research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of 6-(4-chloro­phen­yl)-2-(4-methyl­benz­yl)imidazo[2,1-b][1,3,4]thia­diazole-5-carbaldehyde

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, M. S. Ramaiah Institute of Technology, Bangalore, India, and bDepartment of Pharmaceutical Chemistry, KLE University's College of Pharmacy, Bangalore 560 010, India
*Correspondence e-mail: anilgn@msrit.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 September 2016; accepted 18 September 2016; online 23 September 2016)

In the title imidazo[2,1-b][1,3,4]thia­diazole derivative, C19H14ClN3OS, the 4-methyl­benzyl and chloro­phenyl rings are inclined to the planar imidazo[2,1-b][1,3,4]thia­diazole moiety (r.m.s. deviation = 0.012 Å) by 64.5 (1) and 3.7 (1)°, respectively. The mol­ecular structure is primarily stabilized by a strong intra­molecular C—H⋯O hydrogen bond, leading to the formation of a pseudo-seven-membered S(7) ring motif, and a short intra­molecular C—H⋯N contact forming an S(5) ring motif. In the crystal, mol­ecules are linked by pairs of C—H⋯S hydrogen bonds, forming inversion dimers. The dimers are linked by C—H⋯O and C—H⋯π inter­actions, forming chains propagating along [110].

1. Chemical context

The search for potential drugs to fight cancer and the design of mol­ecules with limited side effects, particularly to the immune system, is an emerging area of research. Imidazo[2,1-b][1,3,4]thia­diazole derivatives have been reported for their promising biological activities, and the most recent studies indicate their potential as anti­tumor agents (Karki et al., 2011[Karki, S. S., Panjamurthy, K., Kumar, S., Nambiar, M., Ramareddy, S. A., Chiruvella, K. K. & Raghavan, S. C. (2011). Eur. J. Med. Chem. 46, 2109-2116.]). However, active heterocyclic pharmacophores particularly at position 5 of the imidazo[2,1-b][1,3,4]thia­diazole moiety have shown significant activities; substitution of aldehydes at the 5-position resulted in an improvement of their anti­cancer activity (Kumar et al., 2014[Kumar, S., Hegde, M., Gopalakrishnan, V., Renuka, V. K., Ramareddy, S. A., De Clercq, E., Schols, D., Gudibabande Narasimhamurthy, A. K., Raghavan, S. C. & Karki, S. S. (2014). Eur. J. Med. Chem. 84, 687-697.]), whereas a substituted phenyl group enhanced the anti-tubercular activity (Ramprasad et al., 2015[Ramprasad, J., Nayak, N., Dalimba, U., Yogeeswari, P., Sriram, D., Peethambar, S. K., Achur, R. & Kumar, H. S. S. (2015). Eur. J. Med. Chem. 95, 49-63.]). In view of the above, we report herein on the synthesis and crystal structure of title imidazo[2,1-b][1,3,4]thia­diazole derivative.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The carbaldehyde group is coplanar with the imidazo­thia­diazole ring system and cis to the chloro­phenyl ring. Bond C12=O1 is cis to the C13—C14 bond, which favours the formation of an intra­molecular C15—H15⋯O1 hydrogen bond (Table 1[link]). The imidazole and thia­diazole rings show different π conjugations, resulting from their fused nature and also due to the groups attached to them. This is evident from the differences in the bond lengths S1—C9 [1.772 (4) Å] and S1—C10 [1.724 (2) Å] of the thia­diazole ring, indicating that the resonance effect caused by the imidazole ring is stronger than that caused by the thia­diazole ring. As a result, the imidazole system is more resonance stabilized. Additionally, the imidazo­thia­diazole moiety is planar and rigid with maximum deviations of 0.0182 (2) and −0.0078 (3) Å for atoms N2 and C13, respectively, from the mean plane. The 4-chloro­phenyl ring makes a dihedral angle of 3.7 (1)°, whereas the 4-methyl­benzyl ring is inclined at an angle of 64.5 (1)° with respect to the mean plane of the imidazo­thia­diazole ring system. The mol­ecular structure is primarily stabilized by the strong intra­molecular C15—H15⋯O1 hydrogen bond, leading to the formation of a pseudo-seven-membered hydrogen-bonded S(7) ring motif, and an intra­molecular C19—H19⋯N3 inter­action forming an S(5) ring motif, thus locking the mol­ecular conformation and eliminating conformational flexibility (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1 0.93 2.20 3.047 (3) 151
C19—H19⋯N3 0.93 2.42 2.788 (3) 103
C19—H19⋯S1i 0.93 2.83 3.733 (2) 165
C6—H6⋯O1ii 0.93 2.46 3.384 (3) 170
C18—H18⋯Cgi 0.93 2.92 3.648 (12) 136
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+2, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at 50% probability level. The intra­molecular inter­actions are shown as dashed lines (see Table 1[link]).

