research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 9,9′-{(1E,1′E)-[1,4-phenyl­enebis(aza­nylyl­­idene)]bis­­(methanylyl­­idene)}bis­­(2,3,6,7-tetra­hydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of , Oman, bDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India, and cDepartment of General and Inorganic Chemistry, National Technical University of Ukraine, Kyiv Polytechnic Institute, 37 Prospect Peremogy, 03056 Kiev, Ukraine
*Correspondence e-mail: potaskalov@xtf.kpi.ua

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 August 2016; accepted 22 August 2016; online 5 September 2016)

The whole mol­ecule of the title compound, C32H34N2O2, is generated by inversion symmetry; the central benzene ring being situated about the crystallographic inversion center. The aromatic ring of the julolidine moiety is inclined to the central benzene ring by 33.70 (12)°. There are two intra­molecular O—H⋯N hydrogen bonds in the mol­ecule, generating S(6) ring motifs. The conformation about the C=N bonds is E. The fused non-aromatic rings of the julolidine moiety adopt half-chair conformations. In the crystal, adjacent mol­ecules are linked by pairs of C—H⋯π inter­actions, forming a ladder-like structure propagating along the a-axis direction.

1. Chemical context

8-Hy­droxy­julolidine-9-carboxaldehyde is a well-known chromophore used in fluorescence chemosensors; chemosensors with the julolidine moiety are usually soluble in aqueous solutions (Narayanaswamy & Govindaraju, 2012[Narayanaswamy, N. & Govindaraju, T. (2012). Sens. Actuators B Chem. 161, 304-310.]; Maity et al., 2011[Maity, D., Manna, A. K., Karthigeyan, D., Kundu, T. K., Pati, S. K. & Govindaraju, T. (2011). Chem. Eur. J. 17, 11152-11161.]; Na et al., 2013[Na, Y. J., Hwang, I. H., Jo, H. Y., Lee, S. A., Park, G. J. & Kim, C. (2013). Inorg. Chem. Commun. 35, 342-345.]; Noh et al., 2013[Noh, J. Y., Kim, S., Hwang, I. H., Lee, G. Y., Kang, J., Kim, S. H., Min, J., Park, S., Kim, C. & Kim, J. (2013). Dyes Pigments, 99, 1016-1021.]). Compounds containing the julolidine group display chromogenic naked-eye detection of copper, zinc, iron, and aluminium ions as well as fluoride ions (Choi et al., 2015[Choi, Y. W., Lee, J. J., You, G. R., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 86463-86472.]; Wang et al., 2013a[Wang, L., Li, H. & Cao, D. (2013a). Sens. Actuators B Chem. 181, 749-755.],b[Wang, M., Wang, J., Xue, W. & Wu, A. (2013b). Dyes Pigments, 97, 475-480.]; Kim et al., 2015[Kim, Y. S., Park, G. J., Lee, J. J., Lee, S. Y., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 11229-11239.]; Jo et al., 2015[Jo, T. G., Na, Y. J., Lee, J. J., Lee, M. M., Lee, S. Y. & Kim, C. (2015). New J. Chem. 39, 2580-2587.]). There are many reports in the literature on 8-hy­droxy­julolidine-9-carboxaldehyde-based Schiff bases and their applications as sensors for metal ions (Park et al., 2014[Park, G. J., Park, D. Y., Park, K.-M., Kim, Y., Kim, S.-J., Chang, P.-S. & Kim, C. (2014). Tetrahedron, 70, 7429-7438.]; Lee et al., 2014[Lee, S. A., You, G. R., Choi, Y. W., Jo, H. Y., Kim, A. R., Noh, I., Kim, S.-J., Kim, Y. & Kim, C. (2014). Dalton Trans. 43, 6650-6659.]; Kim et al., 2016[Kim, Y. S., Lee, J. J., Choi, Y. W., You, G. R., Nguyen, L., Noh, I. & Kim, C. (2016). Dyes Pigm. 129, 43-53.]). Intra­molecular C—H⋯N hydrogen bonds have been observed in a julolidine-derived structure (Barbero et al., 2012[Barbero, N., Barolo, C., Marabello, D., Buscaino, R., Gervasio, G. & Viscardi, G. (2012). Dyes Pigments, 92, 1177-1183.]). Julolidine dyes exhibiting excited-state intra­molecular proton transfer (Nano et al., 2015[Nano, A., Gullo, M. P., Ventura, B., Armaroli, N., Barbieri, A. & Ziessel, R. (2015). Chem. Commun. 51, 3351-3354.]) and julolidine ring-containing compounds are also fluorescent probes for the measurement of cell-membrane viscosity. The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of new organic and polynuclear coordination compounds (Faizi & Sen 2014[Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206-m207.]; Faizi et al., 2016[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15-20.]). Recently Choi et al. (2016[Choi, Y. W., You, G. R., Lee, J. J. & Kim, C. (2016). Inorg. Chem. Commun. 63, 35-38.]) have reported on a new chemosensor, similar to the title compound, which is a fluorescent chemosensor for the selective detection of Zn2+ in aqueous solution. This was synthesized by a condensation reaction of 8-hy­droxy­julolidine-9-carboxaldehyde with 2-(amino­meth­yl)benzene­amine in ethanol at room temperature. We report herein on the synthesis and crystal structure of the title julolidine derivative.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The whole mol­ecule of the title compound is generated by crystallographic inversion symmetry. The conformation about the azomethine C4=N1 bond [1.285 (3) Å] is E. The C3—N1—C4—C5 torsion angle is 172.9 (2)°. The mol­ecule is non-planar, with the dihedral angle between the central benzene ring and the aromatic ring of the julolidine moiety being 33.70 (12)°. Depending on the tautomers, two types of intra­molecular hydrogen bonds are observed in Schiff bases: O—H⋯N in phenol–imine and N—H⋯O in keto–amine tautomers. The present analysis shows that the title compound exists in the phenol–imine form (Fig. 1[link]). It exhibits two intra­molecular O1—H1A⋯N1 [d(N⋯O) 2.579 (3) Å] hydrogen bonds, which generate S(6) ring motifs (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C5–C7/C11/C15/C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.85 2.579 (3) 148
C10—H10BCgi 0.97 2.68 3.603 (3) 160
Symmetry code: (i) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level. Unlabelled atoms are generated by the symmetry operation −x, −y + 1, -z. The intra­molecular O—H⋯N hydrogen bonds (see Table 1[link]) are shown as dashed lines.

