research communications
The b][1,3,4]thiadiazole-5-carbaldehyde
of 6-(4-chlorophenyl)-2-(4-methylbenzyl)imidazo[2,1-aDepartment of Physics, M. S. Ramaiah Institute of Technology, Bangalore, India, and bDepartment of Pharmaceutical Chemistry, KLE University's College of Pharmacy, Bangalore 560 010, India
*Correspondence e-mail: anilgn@msrit.edu
In the title imidazo[2,1-b][1,3,4]thiadiazole derivative, C19H14ClN3OS, the 4-methylbenzyl and chlorophenyl rings are inclined to the planar imidazo[2,1-b][1,3,4]thiadiazole moiety (r.m.s. deviation = 0.012 Å) by 64.5 (1) and 3.7 (1)°, respectively. The molecular structure is primarily stabilized by a strong intramolecular C—H⋯O hydrogen bond, leading to the formation of a pseudo-seven-membered S(7) ring motif, and a short intramolecular C—H⋯N contact forming an S(5) ring motif. In the crystal, molecules are linked by pairs of C—H⋯S hydrogen bonds, forming inversion dimers. The dimers are linked by C—H⋯O and C—H⋯π interactions, forming chains propagating along [110].
Keywords: crystal structure; imidazo[2,1-b][1,3,4]thiadiazole; hydrogen bonding; C—H⋯π interactions.
CCDC reference: 1504989
1. Chemical context
The search for potential drugs to fight cancer and the design of molecules with limited side effects, particularly to the immune system, is an emerging area of research. Imidazo[2,1-b][1,3,4]thiadiazole derivatives have been reported for their promising biological activities, and the most recent studies indicate their potential as antitumor agents (Karki et al., 2011). However, active heterocyclic pharmacophores particularly at position 5 of the imidazo[2,1-b][1,3,4]thiadiazole moiety have shown significant activities; substitution of at the 5-position resulted in an improvement of their anticancer activity (Kumar et al., 2014), whereas a substituted phenyl group enhanced the anti-tubercular activity (Ramprasad et al., 2015). In view of the above, we report herein on the synthesis and of title imidazo[2,1-b][1,3,4]thiadiazole derivative.
2. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. The carbaldehyde group is coplanar with the imidazothiadiazole ring system and cis to the chlorophenyl ring. Bond C12=O1 is cis to the C13—C14 bond, which favours the formation of an intramolecular C15—H15⋯O1 hydrogen bond (Table 1). The imidazole and thiadiazole rings show different π conjugations, resulting from their fused nature and also due to the groups attached to them. This is evident from the differences in the bond lengths S1—C9 [1.772 (4) Å] and S1—C10 [1.724 (2) Å] of the thiadiazole ring, indicating that the caused by the imidazole ring is stronger than that caused by the thiadiazole ring. As a result, the imidazole system is more resonance stabilized. Additionally, the imidazothiadiazole moiety is planar and rigid with maximum deviations of 0.0182 (2) and −0.0078 (3) Å for atoms N2 and C13, respectively, from the mean plane. The 4-chlorophenyl ring makes a dihedral angle of 3.7 (1)°, whereas the 4-methylbenzyl ring is inclined at an angle of 64.5 (1)° with respect to the mean plane of the imidazothiadiazole ring system. The molecular structure is primarily stabilized by the strong intramolecular C15—H15⋯O1 hydrogen bond, leading to the formation of a pseudo-seven-membered hydrogen-bonded S(7) ring motif, and an intramolecular C19—H19⋯N3 interaction forming an S(5) ring motif, thus locking the molecular conformation and eliminating conformational flexibility (Fig. 1 and Table 1).