3. Supra­molecular features

In the crystal, the solid-state structure is stabilized primarily by a pair of C—H⋯S hydrogen bonds, forming inversion dimers (Table 1[link] and Fig. 2[link]). These dimers are linked by pairs of C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming chains propagating along [110]. There are no halogen inter­actions involving the chlorine atom, and no aromatic ππ stacking inter­actions present.

[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The inter­molecular inter­actions are shown as dashed lines (see Table 1[link]) and, for clarity, H atoms not involved in these inter­actions have been omitted.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, last update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 55 hits for mol­ecules containing the imidazo[2,1-b][1,3,4]thia­diazole moiety. A search for 2-benzyl-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazo­les gave ten hits, and five of these compounds contain a 6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole-5-carbaldehyde moiety. It is inter­esting to note that the aldehyde group generally accepts a hydrogen bond, and that the para-substituted halogens do not generate any significant weak inter­actions in the crystal packing, except for a C—H⋯F inter­action in 2-(4-fluoro­benz­yl)-6-phenyl­imidazo[2,1-b][1,3,4]thia­diazole-5-carbaldehyde (OWIFAC; Banu et al., 2010[Banu, A., Lamani, R. S., Khazi, I. M. & Begum, N. S. (2010). Mol. Cryst. Liq. Cryst. 533, 141-151.]), the 4-fluoro­benzyl analogue of the title compound.

5. Synthesis and crystallization

The title compound was obtained according to a reported procedure (Kumar et al., 2014[Kumar, S., Hegde, M., Gopalakrishnan, V., Renuka, V. K., Ramareddy, S. A., De Clercq, E., Schols, D., Gudibabande Narasimhamurthy, A. K., Raghavan, S. C. & Karki, S. S. (2014). Eur. J. Med. Chem. 84, 687-697.]). The Vilsmeier reagent was prepared at 273–278 K by adding dropwise phospho­rous oxychloride (2.3 g, 15 mmol) into a stirred solution of DMF (10 ml). The 6-(4-chloro­phen­yl)-2-(4-methyl­benz­yl) imidazo[2,1-b][1,3,4]thia­diazole (4 mmol) was added slowly to the Vilsmeier reagent with stirring and cooling for 2 h. Further stirring was continued for 6 h at 353–363 K. The reaction mixture was then poured into 100 ml of water. The precipitate obtained was filtered, and neutralized with a cold aqueous solution of sodium carbonate. The solid obtained was filtered, washed with water and dried. Single crystals were obtained by slow evaporation of a solution in ethanol/DMF (2:1 v:v).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.93–0.96 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C,N) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C19H14ClN3OS
Mr 367.84
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 5.6138 (18), 9.018 (2), 16.514 (5)
α, β, γ (°) 80.533 (13), 87.519 (14), 83.353 (14)
V3) 818.9 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.37
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.941, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 12059, 2966, 2530
Rint 0.059
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 1.05
No. of reflections 2966
No. of parameters 228
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.26
Computer programs: SMART and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), CAMERON (Watkin et al., 1996) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

6-(4-Chlorophenyl)-2-(4-methylbenzyl)imidazo[2,1-b][1,3,4]thiadiazole-5-carbaldehyde top
Crystal data top
C19H14ClN3OSZ = 2
Mr = 367.84F(000) = 380
Triclinic, P1Dx = 1.492 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6138 (18) ÅCell parameters from 1890 reflections
b = 9.018 (2) Åθ = 3.3–26.4°
c = 16.514 (5) ŵ = 0.37 mm1
α = 80.533 (13)°T = 296 K
β = 87.519 (14)°Block, colourless
γ = 83.353 (14)°0.20 × 0.15 × 0.10 mm
V = 818.9 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2966 independent reflections
Radiation source: fine-focus sealed tube2530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω and φ scansθmax = 25.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 66
Tmin = 0.941, Tmax = 0.971k = 1111
12059 measured reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.289P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.40 e Å3
2966 reflectionsΔρmin = 0.26 e Å3
228 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015)
0 restraintsExtinction coefficient: 0.015 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13628 (9)0.55026 (6)0.09398 (3)0.01783 (18)
Cl10.76563 (10)1.05603 (6)0.41113 (3)0.02857 (19)
O10.2181 (3)1.11191 (15)0.14801 (9)0.0188 (4)
N10.2122 (3)0.76902 (19)0.06190 (10)0.0169 (4)
N20.0436 (3)0.77957 (18)0.00135 (10)0.0149 (4)
N30.3040 (3)0.69994 (18)0.05952 (10)0.0158 (4)
C10.2608 (4)0.3316 (3)0.48434 (13)0.0254 (5)
H1A0.38800.39090.49100.038*
H1B0.32780.23190.47660.038*
H1C0.15800.32490.53250.038*
C20.1165 (4)0.4061 (2)0.41000 (12)0.0182 (5)
C30.0867 (4)0.3460 (2)0.38955 (13)0.0194 (5)
H30.13790.26200.42340.023*
C40.2144 (4)0.4091 (2)0.31943 (12)0.0170 (5)
H40.34900.36680.30700.020*
C50.1425 (4)0.5349 (2)0.26779 (12)0.0164 (5)
C60.0587 (4)0.5973 (2)0.28907 (13)0.0187 (5)
H60.10820.68250.25590.022*
C70.1852 (4)0.5335 (2)0.35916 (13)0.0183 (5)
H70.31820.57680.37220.022*
C80.2861 (4)0.6024 (2)0.19192 (13)0.0202 (5)
H8A0.38530.52790.18000.024*
H8B0.39280.68870.20450.024*
C90.1409 (4)0.6527 (2)0.11621 (12)0.0171 (5)
C100.1526 (4)0.6762 (2)0.00375 (12)0.0159 (5)
C110.0221 (4)0.8823 (2)0.07365 (12)0.0152 (4)
C120.2119 (4)1.0071 (2)0.09103 (13)0.0174 (5)
H120.34291.00650.05450.021*
C130.1975 (4)0.8283 (2)0.10865 (12)0.0153 (5)
C140.3268 (4)0.8852 (2)0.18484 (12)0.0157 (4)
C150.2369 (4)1.0111 (3)0.24086 (13)0.0242 (5)
H150.08631.06080.23130.029*
C160.3697 (4)1.0622 (3)0.31028 (14)0.0257 (5)
H160.30841.14590.34710.031*
C170.5944 (4)0.9882 (2)0.32487 (13)0.0198 (5)
C180.6866 (4)0.8621 (2)0.27129 (13)0.0185 (5)
H180.83650.81220.28160.022*
C190.5524 (4)0.8117 (2)0.20223 (13)0.0171 (5)
H190.61350.72660.16630.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0166 (3)0.0178 (3)0.0168 (3)0.0008 (2)0.0021 (2)0.0024 (2)
Cl10.0260 (4)0.0312 (3)0.0236 (3)0.0007 (2)0.0075 (2)0.0052 (2)
O10.0177 (8)0.0161 (8)0.0209 (8)0.0003 (6)0.0028 (6)0.0018 (6)
N10.0156 (10)0.0195 (9)0.0147 (9)0.0018 (7)0.0001 (7)0.0003 (7)