3. Supra­molecular features

In the crystal, adjacent mol­ecules are linked by a pair of C—H⋯π inter­actions (Table 1[link] and Fig. 2[link]), forming a ladder-like structure propagating along the a-axis direction (Fig. 3[link]).

[Figure 2]
Figure 2
A view of the C—H⋯π inter­actions, shown as dashed lines (see Table 1[link]), in the crystal of the title compound.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound.

4. Database survey

There are very few examples of similar compounds in the literature and, to the best of our knowledge, the new fluorescent chemosensor for the selective detection of Zn2+ in aqueous solution, mentioned in the Chemical context section (Choi et al., 2016[Choi, Y. W., You, G. R., Lee, J. J. & Kim, C. (2016). Inorg. Chem. Commun. 63, 35-38.]) has not been characterized crystallographically. A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 120 hits for the julolidine moiety. Of these, six have an OH group in position 8, and four also have a C=N group in position 1. Of the latter, one compound, viz. 9-{[(4-chlorophen­yl)imino]­meth­yl}-1,1,7,7-tetra­methyl-2,3,6,7-tetra­hydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol (CSD refcode: IGALUZ; Kantar et al., 2013[Kantar, E. N., Köysal, Y., Akdemir, N., Ağar, A. A. & Soylu, M. S. (2013). Acta Cryst. E69, o883.]), resembles the title compound and also exists in the phenol–imine form with an intra­molecular O—H⋯N hydrogen bond.

5. Synthesis and crystallization

An ethano­lic solution of 8-hy­droxy­julolidine-9-carboxalde­hyde (100 mg, 0.46 mmol) was added to p-phenyl­enedi­amine (25 mg, 0.23 mmol) in absolute ethanol (3 ml). Two drops of HCl were added to the reaction solution and it was stirred for 30 min at room temperature. The resulting yellow precipitate was recovered by filtration, washed several times with small portions of ice-cold EtOH and then with diethyl ether to give 199 mg (85%) of the title compound. Crystals suitable for X-ray diffraction analysis were obtained within three days by slow evaporation of a solution in methanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 and C—H = 0.93-0.97 Å, with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C32H34N4O2
Mr 506.63
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 5.1776 (3), 27.9346 (17), 8.7893 (6)
β (°) 96.203 (2)
V3) 1263.79 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.783, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 15125, 2243, 1469
Rint 0.073
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.127, 1.02
No. of reflections 2243
No. of parameters 173
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.22
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), DIAMOND (Brandenberg & Putz, 2006[Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