3. Supramolecular features
In the crystal, the solid-state structure is stabilized primarily by a pair of C—H⋯S hydrogen bonds, forming inversion dimers (Table 1 and Fig. 2). These dimers are linked by pairs of C—H⋯O hydrogen bonds and C—H⋯π interactions, forming chains propagating along [110]. There are no halogen interactions involving the chlorine atom, and no aromatic π–π stacking interactions present.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.37, last update May 2016; Groom et al., 2016) gave 55 hits for molecules containing the imidazo[2,1-b][1,3,4]thiadiazole moiety. A search for 2-benzyl-6-phenylimidazo[2,1-b][1,3,4]thiadiazoles gave ten hits, and five of these compounds contain a 6-phenylimidazo[2,1-b][1,3,4]thiadiazole-5-carbaldehyde moiety. It is interesting to note that the aldehyde group generally accepts a hydrogen bond, and that the para-substituted halogens do not generate any significant weak interactions in the crystal packing, except for a C—H⋯F interaction in 2-(4-fluorobenzyl)-6-phenylimidazo[2,1-b][1,3,4]thiadiazole-5-carbaldehyde (OWIFAC; Banu et al., 2010), the 4-fluorobenzyl analogue of the title compound.
5. Synthesis and crystallization
The title compound was obtained according to a reported procedure (Kumar et al., 2014). The Vilsmeier reagent was prepared at 273–278 K by adding dropwise phosphorous oxychloride (2.3 g, 15 mmol) into a stirred solution of DMF (10 ml). The 6-(4-chlorophenyl)-2-(4-methylbenzyl) imidazo[2,1-b][1,3,4]thiadiazole (4 mmol) was added slowly to the Vilsmeier reagent with stirring and cooling for 2 h. Further stirring was continued for 6 h at 353–363 K. The reaction mixture was then poured into 100 ml of water. The precipitate obtained was filtered, and neutralized with a cold aqueous solution of sodium carbonate. The solid obtained was filtered, washed with water and dried. Single crystals were obtained by slow evaporation of a solution in ethanol/DMF (2:1 v:v).
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.93–0.96 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C,N) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1504989
https://doi.org/10.1107/S2056989016014754/su5325sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016014754/su5325Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016014754/su5325Isup3.cml
Data collection: SMART (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), CAMERON (Watkin et al., 1996) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C19H14ClN3OS | Z = 2 |
Mr = 367.84 | F(000) = 380 |
Triclinic, P1 | Dx = 1.492 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.6138 (18) Å | Cell parameters from 1890 reflections |