N20.0126 (10)0.0169 (9)0.0148 (9)0.0014 (7)0.0014 (7)0.0011 (7)
N30.0155 (10)0.0146 (9)0.0160 (9)0.0001 (7)0.0027 (7)0.0002 (7)
C10.0276 (14)0.0288 (12)0.0171 (11)0.0048 (10)0.0011 (10)0.0007 (9)
C20.0189 (12)0.0200 (11)0.0138 (10)0.0065 (8)0.0032 (9)0.0037 (8)
C30.0230 (13)0.0156 (11)0.0169 (11)0.0009 (8)0.0053 (9)0.0013 (8)
C40.0155 (12)0.0185 (11)0.0171 (11)0.0013 (8)0.0027 (9)0.0044 (8)
C50.0141 (12)0.0188 (11)0.0146 (10)0.0026 (8)0.0008 (8)0.0014 (8)
C60.0172 (12)0.0172 (11)0.0198 (11)0.0003 (8)0.0041 (9)0.0003 (9)
C70.0143 (12)0.0217 (11)0.0191 (11)0.0002 (8)0.0000 (9)0.0051 (9)
C80.0140 (12)0.0238 (12)0.0205 (11)0.0014 (8)0.0010 (9)0.0026 (9)
C90.0148 (12)0.0197 (11)0.0169 (11)0.0012 (8)0.0045 (9)0.0024 (8)
C100.0151 (12)0.0140 (10)0.0183 (11)0.0002 (8)0.0033 (9)0.0022 (8)
C110.0162 (12)0.0165 (10)0.0123 (10)0.0026 (8)0.0017 (8)0.0006 (8)
C120.0132 (12)0.0197 (11)0.0197 (11)0.0016 (8)0.0012 (9)0.0044 (9)
C130.0143 (11)0.0153 (10)0.0165 (11)0.0008 (8)0.0062 (8)0.0024 (8)
C140.0166 (12)0.0156 (10)0.0157 (10)0.0027 (8)0.0027 (8)0.0038 (8)
C150.0180 (13)0.0289 (13)0.0216 (12)0.0060 (9)0.0020 (9)0.0015 (10)
C160.0210 (13)0.0272 (12)0.0227 (12)0.0059 (9)0.0001 (10)0.0079 (9)
C170.0212 (13)0.0228 (11)0.0149 (11)0.0023 (9)0.0003 (9)0.0015 (9)
C180.0157 (12)0.0181 (11)0.0212 (11)0.0027 (8)0.0010 (9)0.0049 (9)
C190.0181 (12)0.0133 (10)0.0193 (11)0.0007 (8)0.0033 (9)0.0017 (8)
Geometric parameters (Å, º) top
S1—C101.724 (2)C5—C81.521 (3)
S1—C91.772 (2)C6—C71.390 (3)
Cl1—C171.749 (2)C6—H60.9300
O1—C121.218 (2)C7—H70.9300
N1—C91.299 (3)C8—C91.498 (3)
N1—N21.378 (2)C8—H8A0.9700
N2—C101.355 (3)C8—H8B0.9700
N2—C111.395 (3)C11—C131.408 (3)
N3—C101.323 (3)C11—C121.458 (3)
N3—C131.389 (2)C12—H120.9300
C1—C21.518 (3)C13—C141.472 (3)
C1—H1A0.9600C14—C191.401 (3)
C1—H1B0.9600C14—C151.400 (3)
C1—H1C0.9600C15—C161.383 (3)
C2—C71.390 (3)C15—H150.9300
C2—C31.395 (3)C16—C171.388 (3)
C3—C41.393 (3)C16—H160.9300
C3—H30.9300C17—C181.384 (3)
C4—C51.391 (3)C18—C191.382 (3)
C4—H40.9300C18—H180.9300
C5—C61.401 (3)C19—H190.9300
C10—S1—C987.97 (10)H8A—C8—H8B107.5
C9—N1—N2108.08 (16)N1—C9—C8122.86 (19)
C10—N2—N1118.52 (17)N1—C9—S1116.07 (16)
C10—N2—C11108.08 (17)C8—C9—S1121.03 (15)
N1—N2—C11133.36 (17)N3—C10—N2113.00 (18)
C10—N3—C13104.36 (16)N3—C10—S1137.61 (15)
C2—C1—H1A109.5N2—C10—S1109.37 (15)
C2—C1—H1B109.5N2—C11—C13103.37 (17)
H1A—C1—H1B109.5N2—C11—C12117.73 (19)
C2—C1—H1C109.5C13—C11—C12138.89 (19)
H1A—C1—H1C109.5O1—C12—C11127.2 (2)
H1B—C1—H1C109.5O1—C12—H12116.4
C7—C2—C3117.96 (19)C11—C12—H12116.4
C7—C2—C1121.3 (2)N3—C13—C11111.17 (18)
C3—C2—C1120.7 (2)N3—C13—C14117.41 (18)
C2—C3—C4121.3 (2)C11—C13—C14131.42 (18)
C2—C3—H3119.4C19—C14—C15117.89 (19)
C4—C3—H3119.4C19—C14—C13118.83 (18)
C5—C4—C3120.6 (2)C15—C14—C13123.27 (19)
C5—C4—H4119.7C16—C15—C14120.7 (2)
C3—C4—H4119.7C16—C15—H15119.6
C4—C5—C6118.18 (19)C14—C15—H15119.6
C4—C5—C8119.60 (19)C15—C16—C17119.9 (2)
C6—C5—C8122.20 (19)C15—C16—H16120.1
C7—C6—C5120.8 (2)C17—C16—H16120.1
C7—C6—H6119.6C18—C17—C16120.8 (2)
C5—C6—H6119.6C18—C17—Cl1119.38 (17)
C2—C7—C6121.1 (2)C16—C17—Cl1119.84 (16)
C2—C7—H7119.4C19—C18—C17118.9 (2)
C6—C7—H7119.4C19—C18—H18120.5
C9—C8—C5115.50 (18)C17—C18—H18120.5
C9—C8—H8A108.4C18—C19—C14121.79 (19)
C5—C8—H8A108.4C18—C19—H19119.1
C9—C8—H8B108.4C14—C19—H19119.1
C5—C8—H8B108.4
C9—N1—N2—C100.5 (2)C9—S1—C10—N20.02 (15)
C9—N1—N2—C11177.9 (2)C10—N2—C11—C130.5 (2)
C7—C2—C3—C41.4 (3)N1—N2—C11—C13178.12 (18)
C1—C2—C3—C4177.03 (18)C10—N2—C11—C12178.46 (17)
C2—C3—C4—C50.2 (3)N1—N2—C11—C120.9 (3)
C3—C4—C5—C61.1 (3)N2—C11—C12—O1175.43 (19)
C3—C4—C5—C8179.56 (19)C13—C11—C12—O13.1 (4)
C4—C5—C6—C71.1 (3)C10—N3—C13—C110.1 (2)
C8—C5—C6—C7179.56 (19)C10—N3—C13—C14179.35 (17)
C3—C2—C7—C61.4 (3)N2—C11—C13—N30.4 (2)
C1—C2—C7—C6177.07 (19)C12—C11—C13—N3178.2 (2)
C5—C6—C7—C20.1 (3)N2—C11—C13—C14179.49 (19)
C4—C5—C8—C9139.6 (2)C12—C11—C13—C140.8 (4)
C6—C5—C8—C941.9 (3)N3—C13—C14—C192.5 (3)
N2—N1—C9—C8177.12 (17)C11—C13—C14—C19176.5 (2)
N2—N1—C9—S10.5 (2)N3—C13—C14—C15178.33 (18)
C5—C8—C9—N1146.1 (2)C11—C13—C14—C152.7 (3)
C5—C8—C9—S136.4 (3)C19—C14—C15—C161.1 (3)
C10—S1—C9—N10.27 (17)C13—C14—C15—C16178.0 (2)
C10—S1—C9—C8177.37 (18)C14—C15—C16—C170.0 (4)
C13—N3—C10—N20.2 (2)C15—C16—C17—C180.9 (3)
C13—N3—C10—S1178.12 (18)C15—C16—C17—Cl1178.23 (18)
N1—N2—C10—N3178.50 (16)C16—C17—C18—C190.8 (3)
C11—N2—C10—N30.5 (2)Cl1—C17—C18—C19178.40 (15)
N1—N2—C10—S10.3 (2)C17—C18—C19—C140.4 (3)
C11—N2—C10—S1178.32 (13)C15—C14—C19—C181.3 (3)
C9—S1—C10—N3178.4 (2)C13—C14—C19—C18177.90 (18)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···O10.932.203.047 (3)151
C19—H19···N30.932.422.788 (3)103
C19—H19···S1i0.932.833.733 (2)165
C6—H6···O1ii0.932.463.384 (3)170
C18—H18···Cgi0.932.923.648 (12)136
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+2, z.
 

Acknowledgements

The authors are grateful to Professor T. N. Guru Row, Indian Institute of Science and DST India, for the data collection on the CCD facility. GNA thanks MSRIT for encouragement.

References

First citationBanu, A., Lamani, R. S., Khazi, I. M. & Begum, N. S. (2010). Mol. Cryst. Liq. Cryst. 533, 141–151.  CSD CrossRef CAS Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarki, S. S., Panjamurthy, K., Kumar, S., Nambiar, M., Ramareddy, S. A., Chiruvella, K. K. & Raghavan, S. C. (2011). Eur. J. Med. Chem. 46, 2109–2116.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKumar, S., Hegde, M., Gopalakrishnan, V., Renuka, V. K., Ramareddy, S. A., De Clercq, E., Schols, D., Gudibabande Narasimhamurthy, A. K., Raghavan, S. C. & Karki, S. S. (2014). Eur. J. Med. Chem. 84, 687–697.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamprasad, J., Nayak, N., Dalimba, U., Yogeeswari, P., Sriram, D., Peethambar, S. K., Achur, R. & Kumar, H. S. S. (2015). Eur. J. Med. Chem. 95, 49–63.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds