derivative.
2. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. The whole molecule of the title compound is generated by crystallographic inversion symmetry. The conformation about the azomethine C4=N1 bond [1.285 (3) Å] is E. The C3—N1—C4—C5 torsion angle is 172.9 (2)°. The molecule is non-planar, with the dihedral angle between the central benzene ring and the aromatic ring of the julolidine moiety being 33.70 (12)°. Depending on the tautomers, two types of intramolecular hydrogen bonds are observed in O—H⋯N in phenol–imine and N—H⋯O in keto–amine tautomers. The present analysis shows that the title compound exists in the phenol–imine form (Fig. 1). It exhibits two intramolecular O1—H1A⋯N1 [d(N⋯O) 2.579 (3) Å] hydrogen bonds, which generate S(6) ring motifs (Fig. 1 and Table 1).
3. Supramolecular features
In the crystal, adjacent molecules are linked by a pair of C—H⋯π interactions (Table 1 and Fig. 2), forming a ladder-like structure propagating along the a-axis direction (Fig. 3).
4. Database survey
There are very few examples of similar compounds in the literature and, to the best of our knowledge, the new fluorescent chemosensor for the selective detection of Zn2+ in aqueous solution, mentioned in the Chemical context section (Choi et al., 2016) has not been characterized crystallographically. A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016) gave 120 hits for the julolidine moiety. Of these, six have an OH group in position 8, and four also have a C=N group in position 1. Of the latter, one compound, viz. 9-{[(4-chlorophenyl)imino]methyl}-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol (CSD refcode: IGALUZ; Kantar et al., 2013), resembles the title compound and also exists in the phenol–imine form with an intramolecular O—H⋯N hydrogen bond.
5. Synthesis and crystallization
An ethanolic solution of 8-hydroxyjulolidine-9-carboxaldehyde (100 mg, 0.46 mmol) was added to p-phenylenediamine (25 mg, 0.23 mmol) in absolute ethanol (3 ml). Two drops of HCl were added to the reaction solution and it was stirred for 30 min at room temperature. The resulting yellow precipitate was recovered by filtration, washed several times with small portions of ice-cold EtOH and then with diethyl ether to give 199 mg (85%) of the title compound. Crystals suitable for X-ray were obtained within three days by slow evaporation of a solution in methanol.
6. Refinement
Crystal data, data collection and structure . The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 and C—H = 0.93-0.97 Å, with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1500381
https://doi.org/10.1107/S205698901601344X/su5322sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901601344X/su5322Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901601344X/su5322Isup3.cml
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C32H34N4O2 | F(000) = 540 |
Mr = 506.63 | Dx = 1.331 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3371 reflections |
a = 5.1776 (3) Å | θ = 2.4–26.5° |
b = 27.9346 (17) Å | µ = 0.08 mm−1 |
c = 8.7893 (6) Å | T = 100 K |
β = 96.203 (2)° | Block, yellow |
V = 1263.79 (14) Å3 | 0.20 × 0.15 × 0.12 mm |
Z = 2 |
Bruker SMART APEX CCD diffractometer | 2243 independent reflections |
Radiation source: fine-focus sealed tube | 1469 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.073 |
/w–scans | θmax = 25.0°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −6→6 |
Tmin = 0.783, Tmax = 0.990 | k = −33→33 |
15125 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0483P)2 + 0.7868P] where P = (Fo2 + 2Fc2)/3 |
2243 reflections | (Δ/σ)max < 0.001 |
173 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5852 (3) | 0.64668 (6) | 0.15270 (19) | 0.0327 (5) | |
H1A | 0.4785 | 0.6259 | 0.1246 | 0.049* | |
N2 | 1.2746 (4) | 0.67853 (7) | 0.5427 (2) | 0.0250 (5) | |
N1 | 0.3470 (4) | 0.56564 (7) | 0.1548 (2) | 0.0259 (5) | |
C3 | 0.1732 (4) | 0.53146 (8) | 0.0816 (3) | 0.0216 (6) | |
C11 | 1.0954 (4) | 0.64728 (8) | 0.4704 (3) | 0.0208 (6) | |
C7 | 1.0677 (4) | 0.60049 (8) | 0.5312 (3) | 0.0212 (6) | |
C1 | −0.2269 (4) | 0.51736 (9) | −0.0764 (3) | 0.0249 (6) | |
H1 | −0.3807 | 0.5292 | −0.1271 | 0.030* | |
C15 | 0.9341 (4) | 0.66163 (8) | 0.3388 (3) | 0.0229 (6) | |
C16 | 0.7394 (5) | 0.63101 (9) | 0.2775 (3) | 0.0250 (6) | |
C6 | 0.8730 (4) | 0.57163 (9) | 0.4650 (3) | 0.0245 (6) | |
H6 | 0.8546 | 0.5412 | 0.5055 | 0.029* | |
C2 | −0.0546 (4) | 0.54825 (9) | 0.0030 (3) | 0.0240 (6) | |
H2 | −0.0918 | 0.5808 | 0.0039 | 0.029* | |
C5 | 0.7015 (5) | 0.58567 (8) | 0.3400 (3) | 0.0241 (6) | |
C4 | 0.5029 (5) | 0.55395 (9) | 0.2728 (3) | 0.0277 (6) | |
H4 | 0.4865 | 0.5239 | 0.3161 | 0.033* | |
C8 | 1.2531 (5) | 0.58325 (9) | 0.6635 (3) | 0.0277 (6) | |
H8A | 1.3963 | 0.5663 | 0.6250 | 0.033* | |
H8B | 1.1643 | 0.5611 | 0.7251 | 0.033* | |
C12 | 1.3361 (5) | 0.72291 (9) | 0.4669 (3) | 0.0305 (6) | |
H12A | 1.4648 | 0.7165 | 0.3971 | 0.037* | |
H12B | 1.4101 | 0.7456 | 0.5429 | 0.037* | |
C10 | 1.4682 (5) | 0.66195 (9) | 0.6634 (3) | 0.0305 (6) | |
H10A | 1.5310 | 0.6889 | 0.7264 | 0.037* | |
H10B | 1.6144 | 0.6484 | 0.6181 | 0.037* | |
C14 | 0.9740 (5) | 0.70887 (9) | 0.2652 (3) | 0.0307 (6) | |
H14A | 0.8078 | 0.7212 | 0.2203 | 0.037* | |
H14B | 1.0841 | 0.7046 | 0.1837 | 0.037* | |
C13 | 1.0976 (5) | 0.74444 (9) | 0.3793 (3) | 0.0313 (6) | |
H13A | 1.1453 | 0.7730 | 0.3264 | 0.038* | |
H13B | 0.9744 | 0.7535 | 0.4499 | 0.038* | |
C9 | 1.3577 (5) | 0.62498 (9) | 0.7617 (3) | 0.0309 (6) | |
H9A | 1.2190 | 0.6390 | 0.8130 | 0.037* | |
H9B | 1.4917 | 0.6138 | 0.8393 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0348 (11) | 0.0320 (11) | 0.0288 (10) | −0.0051 (8) | −0.0072 (9) | 0.0013 (8) |
N2 | 0.0219 (11) | 0.0267 (12) | 0.0257 (12) | −0.0030 (10) | −0.0006 (9) | −0.0002 (9) |
N1 | 0.0213 (11) | 0.0324 (13) | 0.0233 (11) | −0.0016 (10) | −0.0003 (10) | −0.0044 (10) |
C3 | 0.0198 (12) | 0.0261 (13) | 0.0198 (13) | −0.0057 (11) | 0.0060 (11) | −0.0059 (11) |
C11 | 0.0174 (12) | 0.0239 (14) | 0.0219 (13) | −0.0019 (10) | 0.0057 (11) | −0.0050 (10) |
C7 | 0.0213 (13) | 0.0239 (14) | 0.0192 (13) | 0.0009 (11) | 0.0061 (11) | −0.0041 (11) |
C1 | 0.0187 (13) | 0.0316 (15) | 0.0241 (14) | 0.0004 (11) | 0.0016 (11) | −0.0006 (11) |
C15 | 0.0248 (13) | 0.0244 (13) | 0.0202 (13) | −0.0008 (11) | 0.0049 (11) | 0.0019 (11) |
C16 | 0.0229 (13) | 0.0350 (15) | 0.0165 (12) | 0.0061 (12) | −0.0010 (11) | −0.0004 (11) |
C6 | 0.0273 (14) | 0.0252 (14) | 0.0217 (13) | 0.0020 (11) | 0.0065 (11) | −0.0004 (11) |
C2 | 0.0239 (13) | 0.0233 (14) | 0.0251 (14) | −0.0017 (11) | 0.0042 (11) | −0.0038 (11) |
C5 | 0.0263 (14) | 0.0236 (14) | 0.0234 (14) | −0.0039 (11) | 0.0070 (12) | −0.0052 (11) |
C4 | 0.0312 (14) | 0.0263 (14) | 0.0270 (14) | 0.0006 (12) | 0.0098 (12) | −0.0024 (12) |
C8 | 0.0297 (15) | 0.0305 (15) | 0.0229 (14) | 0.0056 (12) | 0.0030 (12) | 0.0031 (11) |
C12 | 0.0275 (14) | 0.0250 (14) | 0.0394 (16) | −0.0064 (12) | 0.0048 (12) | −0.0054 (12) |
C10 | 0.0253 (13) | 0.0350 (15) | 0.0296 (15) | 0.0023 (12) | −0.0043 (12) | −0.0082 (12) |
C14 | 0.0289 (14) | 0.0323 (15) | 0.0305 (15) | −0.0034 (12) | 0.0015 (12) | 0.0033 (12) |
C13 | 0.0356 (15) | 0.0255 (14) | 0.0329 (15) | −0.0034 (12) | 0.0047 (13) | 0.0045 (12) |
C9 | 0.0292 (14) | 0.0384 (16) | 0.0233 (14) | 0.0096 (13) | −0.0056 (11) | −0.0031 (12) |
O1—C16 | 1.358 (3) | C6—H6 | 0.9300 |
O1—H1A | 0.8200 | C2—H2 | 0.9300 |
N2—C11 | 1.378 (3) | C5—C4 | 1.435 (3) |
N2—C10 | 1.454 (3) | C4—H4 | 0.9300 |
N2—C12 | 1.459 (3) | C8—C9 | 1.515 (3) |
N1—C4 | 1.285 (3) | C8—H8A | 0.9700 |
N1—C3 | 1.418 (3) | C8—H8B | 0.9700 |
C3—C2 | 1.383 (3) | C12—C13 | 1.508 (3) |
C3—C1i | 1.394 (3) | C12—H12A | 0.9700 |
C11—C15 | 1.410 (3) | C12—H12B | 0.9700 |
C11—C7 | 1.425 (3) | C10—C9 | 1.499 (4) |
C7—C6 | 1.370 (3) | C10—H10A | 0.9700 |
C7—C8 | 1.505 (3) | C10—H10B | 0.9700 |
C1—C2 | 1.376 (3) | C14—C13 | 1.505 (3) |
C1—C3i | 1.394 (3) | C14—H14A | 0.9700 |
C1—H1 | 0.9300 | C14—H14B | 0.9700 |
C15—C16 | 1.386 (3) | C13—H13A | 0.9700 |
C15—C14 | 1.494 (3) | C13—H13B | 0.9700 |
C16—C5 | 1.403 (3) | C9—H9A | 0.9700 |
C6—C5 | 1.392 (3) | C9—H9B | 0.9700 |
C16—O1—H1A | 109.5 | C7—C8—H8A | 109.5 |
C11—N2—C10 | 120.75 (19) | C9—C8—H8A | 109.5 |
C11—N2—C12 | 119.8 (2) | C7—C8—H8B | 109.5 |
C10—N2—C12 | 115.88 (19) | C9—C8—H8B | 109.5 |
C4—N1—C3 | 120.5 (2) | H8A—C8—H8B | 108.1 |
C2—C3—C1i | 118.6 (2) | N2—C12—C13 | 111.4 (2) |
C2—C3—N1 | 117.6 (2) | N2—C12—H12A | 109.3 |
C1i—C3—N1 | 123.7 (2) | C13—C12—H12A | 109.3 |
N2—C11—C15 | 120.5 (2) | N2—C12—H12B | 109.3 |
N2—C11—C7 | 119.9 (2) | C13—C12—H12B | 109.3 |
C15—C11—C7 | 119.6 (2) | H12A—C12—H12B | 108.0 |
C6—C7—C11 | 118.7 (2) | N2—C10—C9 | 111.4 (2) |
C6—C7—C8 | 121.2 (2) | N2—C10—H10A | 109.4 |
C11—C7—C8 | 120.1 (2) | C9—C10—H10A | 109.4 |
C2—C1—C3i | 120.6 (2) | N2—C10—H10B | 109.4 |
C2—C1—H1 | 119.7 | C9—C10—H10B | 109.4 |
C3i—C1—H1 | 119.7 | H10A—C10—H10B | 108.0 |
C16—C15—C11 | 119.0 (2) | C15—C14—C13 | 111.3 (2) |
C16—C15—C14 | 120.4 (2) | C15—C14—H14A | 109.4 |
C11—C15—C14 | 120.6 (2) | C13—C14—H14A | 109.4 |
O1—C16—C15 | 117.0 (2) | C15—C14—H14B | 109.4 |
O1—C16—C5 | 120.8 (2) | C13—C14—H14B | 109.4 |
C15—C16—C5 | 122.1 (2) | H14A—C14—H14B | 108.0 |
C7—C6—C5 | 123.1 (2) | C12—C13—C14 | 110.0 (2) |
C7—C6—H6 | 118.4 | C12—C13—H13A | 109.7 |
C5—C6—H6 | 118.4 | C14—C13—H13A | 109.7 |
C1—C2—C3 | 120.8 (2) | C12—C13—H13B | 109.7 |
C1—C2—H2 | 119.6 | C14—C13—H13B | 109.7 |
C3—C2—H2 | 119.6 | H13A—C13—H13B | 108.2 |
C6—C5—C16 | 117.3 (2) | C10—C9—C8 | 109.7 (2) |
C6—C5—C4 | 121.2 (2) | C10—C9—H9A | 109.7 |
C16—C5—C4 | 121.4 (2) | C8—C9—H9A | 109.7 |
N1—C4—C5 | 122.3 (2) | C10—C9—H9B | 109.7 |
N1—C4—H4 | 118.8 | C8—C9—H9B | 109.7 |
C5—C4—H4 | 118.8 | H9A—C9—H9B | 108.2 |
C7—C8—C9 | 110.7 (2) |
Symmetry code: (i) −x, −y+1, −z. |
Cg is the centroid of the C5–C7/C11/C15/C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N1 | 0.82 | 1.85 | 2.579 (3) | 148 |
C10—H10B···Cgii | 0.97 | 2.68 | 3.603 (3) | 160 |
Symmetry code: (ii) x+1, y, z. |
Acknowledgements
The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, for financial support.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Barbero, N., Barolo, C., Marabello, D., Buscaino, R., Gervasio, G. & Viscardi, G. (2012). Dyes Pigments, 92, 1177–1183. Web of Science CSD CrossRef CAS Google Scholar
Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Choi, Y. W., Lee, J. J., You, G. R., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 86463–86472. Web of Science CrossRef CAS Google Scholar
Choi, Y. W., You, G. R., Lee, J. J. & Kim, C. (2016). Inorg. Chem. Commun. 63, 35–38. Web of Science CrossRef CAS Google Scholar
Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20. Web of Science CrossRef CAS Google Scholar
Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206–m207. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jo, T. G., Na, Y. J., Lee, J. J., Lee, M. M., Lee, S. Y. & Kim, C. (2015). New J. Chem. 39, 2580–2587. Web of Science CrossRef CAS Google Scholar
Kantar, E. N., Köysal, Y., Akdemir, N., Ağar, A. A. & Soylu, M. S. (2013). Acta Cryst. E69, o883. CSD CrossRef IUCr Journals Google Scholar
Kim, Y. S., Lee, J. J., Choi, Y. W., You, G. R., Nguyen, L., Noh, I. & Kim, C. (2016). Dyes Pigm. 129, 43–53. Web of Science CrossRef CAS Google Scholar
Kim, Y. S., Park, G. J., Lee, J. J., Lee, S. Y., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 11229–11239. Web of Science CrossRef CAS Google Scholar
Lee, S. A., You, G. R., Choi, Y. W., Jo, H. Y., Kim, A. R., Noh, I., Kim, S.-J., Kim, Y. & Kim, C. (2014). Dalton Trans. 43, 6650–6659. Web of Science CSD CrossRef CAS PubMed Google Scholar
Maity, D., Manna, A. K., Karthigeyan, D., Kundu, T. K., Pati, S. K. & Govindaraju, T. (2011). Chem. Eur. J. 17, 11152–11161. Web of Science CrossRef CAS PubMed Google Scholar
Na, Y. J., Hwang, I. H., Jo, H. Y., Lee, S. A., Park, G. J. & Kim, C. (2013). Inorg. Chem. Commun. 35, 342–345. Web of Science CSD CrossRef CAS Google Scholar
Nano, A., Gullo, M. P., Ventura, B., Armaroli, N., Barbieri, A. & Ziessel, R. (2015). Chem. Commun. 51, 3351–3354. Web of Science CrossRef CAS Google Scholar
Narayanaswamy, N. & Govindaraju, T. (2012). Sens. Actuators B Chem. 161, 304–310. Web of Science CrossRef CAS Google Scholar
Noh, J. Y., Kim, S., Hwang, I. H., Lee, G. Y., Kang, J., Kim, S. H., Min, J., Park, S., Kim, C. & Kim, J. (2013). Dyes Pigments, 99, 1016–1021. Web of Science CrossRef CAS Google Scholar
Park, G. J., Park, D. Y., Park, K.-M., Kim, Y., Kim, S.-J., Chang, P.-S. & Kim, C. (2014). Tetrahedron, 70, 7429–7438. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, L., Li, H. & Cao, D. (2013a). Sens. Actuators B Chem. 181, 749–755. Web of Science CrossRef CAS Google Scholar
Wang, M., Wang, J., Xue, W. & Wu, A. (2013b). Dyes Pigments, 97, 475–480. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.