b = 9.018 (2) Å | θ = 3.3–26.4° |
c = 16.514 (5) Å | µ = 0.37 mm−1 |
α = 80.533 (13)° | T = 296 K |
β = 87.519 (14)° | Block, colourless |
γ = 83.353 (14)° | 0.20 × 0.15 × 0.10 mm |
V = 818.9 (4) Å3 |
Bruker SMART CCD area-detector diffractometer | 2966 independent reflections |
Radiation source: fine-focus sealed tube | 2530 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.059 |
ω and φ scans | θmax = 25.5°, θmin = 1.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −6→6 |
Tmin = 0.941, Tmax = 0.971 | k = −11→11 |
12059 measured reflections | l = −20→20 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0537P)2 + 0.289P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.110 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.40 e Å−3 |
2966 reflections | Δρmin = −0.26 e Å−3 |
228 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015) |
0 restraints | Extinction coefficient: 0.015 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.13628 (9) | 0.55026 (6) | 0.09398 (3) | 0.01783 (18) | |
Cl1 | 0.76563 (10) | 1.05603 (6) | −0.41113 (3) | 0.02857 (19) | |
O1 | −0.2181 (3) | 1.11191 (15) | −0.14801 (9) | 0.0188 (4) | |
N1 | −0.2122 (3) | 0.76902 (19) | 0.06190 (10) | 0.0169 (4) | |
N2 | −0.0436 (3) | 0.77957 (18) | −0.00135 (10) | 0.0149 (4) | |
N3 | 0.3040 (3) | 0.69994 (18) | −0.05952 (10) | 0.0158 (4) | |
C1 | 0.2608 (4) | 0.3316 (3) | 0.48434 (13) | 0.0254 (5) | |
H1A | 0.3880 | 0.3909 | 0.4910 | 0.038* | |
H1B | 0.3278 | 0.2319 | 0.4766 | 0.038* | |
H1C | 0.1580 | 0.3249 | 0.5325 | 0.038* | |
C2 | 0.1165 (4) | 0.4061 (2) | 0.41000 (12) | 0.0182 (5) | |
C3 | −0.0867 (4) | 0.3460 (2) | 0.38955 (13) | 0.0194 (5) | |
H3 | −0.1379 | 0.2620 | 0.4234 | 0.023* | |
C4 | −0.2144 (4) | 0.4091 (2) | 0.31943 (12) | 0.0170 (5) | |
H4 | −0.3490 | 0.3668 | 0.3070 | 0.020* | |
C5 | −0.1425 (4) | 0.5349 (2) | 0.26779 (12) | 0.0164 (5) | |
C6 | 0.0587 (4) | 0.5973 (2) | 0.28907 (13) | 0.0187 (5) | |
H6 | 0.1082 | 0.6825 | 0.2559 | 0.022* | |
C7 | 0.1852 (4) | 0.5335 (2) | 0.35916 (13) | 0.0183 (5) | |
H7 | 0.3182 | 0.5768 | 0.3722 | 0.022* | |
C8 | −0.2861 (4) | 0.6024 (2) | 0.19192 (13) | 0.0202 (5) | |
H8A | −0.3853 | 0.5279 | 0.1800 | 0.024* | |
H8B | −0.3928 | 0.6887 | 0.2045 | 0.024* | |
C9 | −0.1409 (4) | 0.6527 (2) | 0.11621 (12) | 0.0171 (5) | |
C10 | 0.1526 (4) | 0.6762 (2) | 0.00375 (12) | 0.0159 (5) | |
C11 | −0.0221 (4) | 0.8823 (2) | −0.07365 (12) | 0.0152 (4) | |
C12 | −0.2119 (4) | 1.0071 (2) | −0.09103 (13) | 0.0174 (5) | |
H12 | −0.3429 | 1.0065 | −0.0545 | 0.021* | |
C13 | 0.1975 (4) | 0.8283 (2) | −0.10865 (12) | 0.0153 (5) | |
C14 | 0.3268 (4) | 0.8852 (2) | −0.18484 (12) | 0.0157 (4) | |
C15 | 0.2369 (4) | 1.0111 (3) | −0.24086 (13) | 0.0242 (5) | |
H15 | 0.0863 | 1.0608 | −0.2313 | 0.029* | |
C16 | 0.3697 (4) | 1.0622 (3) | −0.31028 (14) | 0.0257 (5) | |
H16 | 0.3084 | 1.1459 | −0.3471 | 0.031* | |
C17 | 0.5944 (4) | 0.9882 (2) | −0.32487 (13) | 0.0198 (5) | |
C18 | 0.6866 (4) | 0.8621 (2) | −0.27129 (13) | 0.0185 (5) | |
H18 | 0.8365 | 0.8122 | −0.2816 | 0.022* | |
C19 | 0.5524 (4) | 0.8117 (2) | −0.20223 (13) | 0.0171 (5) | |
H19 | 0.6135 | 0.7266 | −0.1663 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0166 (3) | 0.0178 (3) | 0.0168 (3) | 0.0008 (2) | −0.0021 (2) | 0.0024 (2) |
Cl1 | 0.0260 (4) | 0.0312 (3) | 0.0236 (3) | 0.0007 (2) | 0.0075 (2) | 0.0052 (2) |
O1 | 0.0177 (8) | 0.0161 (8) | 0.0209 (8) | 0.0003 (6) | −0.0028 (6) | 0.0018 (6) |
N1 | 0.0156 (10) | 0.0195 (9) | 0.0147 (9) | −0.0018 (7) | −0.0001 (7) | −0.0003 (7) |
N2 | 0.0126 (10) | 0.0169 (9) | 0.0148 (9) | −0.0014 (7) | −0.0014 (7) | −0.0011 (7) |
N3 | 0.0155 (10) | 0.0146 (9) | 0.0160 (9) | −0.0001 (7) | −0.0027 (7) | 0.0002 (7) |
C1 | 0.0276 (14) | 0.0288 (12) | 0.0171 (11) | 0.0048 (10) | −0.0011 (10) | −0.0007 (9) |
C2 | 0.0189 (12) | 0.0200 (11) | 0.0138 (10) | 0.0065 (8) | 0.0032 (9) | −0.0037 (8) |
C3 | 0.0230 (13) | 0.0156 (11) | 0.0169 (11) | 0.0009 (8) | 0.0053 (9) | 0.0013 (8) |
C4 | 0.0155 (12) | 0.0185 (11) | 0.0171 (11) | −0.0013 (8) | 0.0027 (9) | −0.0044 (8) |
C5 | 0.0141 (12) | 0.0188 (11) | 0.0146 (10) | 0.0026 (8) | 0.0008 (8) | −0.0014 (8) |
C6 | 0.0172 (12) | 0.0172 (11) | 0.0198 (11) | −0.0003 (8) | 0.0041 (9) | 0.0003 (9) |
C7 | 0.0143 (12) | 0.0217 (11) | 0.0191 (11) | 0.0002 (8) | 0.0000 (9) | −0.0051 (9) |
C8 | 0.0140 (12) | 0.0238 (12) | 0.0205 (11) | −0.0014 (8) | −0.0010 (9) | 0.0026 (9) |
C9 | 0.0148 (12) | 0.0197 (11) | 0.0169 (11) | −0.0012 (8) | −0.0045 (9) | −0.0024 (8) |
C10 | 0.0151 (12) | 0.0140 (10) | 0.0183 (11) | −0.0002 (8) | −0.0033 (9) | −0.0022 (8) |
C11 | 0.0162 (12) | 0.0165 (10) | 0.0123 (10) | −0.0026 (8) | −0.0017 (8) | 0.0006 (8) |
C12 | 0.0132 (12) | 0.0197 (11) | 0.0197 (11) | −0.0016 (8) | −0.0012 (9) | −0.0044 (9) |
C13 | 0.0143 (11) | 0.0153 (10) | 0.0165 (11) | −0.0008 (8) | −0.0062 (8) | −0.0024 (8) |
C14 | 0.0166 (12) | 0.0156 (10) | 0.0157 (10) | −0.0027 (8) | −0.0027 (8) | −0.0038 (8) |
C15 | 0.0180 (13) | 0.0289 (13) | 0.0216 (12) | 0.0060 (9) | 0.0020 (9) | 0.0015 (10) |
C16 | 0.0210 (13) | 0.0272 (12) | 0.0227 (12) | 0.0059 (9) | −0.0001 (10) | 0.0079 (9) |
C17 | 0.0212 (13) | 0.0228 (11) | 0.0149 (11) | −0.0023 (9) | 0.0003 (9) | −0.0015 (9) |
C18 | 0.0157 (12) | 0.0181 (11) | 0.0212 (11) | 0.0027 (8) | 0.0010 (9) | −0.0049 (9) |
C19 | 0.0181 (12) | 0.0133 (10) | 0.0193 (11) | 0.0007 (8) | −0.0033 (9) | −0.0017 (8) |
S1—C10 | 1.724 (2) | C5—C8 | 1.521 (3) |
S1—C9 | 1.772 (2) | C6—C7 | 1.390 (3) |
Cl1—C17 | 1.749 (2) | C6—H6 | 0.9300 |
O1—C12 | 1.218 (2) | C7—H7 | 0.9300 |
N1—C9 | 1.299 (3) | C8—C9 | 1.498 (3) |
N1—N2 | 1.378 (2) | C8—H8A | 0.9700 |
N2—C10 | 1.355 (3) | C8—H8B | 0.9700 |
N2—C11 | 1.395 (3) | C11—C13 | 1.408 (3) |
N3—C10 | 1.323 (3) | C11—C12 | 1.458 (3) |
N3—C13 | 1.389 (2) | C12—H12 | 0.9300 |
C1—C2 | 1.518 (3) | C13—C14 | 1.472 (3) |
C1—H1A | 0.9600 | C14—C19 | 1.401 (3) |
C1—H1B | 0.9600 | C14—C15 | 1.400 (3) |
C1—H1C | 0.9600 | C15—C16 | 1.383 (3) |
C2—C7 | 1.390 (3) | C15—H15 | 0.9300 |
C2—C3 | 1.395 (3) | C16—C17 | 1.388 (3) |
C3—C4 | 1.393 (3) | C16—H16 | 0.9300 |
C3—H3 | 0.9300 | C17—C18 | 1.384 (3) |
C4—C5 | 1.391 (3) | C18—C19 | 1.382 (3) |
C4—H4 | 0.9300 | C18—H18 | 0.9300 |
C5—C6 | 1.401 (3) | C19—H19 | 0.9300 |
C10—S1—C9 | 87.97 (10) | H8A—C8—H8B | 107.5 |
C9—N1—N2 | 108.08 (16) | N1—C9—C8 | 122.86 (19) |
C10—N2—N1 | 118.52 (17) | N1—C9—S1 | 116.07 (16) |
C10—N2—C11 | 108.08 (17) | C8—C9—S1 | 121.03 (15) |
N1—N2—C11 | 133.36 (17) | N3—C10—N2 | 113.00 (18) |
C10—N3—C13 | 104.36 (16) | N3—C10—S1 | 137.61 (15) |
C2—C1—H1A | 109.5 | N2—C10—S1 | 109.37 (15) |
C2—C1—H1B | 109.5 | N2—C11—C13 | 103.37 (17) |
H1A—C1—H1B | 109.5 | N2—C11—C12 | 117.73 (19) |
C2—C1—H1C | 109.5 | C13—C11—C12 | 138.89 (19) |
H1A—C1—H1C | 109.5 | O1—C12—C11 | 127.2 (2) |
H1B—C1—H1C | 109.5 | O1—C12—H12 | 116.4 |
C7—C2—C3 | 117.96 (19) | C11—C12—H12 | 116.4 |
C7—C2—C1 | 121.3 (2) | N3—C13—C11 | 111.17 (18) |
C3—C2—C1 | 120.7 (2) | N3—C13—C14 | 117.41 (18) |
C2—C3—C4 | 121.3 (2) | C11—C13—C14 | 131.42 (18) |
C2—C3—H3 | 119.4 | C19—C14—C15 | 117.89 (19) |
C4—C3—H3 | 119.4 | C19—C14—C13 | 118.83 (18) |
C5—C4—C3 | 120.6 (2) | C15—C14—C13 | 123.27 (19) |
C5—C4—H4 | 119.7 | C16—C15—C14 | 120.7 (2) |
C3—C4—H4 | 119.7 | C16—C15—H15 | 119.6 |
C4—C5—C6 | 118.18 (19) | C14—C15—H15 | 119.6 |
C4—C5—C8 | 119.60 (19) | C15—C16—C17 | 119.9 (2) |
C6—C5—C8 | 122.20 (19) | C15—C16—H16 | 120.1 |
C7—C6—C5 | 120.8 (2) | C17—C16—H16 | 120.1 |
C7—C6—H6 | 119.6 | C18—C17—C16 | 120.8 (2) |
C5—C6—H6 | 119.6 | C18—C17—Cl1 | 119.38 (17) |
C2—C7—C6 | 121.1 (2) | C16—C17—Cl1 | 119.84 (16) |
C2—C7—H7 | 119.4 | C19—C18—C17 | 118.9 (2) |
C6—C7—H7 | 119.4 | C19—C18—H18 | 120.5 |
C9—C8—C5 | 115.50 (18) | C17—C18—H18 | 120.5 |
C9—C8—H8A | 108.4 | C18—C19—C14 | 121.79 (19) |
C5—C8—H8A | 108.4 | C18—C19—H19 | 119.1 |
C9—C8—H8B | 108.4 | C14—C19—H19 | 119.1 |
C5—C8—H8B | 108.4 | ||
C9—N1—N2—C10 | −0.5 (2) | C9—S1—C10—N2 | −0.02 (15) |
C9—N1—N2—C11 | −177.9 (2) | C10—N2—C11—C13 | 0.5 (2) |
C7—C2—C3—C4 | 1.4 (3) | N1—N2—C11—C13 | 178.12 (18) |
C1—C2—C3—C4 | −177.03 (18) | C10—N2—C11—C12 | −178.46 (17) |
C2—C3—C4—C5 | −0.2 (3) | N1—N2—C11—C12 | −0.9 (3) |
C3—C4—C5—C6 | −1.1 (3) | N2—C11—C12—O1 | 175.43 (19) |
C3—C4—C5—C8 | −179.56 (19) | C13—C11—C12—O1 | −3.1 (4) |
C4—C5—C6—C7 | 1.1 (3) | C10—N3—C13—C11 | 0.1 (2) |
C8—C5—C6—C7 | 179.56 (19) | C10—N3—C13—C14 | 179.35 (17) |
C3—C2—C7—C6 | −1.4 (3) | N2—C11—C13—N3 | −0.4 (2) |
C1—C2—C7—C6 | 177.07 (19) | C12—C11—C13—N3 | 178.2 (2) |
C5—C6—C7—C2 | 0.1 (3) | N2—C11—C13—C14 | −179.49 (19) |
C4—C5—C8—C9 | −139.6 (2) | C12—C11—C13—C14 | −0.8 (4) |
C6—C5—C8—C9 | 41.9 (3) | N3—C13—C14—C19 | −2.5 (3) |
N2—N1—C9—C8 | −177.12 (17) | C11—C13—C14—C19 | 176.5 (2) |
N2—N1—C9—S1 | 0.5 (2) | N3—C13—C14—C15 | 178.33 (18) |
C5—C8—C9—N1 | −146.1 (2) | C11—C13—C14—C15 | −2.7 (3) |
C5—C8—C9—S1 | 36.4 (3) | C19—C14—C15—C16 | −1.1 (3) |
C10—S1—C9—N1 | −0.27 (17) | C13—C14—C15—C16 | 178.0 (2) |
C10—S1—C9—C8 | 177.37 (18) | C14—C15—C16—C17 | 0.0 (4) |
C13—N3—C10—N2 | 0.2 (2) | C15—C16—C17—C18 | 0.9 (3) |
C13—N3—C10—S1 | −178.12 (18) | C15—C16—C17—Cl1 | −178.23 (18) |
N1—N2—C10—N3 | −178.50 (16) | C16—C17—C18—C19 | −0.8 (3) |
C11—N2—C10—N3 | −0.5 (2) | Cl1—C17—C18—C19 | 178.40 (15) |
N1—N2—C10—S1 | 0.3 (2) | C17—C18—C19—C14 | −0.4 (3) |
C11—N2—C10—S1 | 178.32 (13) | C15—C14—C19—C18 | 1.3 (3) |
C9—S1—C10—N3 | 178.4 (2) | C13—C14—C19—C18 | −177.90 (18) |
Cg is the centroid of the C2–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···O1 | 0.93 | 2.20 | 3.047 (3) | 151 |
C19—H19···N3 | 0.93 | 2.42 | 2.788 (3) | 103 |
C19—H19···S1i | 0.93 | 2.83 | 3.733 (2) | 165 |
C6—H6···O1ii | 0.93 | 2.46 | 3.384 (3) | 170 |
C18—H18···Cgi | 0.93 | 2.92 | 3.648 (12) | 136 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+2, −z. |
Acknowledgements
The authors are grateful to Professor T. N. Guru Row, Indian Institute of Science and DST India, for the data collection on the CCD facility. GNA thanks MSRIT for encouragement.
References
Banu, A., Lamani, R. S., Khazi, I. M. & Begum, N. S. (2010). Mol. Cryst. Liq. Cryst. 533, 141–151. CSD CrossRef CAS Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Karki, S. S., Panjamurthy, K., Kumar, S., Nambiar, M., Ramareddy, S. A., Chiruvella, K. K. & Raghavan, S. C. (2011). Eur. J. Med. Chem. 46, 2109–2116. Web of Science CrossRef CAS PubMed Google Scholar
Kumar, S., Hegde, M., Gopalakrishnan, V., Renuka, V. K., Ramareddy, S. A., De Clercq, E., Schols, D., Gudibabande Narasimhamurthy, A. K., Raghavan, S. C. & Karki, S. S. (2014). Eur. J. Med. Chem. 84, 687–697. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ramprasad, J., Nayak, N., Dalimba, U., Yogeeswari, P., Sriram, D., Peethambar, S. K., Achur, R. & Kumar, H. S. S. (2015). Eur. J. Med. Chem. 95, 49–63. CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.