9,9'-{(1E,1'E)-[1,4-Phenylenebis(azanylylidene)]bis(methanylylidene)}bis(2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol) top
Crystal data top
C32H34N4O2F(000) = 540
Mr = 506.63Dx = 1.331 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3371 reflections
a = 5.1776 (3) Åθ = 2.4–26.5°
b = 27.9346 (17) ŵ = 0.08 mm1
c = 8.7893 (6) ÅT = 100 K
β = 96.203 (2)°Block, yellow
V = 1263.79 (14) Å30.20 × 0.15 × 0.12 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
2243 independent reflections
Radiation source: fine-focus sealed tube1469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
/w–scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 66
Tmin = 0.783, Tmax = 0.990k = 3333
15125 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.7868P]
where P = (Fo2 + 2Fc2)/3
2243 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5852 (3)0.64668 (6)0.15270 (19)0.0327 (5)
H1A0.47850.62590.12460.049*
N21.2746 (4)0.67853 (7)0.5427 (2)0.0250 (5)
N10.3470 (4)0.56564 (7)0.1548 (2)0.0259 (5)
C30.1732 (4)0.53146 (8)0.0816 (3)0.0216 (6)
C111.0954 (4)0.64728 (8)0.4704 (3)0.0208 (6)
C71.0677 (4)0.60049 (8)0.5312 (3)0.0212 (6)
C10.2269 (4)0.51736 (9)0.0764 (3)0.0249 (6)
H10.38070.52920.12710.030*
C150.9341 (4)0.66163 (8)0.3388 (3)0.0229 (6)
C160.7394 (5)0.63101 (9)0.2775 (3)0.0250 (6)
C60.8730 (4)0.57163 (9)0.4650 (3)0.0245 (6)
H60.85460.54120.50550.029*
C20.0546 (4)0.54825 (9)0.0030 (3)0.0240 (6)
H20.09180.58080.00390.029*
C50.7015 (5)0.58567 (8)0.3400 (3)0.0241 (6)
C40.5029 (5)0.55395 (9)0.2728 (3)0.0277 (6)
H40.48650.52390.31610.033*
C81.2531 (5)0.58325 (9)0.6635 (3)0.0277 (6)
H8A1.39630.56630.62500.033*
H8B1.16430.56110.72510.033*
C121.3361 (5)0.72291 (9)0.4669 (3)0.0305 (6)
H12A1.46480.71650.39710.037*
H12B1.41010.74560.54290.037*
C101.4682 (5)0.66195 (9)0.6634 (3)0.0305 (6)
H10A1.53100.68890.72640.037*
H10B1.61440.64840.61810.037*
C140.9740 (5)0.70887 (9)0.2652 (3)0.0307 (6)
H14A0.80780.72120.22030.037*
H14B1.08410.70460.18370.037*
C131.0976 (5)0.74444 (9)0.3793 (3)0.0313 (6)
H13A1.14530.77300.32640.038*
H13B0.97440.75350.44990.038*
C91.3577 (5)0.62498 (9)0.7617 (3)0.0309 (6)
H9A1.21900.63900.81300.037*
H9B1.49170.61380.83930.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0348 (11)0.0320 (11)0.0288 (10)0.0051 (8)0.0072 (9)0.0013 (8)
N20.0219 (11)0.0267 (12)0.0257 (12)0.0030 (10)0.0006 (9)0.0002 (9)
N10.0213 (11)0.0324 (13)0.0233 (11)0.0016 (10)0.0003 (10)0.0044 (10)
C30.0198 (12)0.0261 (13)0.0198 (13)0.0057 (11)0.0060 (11)0.0059 (11)
C110.0174 (12)0.0239 (14)0.0219 (13)0.0019 (10)0.0057 (11)0.0050 (10)
C70.0213 (13)0.0239 (14)0.0192 (13)0.0009 (11)0.0061 (11)0.0041 (11)
C10.0187 (13)0.0316 (15)0.0241 (14)0.0004 (11)0.0016 (11)0.0006 (11)
C150.0248 (13)0.0244 (13)0.0202 (13)0.0008 (11)0.0049 (11)0.0019 (11)
C160.0229 (13)0.0350 (15)0.0165 (12)0.0061 (12)0.0010 (11)0.0004 (11)
C60.0273 (14)0.0252 (14)0.0217 (13)0.0020 (11)0.0065 (11)0.0004 (11)
C20.0239 (13)0.0233 (14)0.0251 (14)0.0017 (11)0.0042 (11)0.0038 (11)
C50.0263 (14)0.0236 (14)0.0234 (14)0.0039 (11)0.0070 (12)0.0052 (11)
C40.0312 (14)0.0263 (14)0.0270 (14)0.0006 (12)0.0098 (12)0.0024 (12)
C80.0297 (15)0.0305 (15)0.0229 (14)0.0056 (12)0.0030 (12)0.0031 (11)
C120.0275 (14)0.0250 (14)0.0394 (16)0.0064 (12)0.0048 (12)0.0054 (12)
C100.0253 (13)0.0350 (15)0.0296 (15)0.0023 (12)0.0043 (12)0.0082 (12)
C140.0289 (14)0.0323 (15)0.0305 (15)0.0034 (12)0.0015 (12)0.0033 (12)
C130.0356 (15)0.0255 (14)0.0329 (15)0.0034 (12)0.0047 (13)0.0045 (12)
C90.0292 (14)0.0384 (16)0.0233 (14)0.0096 (13)0.0056 (11)0.0031 (12)
Geometric parameters (Å, º) top
O1—C161.358 (3)C6—H60.9300
O1—H1A0.8200C2—H20.9300
N2—C111.378 (3)C5—C41.435 (3)
N2—C101.454 (3)C4—H40.9300
N2—C121.459 (3)C8—C91.515 (3)
N1—C41.285 (3)C8—H8A0.9700
N1—C31.418 (3)C8—H8B0.9700
C3—C21.383 (3)C12—C131.508 (3)
C3—C1i1.394 (3)C12—H12A0.9700
C11—C151.410 (3)C12—H12B0.9700
C11—C71.425 (3)C10—C91.499 (4)
C7—C61.370 (3)C10—H10A0.9700
C7—C81.505 (3)C10—H10B0.9700
C1—C21.376 (3)C14—C131.505 (3)
C1—C3i1.394 (3)C14—H14A0.9700
C1—H10.9300C14—H14B0.9700
C15—C161.386 (3)C13—H13A0.9700
C15—C141.494 (3)C13—H13B0.9700
C16—C51.403 (3)C9—H9A0.9700
C6—C51.392 (3)C9—H9B0.9700
C16—O1—H1A109.5C7—C8—H8A109.5
C11—N2—C10120.75 (19)C9—C8—H8A109.5
C11—N2—C12119.8 (2)C7—C8—H8B109.5
C10—N2—C12115.88 (19)C9—C8—H8B109.5
C4—N1—C3120.5 (2)H8A—C8—H8B108.1
C2—C3—C1i118.6 (2)N2—C12—C13111.4 (2)
C2—C3—N1117.6 (2)N2—C12—H12A109.3
C1i—C3—N1123.7 (2)C13—C12—H12A109.3
N2—C11—C15120.5 (2)N2—C12—H12B109.3
N2—C11—C7119.9 (2)C13—C12—H12B109.3
C15—C11—C7119.6 (2)H12A—C12—H12B108.0
C6—C7—C11118.7 (2)N2—C10—C9111.4 (2)
C6—C7—C8121.2 (2)N2—C10—H10A109.4
C11—C7—C8120.1 (2)C9—C10—H10A109.4
C2—C1—C3i120.6 (2)N2—C10—H10B109.4
C2—C1—H1119.7C9—C10—H10B109.4
C3i—C1—H1119.7H10A—C10—H10B108.0
C16—C15—C11119.0 (2)C15—C14—C13111.3 (2)
C16—C15—C14120.4 (2)C15—C14—H14A109.4
C11—C15—C14120.6 (2)C13—C14—H14A109.4
O1—C16—C15117.0 (2)C15—C14—H14B109.4
O1—C16—C5120.8 (2)C13—C14—H14B109.4
C15—C16—C5122.1 (2)H14A—C14—H14B108.0
C7—C6—C5123.1 (2)C12—C13—C14110.0 (2)
C7—C6—H6118.4C12—C13—H13A109.7
C5—C6—H6118.4C14—C13—H13A109.7
C1—C2—C3120.8 (2)C12—C13—H13B109.7
C1—C2—H2119.6C14—C13—H13B109.7
C3—C2—H2119.6H13A—C13—H13B108.2
C6—C5—C16117.3 (2)C10—C9—C8109.7 (2)
C6—C5—C4121.2 (2)C10—C9—H9A109.7
C16—C5—C4121.4 (2)C8—C9—H9A109.7
N1—C4—C5122.3 (2)C10—C9—H9B109.7
N1—C4—H4118.8C8—C9—H9B109.7
C5—C4—H4118.8H9A—C9—H9B108.2
C7—C8—C9110.7 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C5–C7/C11/C15/C16 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.852.579 (3)148
C10—H10B···Cgii0.972.683.603 (3)160
Symmetry code: (ii) x+1, y, z.
 

Acknowledgements

The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBarbero, N., Barolo, C., Marabello, D., Buscaino, R., Gervasio, G. & Viscardi, G. (2012). Dyes Pigments, 92, 1177–1183.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, Y. W., Lee, J. J., You, G. R., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 86463–86472.  Web of Science CrossRef CAS Google Scholar
First citationChoi, Y. W., You, G. R., Lee, J. J. & Kim, C. (2016). Inorg. Chem. Commun. 63, 35–38.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206–m207.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJo, T. G., Na, Y. J., Lee, J. J., Lee, M. M., Lee, S. Y. & Kim, C. (2015). New J. Chem. 39, 2580–2587.  Web of Science CrossRef CAS Google Scholar
First citationKantar, E. N., Köysal, Y., Akdemir, N., Ağar, A. A. & Soylu, M. S. (2013). Acta Cryst. E69, o883.  CSD CrossRef IUCr Journals Google Scholar
First citationKim, Y. S., Lee, J. J., Choi, Y. W., You, G. R., Nguyen, L., Noh, I. & Kim, C. (2016). Dyes Pigm. 129, 43–53.  Web of Science CrossRef CAS Google Scholar
First citationKim, Y. S., Park, G. J., Lee, J. J., Lee, S. Y., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 11229–11239.  Web of Science CrossRef CAS Google Scholar
First citationLee, S. A., You, G. R., Choi, Y. W., Jo, H. Y., Kim, A. R., Noh, I., Kim, S.-J., Kim, Y. & Kim, C. (2014). Dalton Trans. 43, 6650–6659.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMaity, D., Manna, A. K., Karthigeyan, D., Kundu, T. K., Pati, S. K. & Govindaraju, T. (2011). Chem. Eur. J. 17, 11152–11161.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNa, Y. J., Hwang, I. H., Jo, H. Y., Lee, S. A., Park, G. J. & Kim, C. (2013). Inorg. Chem. Commun. 35, 342–345.  Web of Science CSD CrossRef CAS Google Scholar
First citationNano, A., Gullo, M. P., Ventura, B., Armaroli, N., Barbieri, A. & Ziessel, R. (2015). Chem. Commun. 51, 3351–3354.  Web of Science CrossRef CAS Google Scholar
First citationNarayanaswamy, N. & Govindaraju, T. (2012). Sens. Actuators B Chem. 161, 304–310.  Web of Science CrossRef CAS Google Scholar
First citationNoh, J. Y., Kim, S., Hwang, I. H., Lee, G. Y., Kang, J., Kim, S. H., Min, J., Park, S., Kim, C. & Kim, J. (2013). Dyes Pigments, 99, 1016–1021.  Web of Science CrossRef CAS Google Scholar
First citationPark, G. J., Park, D. Y., Park, K.-M., Kim, Y., Kim, S.-J., Chang, P.-S. & Kim, C. (2014). Tetrahedron, 70, 7429–7438.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Li, H. & Cao, D. (2013a). Sens. Actuators B Chem. 181, 749–755.  Web of Science CrossRef CAS Google Scholar
First citationWang, M., Wang, J., Xue, W. & Wu, A. (2013b). Dyes Pigments, 97, 475–480.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds