research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of di­aquadi-μ-hydroxido-tris­­[tri­methyl­tin(IV)] diformatotri­methyl­stannate(IV) and di-μ-hydroxido-tris­­[tri­methyl­tin(IV)] chloride monohydrate

CROSSMARK_Color_square_no_text.svg

aTechnische Universität Dortmund, Anorganische Chemie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 September 2016; accepted 21 September 2016; online 30 September 2016)

The title compounds, [Sn3(CH3)9(OH)2(H2O)2][Sn(CH3)3(CHO2)2] (1) and [Sn3(CH3)9(OH)2]Cl·H2O (2), are partially condensed products of hydrolysed tri­methyl­tin chloride. In the structures of 1 and 2, short cationic tris­tannatoxanes (C9H29O2Sn3) are bridged by a diformatotri­methyl­tin anion or a chloride anion, respectively. Hydrogen bridges are present and supposedly stabilize these structures against further polymerization to the known polymeric tri­methyl­tin hydroxide. Especially noteworthy is that the formate present in this structure was formed from atmospheric CO2.

1. Chemical context

Nowadays, there are many discussions about climate change and CO2 emissions. Therefore, the activation of CO2 plays an important role in today's research. It is already known that CO2 is activated by electroreduction of different metals (Machunda et al., 2011[Machunda, R. L., Ju, H. & Lee, J. (2011). Curr. Appl. Phys. 11, 986-988.]). A selective method to transform CO2 into formate uses nanostructured tin catalysts (Zhang et al., 2014[Zhang, S., Kang, P. & Meyer, T. J. (2014). J. Am. Chem. Soc. 136, 1734-1737.]). Compound 1 (Fig. 1[link]) was formed from atmospheric CO2 and thus can be regarded in the context of tin-mediated CO2 activation. Compound 2 (Fig. 2[link]) shows structural analogies and is also discussed herein. Structures 1 and 2 were obtained as byproducts from trapping reactions with tri­methyl­tin chloride (Däschlein et al., 2010[Däschlein, C., Gessner, V. H. & Strohmann, C. (2010). Chem. Eur. J. 16, 4048-4062.]; Unkelbach et al., 2012[Unkelbach, C., Abele, B. C., Lehmen, K., Schildbach, D., Waerder, B., Wild, K. & Strohmann, C. (2012). Chem. Commun. 48, 2492-2494.]; Koller et al., 2015[Koller, S. G., Kroesen, U. & Strohmann, C. (2015). Chem. Eur. J. 21, 641-647.]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure and atom numbering for compound 1, with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) 1 − x, 2 − y, z; (ii) 1 − x, 1 - y, z; (iii) [{3\over 2}] − x, [{1\over 2}] + y, −z; (iv) −[{1\over 2}] + x, [{3\over 2}] − y, −z; (v) x, y, 1 + z.]
[Figure 2]
Figure 2
The mol­ecular structure and atom numbering for compound 2, with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) [{1\over 2}] + x, −y, z; (ii) [{3\over 2}] − x, y, [{1\over 2}] + z; (iii) [{3\over 2}] − x, −1 + y, [{1\over 2}] + z.]

2. Structural commentary

In the crystal structures, no polymeric Sn–O structures were formed, as found in the tri­methyl­tin hydroxide. The short tri­methyl­tin hydroxide chain has a positive and the chloride or bisformatostannate a negative charge. In the structure of 1, both the cation and the anion are located about a twofold rotation axis whereas in that of 2 all atoms are on general positions. Owing to the presence of hydrogen bonds, there is a change to a smaller Sn—O—Sn angle relative to the polymeric tri­methyl­tin hydroxide (Sn—O—Sn = 140°; Anderson et al., 2011[Anderson, K. M., Tallentire, S. E., Probert, M. R., Goeta, A. E., Mendis, B. G. & Steed, J. W. (2011). Cryst. Growth Des. 11, 820-826.]). In 1, the Sn1—O1—Sn2 angle is 135.44 (9)° while in 2 it is 135.30 (17)°. In the chloride structure 2, a change in two further angles is noticed. The O1—Sn1—Cl1 angle [177.58 (10)°] and the O2—Sn3—Cl1′ angle [175.5 (12)°] decreases (compare Lerner et al., 2005[Lerner, H.-W., Ilkhechi, A. H., Bolte, M. & Wagner, M. (2005). Z. Naturforsch. Teil B, 60, 413-415.]). The water mol­ecules exist in different situations in the two structures. In the formate structure 1, a water mol­ecule coordinates directly to the Sn2 atom. In compound 2, the water is embedded in a hydrogen-bonded network between the negatively charged hydroxyl unit (O3⋯H2–O2) and the chloride anion.

3. Supra­molecular features

As described, both structures are inter­molecularly linked via hydrogen bonds. In structure 1 (Fig. 3[link] and Table 1[link]), the formate anion is sterically too demanding to coordinate directly to the outer tin atom of the cationic chain. Therefore, the formate bridges four cationic tris­tannoxanes via hydrogen-bonding inter­actions (O3⋯H2A-–O2, O4⋯H2B-–O2), thus forming a two-dimensional network. Additionally, hydrogen bonds between these sheets form a two-dimensional network along the bc plane (O4⋯H1—O1).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3 0.87 (2) 1.92 (3) 2.770 (3) 164 (4)
O2—H2B⋯O4i 0.86 (2) 1.93 (2) 2.791 (3) 178 (3)
O1—H1⋯O4ii 0.79 (4) 2.14 (4) 2.917 (3) 167 (3)
Symmetry codes: (i) x, y, z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].
[Figure 3]
Figure 3
Crystal packing of compound 1. H atoms not involved in hydrogen bonds have been omitted for clarity. Hydrogen bonds are drawn as black dashed lines (see Table 1[link]).

In the chloride structure 2 (Fig. 4[link] and Table 2[link]), the chloride anion bridges three cationic tris­tannoxanes, two by Sn⋯Cl inter­actions [Sn1⋯Cl1 = 3.024 (14); Sn3iii⋯Cl1 = 3.166 (15) Å], one by a Cl1⋯H1i—O1i hydrogen bond [3.251 (4) Å]. A fourth hydrogen bond, Cl1⋯H3ii—O3ii [3.068 (5) Å], results in a distorted tetra­hedral environment. Thus, a three-dimensional network of hydrogen bridges is formed. The inter­actions between Sn–Cl differ due to steric repulsion of the C2 and C7iii methyl groups. The van der Waals radius of a methyl group is 2 Å (Brown et al., 2009[Brown, W. H., Foote, C. S., Iverson, B. L. & Anslyn, E. V. (2009). Editors. Organic Chemistry, 5th ed., p. 289. Salt Lake City: Brooks Cole.]) and the distance between the two units is ca 3.9 Å.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.94 (3) 1.81 (3) 2.726 (5) 164 (6)
O1—H1⋯Cl1i 0.95 (3) 2.32 (3) 3.251 (4) 168 (6)
O3—H3D⋯Cl1ii 0.97 (3) 2.10 (3) 3.068 (5) 171 (8)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y, z]; (ii) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
Crystal packing of compound 2. H atoms not involved in hydrogen bonds have been omitted for clarity. Hydrogen bonds are drawn as black dashed lines (see Table 2[link]).

4. Database survey

The basic building block, tri­methyl­tin hydroxide, has been known for a long time and has been completely characterized (Kraus & Bullard, 1929[Kraus, C. A. & Bullard, R. H. (1929). J. Am. Chem. Soc. 51, 3605-3609.]; Okawara & Yasuda, 1964[Okawara, R. & Yasuda, K. (1964). J. Organomet. Chem. 1, 356-359.]). Since then, studies using single crystal X-ray analysis have been made for the exact structure. A polymeric structure with eight units has been found, which has an angle of ca 140° for the Sn—O—Sn bond (Anderson et al., 2011[Anderson, K. M., Tallentire, S. E., Probert, M. R., Goeta, A. E., Mendis, B. G. & Steed, J. W. (2011). Cryst. Growth Des. 11, 820-826.]). Tiekink (1986[Tiekink, E. R. T. (1986). J. Organomet. Chem. 302, C1-C3.]) succeeded in obtaining a bis­(tri­methyl­tin)carbonate, wherein the basic polymeric structure has been changed. Here, the tri­methyl­tin units are linked via a carbonate. A dimeric structure including chloride as anion and water is also noted. The tin atoms are coordinated by the bridging Cl and HO substituents and angles of 133.2 (2)° for Sn1—Cl1—Sn2 and 179.2 (2)° for O1—Sn1—Cl1 were observed (Lerner et al., 2005[Lerner, H.-W., Ilkhechi, A. H., Bolte, M. & Wagner, M. (2005). Z. Naturforsch. Teil B, 60, 413-415.]).

5. Synthesis and crystallization

The two structures were obtained as byproducts from trapping reactions with tri­methyl­tin chloride (Strohmann et al., 2006[Strohmann, C., Lehmen, K. & Dilsky, S. (2006). J. Am. Chem. Soc. 128, 8102-8103.]; Ott et al., 2008[Ott, H., Däschlein, C., Leusser, D., Schildbach, D., Seibel, T., Stalke, D. & Strohmann, C. (2008). J. Am. Chem. Soc. 130, 11901-11911.]). The samples were stored under atmospheric conditions for a few months. By reaction with atmospheric moisture, partial hydrolysis occurred. In the case of compound 1, CO2 was also activated by a tin-mediated reaction.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms involved in hydrogen bonding were located in a difference Fourier synthesis map and freely refined. All other H atoms were positioned geometrically and refined using a riding model: C—H = 0.98 Å with Uiso(H) = 1.5Ueq(Cmeth­yl). The CH3 hydrogen atoms were allowed to rotate but not to tip. Due to point group symmetry 2 of both the cation and anion in 1, with the twofold rotation axis running through the respective central Sn atom and one of the methyl groups, the latter is equally disordered over two positions.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula [Sn3(CH3)9(OH)2(H2O)2][Sn(CH3)3(CHO2)2] [Sn3(CH3)9(OH)2]Cl·H2O
Mr 407.62 578.86
Crystal system, space group Orthorhombic, P21212 Orthorhombic, Pca21
Temperature (K) 154 100
a, b, c (Å) 11.0786 (8), 18.9529 (14), 6.6990 (5) 12.623 (3), 8.2675 (18), 18.421 (5)
V3) 1406.60 (18) 1922.4 (8)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.54 4.00
Crystal size (mm) 0.16 × 0.10 × 0.08 0.16 × 0.14 × 0.07
 
Data collection
Diffractometer Bruker D8 VENTURE area detector Bruker D8 VENTURE area detector
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.016, 0.038 0.010, 0.032
No. of measured, independent and observed [I > 2σ(I)] reflections 56576, 3966, 3811 16017, 5320, 5072
Rint 0.036 0.019
(sin θ/λ)max−1) 0.696 0.697
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.027, 1.06 0.022, 0.050, 1.06
No. of reflections 3966 5320
No. of parameters 144 170
No. of restraints 2 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.33 1.01, −0.38
Absolute structure Flack x determined using 1569 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 2271 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.040 (19) −0.026 (19)
Computer programs: APEX3 and SAINT (Bruker, 2014[Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both compounds, data collection: APEX3 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(1) Diaquadi-µ-hydroxido-tris[trimethyltin(IV)] diformatotrimethylstannate(IV) top
Crystal data top
[Sn3(CH3)9(OH)2(H2O)2][Sn(CH3)3(CHO2)2]Dx = 1.925 Mg m3
Mr = 407.62Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 9917 reflections
a = 11.0786 (8) Åθ = 3–60°
b = 18.9529 (14) ŵ = 3.54 mm1
c = 6.6990 (5) ÅT = 154 K
V = 1406.60 (18) Å3Block, colourless
Z = 40.16 × 0.10 × 0.08 mm
F(000) = 784
Data collection top
Bruker D8 VENTURE area detector
diffractometer
3966 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs3811 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.036
Detector resolution: 10.4167 pixels mm-1θmax = 29.6°, θmin = 2.8°
ω and φ scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 2626
Tmin = 0.016, Tmax = 0.038l = 99
56576 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0094P)2 + 0.4247P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.014(Δ/σ)max = 0.004
wR(F2) = 0.027Δρmax = 0.37 e Å3
S = 1.06Δρmin = 0.33 e Å3
3966 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
144 parametersExtinction coefficient: 0.00294 (12)
2 restraintsAbsolute structure: Flack x determined using 1569 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.040 (19)
Hydrogen site location: mixed
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.50001.00000.39740 (3)0.01976 (5)
Sn20.51010 (2)0.78803 (2)0.42354 (2)0.01984 (4)
Sn30.50000.50000.09198 (3)0.01949 (5)
O10.43169 (16)0.88858 (8)0.3940 (3)0.0275 (4)
O20.6162 (2)0.67229 (10)0.4624 (3)0.0395 (5)
H2A0.621 (4)0.6398 (17)0.370 (5)0.070 (12)*
H2B0.639 (3)0.6499 (15)0.567 (4)0.047 (9)*
O30.63477 (16)0.59175 (9)0.1188 (3)0.0275 (4)
O40.69708 (18)0.60086 (10)0.1986 (3)0.0321 (4)
C10.50001.00000.0790 (5)0.0341 (7)
H1A0.52120.95290.03020.051*0.5
H1B0.55921.03430.03020.051*0.5
H1C0.41951.01280.03020.051*0.5
C20.6556 (2)0.96914 (13)0.5607 (4)0.0284 (5)
H2C0.63780.92630.63700.043*
H2D0.67871.00710.65240.043*
H2E0.72210.95980.46790.043*
C30.6662 (2)0.81086 (14)0.2519 (4)0.0306 (6)
H3A0.65170.85310.17090.046*
H3B0.68420.77080.16430.046*
H3C0.73470.81920.34140.046*
C40.5122 (3)0.78733 (14)0.7404 (3)0.0326 (5)
H4A0.59570.79070.78780.049*
H4B0.47620.74330.78910.049*
H4C0.46570.82760.79080.049*
C50.3709 (2)0.72972 (13)0.2806 (4)0.0308 (6)
H5A0.29230.75040.31400.046*
H5B0.37330.68060.32610.046*
H5C0.38270.73130.13570.046*
C60.3758 (2)0.56431 (13)0.0639 (4)0.0318 (6)
H6A0.31820.58480.03070.048*
H6B0.33230.53570.16220.048*
H6C0.41950.60220.13240.048*
C70.50000.50000.4082 (4)0.0354 (8)
H7A0.56310.46810.45700.053*0.5
H7B0.42120.48400.45700.053*0.5
H7C0.51560.54790.45700.053*0.5
C80.6991 (3)0.61657 (14)0.0214 (4)0.0293 (6)
H80.754 (3)0.6574 (18)0.034 (5)0.059 (11)*
H10.365 (3)0.8863 (17)0.352 (5)0.051 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01811 (9)0.01947 (9)0.02172 (9)0.00005 (9)0.0000.000
Sn20.02197 (7)0.01935 (7)0.01820 (7)0.00208 (7)0.00006 (8)0.00073 (5)
Sn30.02102 (9)0.02158 (9)0.01588 (9)0.00227 (9)0.0000.000
O10.0229 (8)0.0186 (8)0.0409 (11)0.0023 (6)0.0077 (9)0.0001 (8)
O20.0672 (15)0.0270 (10)0.0243 (10)0.0151 (10)0.0095 (10)0.0033 (8)
O30.0312 (9)0.0298 (9)0.0215 (9)0.0063 (7)0.0027 (7)0.0014 (7)
O40.0402 (11)0.0324 (10)0.0237 (9)0.0027 (8)0.0069 (8)0.0040 (8)
C10.0422 (19)0.0356 (17)0.0246 (15)0.0051 (19)0.0000.000
C20.0232 (11)0.0292 (12)0.0328 (14)0.0009 (9)0.0063 (11)0.0031 (11)
C30.0274 (13)0.0346 (14)0.0298 (14)0.0020 (10)0.0062 (11)0.0034 (11)
C40.0401 (14)0.0367 (12)0.0209 (10)0.0067 (16)0.0047 (13)0.0009 (9)
C50.0332 (14)0.0272 (12)0.0320 (14)0.0078 (10)0.0052 (11)0.0016 (10)
C60.0341 (13)0.0263 (12)0.0350 (15)0.0070 (10)0.0090 (13)0.0015 (11)
C70.0332 (17)0.056 (2)0.0170 (14)0.014 (2)0.0000.000
C80.0310 (14)0.0290 (14)0.0280 (14)0.0054 (11)0.0015 (10)0.0024 (10)
Geometric parameters (Å, º) top
Sn1—O12.2433 (16)C1—H1B0.9800
Sn1—O1i2.2433 (16)C1—H1C0.9800
Sn1—C12.133 (3)C2—H2C0.9800
Sn1—C22.124 (2)C2—H2D0.9800
Sn1—C2i2.124 (2)C2—H2E0.9800
Sn2—O12.1036 (16)C3—H3A0.9800
Sn2—O22.5023 (19)C3—H3B0.9800
Sn2—C32.121 (2)C3—H3C0.9800
Sn2—C42.123 (2)C4—H4A0.9800
Sn2—C52.126 (2)C4—H4B0.9800
Sn3—O3ii2.2991 (17)C4—H4C0.9800
Sn3—O32.2990 (17)C5—H5A0.9800
Sn3—C62.114 (2)C5—H5B0.9800
Sn3—C6ii2.114 (2)C5—H5C0.9800
Sn3—C72.119 (3)C6—H6A0.9800
O1—H10.79 (4)C6—H6B0.9800
O2—H2A0.87 (2)C6—H6C0.9800
O2—H2B0.86 (2)C7—H7A0.9800
O3—C81.269 (3)C7—H7B0.9800
O4—C81.224 (3)C7—H7C0.9800
C1—H1A0.9800C8—H81.05 (3)
O1—Sn1—O1i178.83 (11)H1A—C1—H1C109.5
C1—Sn1—O1i89.42 (5)H1B—C1—H1C109.5
C1—Sn1—O189.42 (5)Sn1—C2—H2C109.5
C2—Sn1—O191.14 (8)Sn1—C2—H2D109.5
C2—Sn1—O1i89.46 (8)Sn1—C2—H2E109.5
C2i—Sn1—O189.46 (8)H2C—C2—H2D109.5
C2i—Sn1—O1i91.14 (8)H2C—C2—H2E109.5
C2i—Sn1—C1121.00 (7)H2D—C2—H2E109.5
C2—Sn1—C1121.00 (7)Sn2—C3—H3A109.5
C2—Sn1—C2i118.01 (15)Sn2—C3—H3B109.5
O1—Sn2—O2176.30 (8)Sn2—C3—H3C109.5
O1—Sn2—C395.79 (9)H3A—C3—H3B109.5
O1—Sn2—C495.99 (9)H3A—C3—H3C109.5
O1—Sn2—C597.41 (9)H3B—C3—H3C109.5
C3—Sn2—O281.51 (9)Sn2—C4—H4A109.5
C3—Sn2—C4122.30 (12)Sn2—C4—H4B109.5
C3—Sn2—C5116.97 (11)Sn2—C4—H4C109.5
C4—Sn2—O283.41 (9)H4A—C4—H4B109.5
C4—Sn2—C5117.08 (11)H4A—C4—H4C109.5
C5—Sn2—O286.09 (9)H4B—C4—H4C109.5
O3—Sn3—O3ii171.04 (9)Sn2—C5—H5A109.5
C6—Sn3—O3ii92.99 (9)Sn2—C5—H5B109.5
C6ii—Sn3—O3ii91.44 (9)Sn2—C5—H5C109.5
C6ii—Sn3—O392.99 (9)H5A—C5—H5B109.5
C6—Sn3—O391.43 (9)H5A—C5—H5C109.5
C6ii—Sn3—C6120.80 (16)H5B—C5—H5C109.5
C6—Sn3—C7119.60 (8)Sn3—C6—H6A109.5
C6ii—Sn3—C7119.60 (8)Sn3—C6—H6B109.5
C7—Sn3—O3ii85.52 (4)Sn3—C6—H6C109.5
C7—Sn3—O385.52 (4)H6A—C6—H6B109.5
Sn1—O1—H1112 (2)H6A—C6—H6C109.5
Sn2—O1—Sn1135.44 (9)H6B—C6—H6C109.5
Sn2—O1—H1112 (2)Sn3—C7—H7A109.5
Sn2—O2—H2A125 (3)Sn3—C7—H7B109.5
Sn2—O2—H2B131 (2)Sn3—C7—H7C109.5
H2A—O2—H2B102 (3)H7A—C7—H7B109.5
C8—O3—Sn3125.94 (17)H7A—C7—H7C109.5
Sn1—C1—H1A109.5H7B—C7—H7C109.5
Sn1—C1—H1B109.5O3—C8—H8110 (2)
Sn1—C1—H1C109.5O4—C8—O3128.1 (3)
H1A—C1—H1B109.5O4—C8—H8122 (2)
Sn3—O3—C8—O45.5 (4)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.87 (2)1.92 (3)2.770 (3)164 (4)
O2—H2B···O4iii0.86 (2)1.93 (2)2.791 (3)178 (3)
O1—H1···O4iv0.79 (4)2.14 (4)2.917 (3)167 (3)
Symmetry codes: (iii) x, y, z+1; (iv) x1/2, y+3/2, z.
(2) Di-µ-hydroxido-tris[trimethyltin(IV)] chloride monohydrate top
Crystal data top
[Sn3(CH3)9(OH)2]Cl·H2ODx = 2.000 Mg m3
Mr = 578.86Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 9903 reflections
a = 12.623 (3) Åθ = 2.9–29.6°
b = 8.2675 (18) ŵ = 4.00 mm1
c = 18.421 (5) ÅT = 100 K
V = 1922.4 (8) Å3Block, colourless
Z = 40.16 × 0.14 × 0.07 mm
F(000) = 1104
Data collection top
Bruker D8 VENTURE area detector
diffractometer
5072 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.019
φ and ω scansθmax = 29.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1517
Tmin = 0.010, Tmax = 0.032k = 1111
16017 measured reflectionsl = 2525
5320 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.6817P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max = 0.001
S = 1.06Δρmax = 1.01 e Å3
5320 reflectionsΔρmin = 0.38 e Å3
170 parametersAbsolute structure: Flack x determined using 2271 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
5 restraintsAbsolute structure parameter: 0.026 (19)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7513 (5)0.1853 (7)0.7655 (3)0.0397 (11)
H1A0.73520.29950.75660.059*
H1B0.81810.17670.79240.059*
H1C0.69410.13660.79410.059*
C20.7054 (4)0.1756 (6)0.6542 (3)0.0345 (10)
H2A0.64480.19020.68680.052*
H2B0.76090.25370.66670.052*
H2C0.68280.19310.60390.052*
C30.8814 (4)0.1523 (7)0.5927 (3)0.0358 (11)
H3A0.86610.11360.54350.054*
H3B0.95150.11410.60770.054*
H3C0.88020.27090.59330.054*
C40.6887 (5)0.4752 (7)0.5271 (3)0.0436 (13)
H4A0.75870.46400.50460.065*
H4B0.69690.48820.57970.065*
H4C0.65270.57020.50710.065*
C50.4333 (5)0.2706 (8)0.5290 (3)0.0490 (15)
H5A0.40530.37900.51910.073*
H5B0.42210.24380.58020.073*
H5C0.39650.19150.49840.073*
C60.6638 (5)0.0545 (6)0.4578 (3)0.0381 (11)
H6A0.61730.01580.41890.057*
H6B0.67120.02980.49480.057*
H6C0.73360.08030.43760.057*
C70.7215 (4)0.6488 (6)0.3435 (3)0.0367 (10)
H7A0.76300.55970.36400.055*
H7B0.72750.74390.37500.055*
H7C0.74850.67530.29500.055*
C80.4542 (4)0.7036 (6)0.4051 (3)0.0359 (11)
H8A0.38390.65350.40260.054*
H8B0.44930.81690.38980.054*
H8C0.48060.69850.45510.054*
C90.5063 (5)0.4823 (7)0.2352 (3)0.0390 (11)
H9A0.55240.52070.19600.059*
H9B0.43350.51790.22600.059*
H9C0.50850.36390.23710.059*
O10.6340 (3)0.1729 (4)0.61594 (19)0.0327 (7)
H10.575 (4)0.168 (9)0.648 (3)0.06 (2)*
O20.5652 (3)0.3638 (4)0.39350 (19)0.0333 (7)
H20.519 (4)0.293 (6)0.369 (3)0.040 (16)*
Sn10.76540 (2)0.06256 (3)0.66540 (2)0.02692 (7)
Sn20.59742 (2)0.26536 (3)0.50553 (2)0.02755 (7)
Sn30.55935 (2)0.57842 (4)0.33566 (2)0.02786 (7)
O30.4394 (3)0.1219 (5)0.3417 (3)0.0488 (10)
H3D0.467 (7)0.043 (8)0.308 (4)0.08 (3)*
H3E0.365 (4)0.127 (15)0.328 (10)0.18 (6)*
Cl10.94986 (10)0.10984 (17)0.73601 (7)0.0379 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (3)0.049 (3)0.033 (3)0.000 (3)0.002 (2)0.011 (2)
C20.033 (2)0.034 (2)0.037 (3)0.0031 (19)0.002 (2)0.0016 (19)
C30.029 (2)0.042 (3)0.036 (3)0.003 (2)0.002 (2)0.004 (2)
C40.058 (4)0.037 (3)0.035 (3)0.009 (3)0.009 (2)0.003 (2)
C50.035 (3)0.068 (4)0.044 (3)0.007 (3)0.004 (2)0.019 (3)
C60.048 (3)0.034 (2)0.032 (2)0.007 (2)0.006 (2)0.0010 (19)
C70.032 (2)0.044 (3)0.034 (2)0.002 (2)0.000 (2)0.006 (2)
C80.036 (3)0.041 (3)0.031 (2)0.003 (2)0.003 (2)0.002 (2)
C90.046 (3)0.039 (3)0.032 (2)0.000 (2)0.008 (2)0.001 (2)
O10.0276 (17)0.0410 (18)0.0295 (17)0.0025 (15)0.0020 (14)0.0056 (14)
O20.041 (2)0.0288 (17)0.0306 (17)0.0010 (15)0.0037 (15)0.0010 (13)
Sn10.02689 (14)0.02985 (14)0.02403 (13)0.00150 (11)0.00091 (13)0.00026 (11)
Sn20.02642 (14)0.02809 (14)0.02815 (14)0.00031 (11)0.00014 (13)0.00004 (12)
Sn30.02768 (15)0.02928 (14)0.02664 (14)0.00066 (11)0.00002 (13)0.00054 (12)
O30.047 (2)0.045 (2)0.054 (3)0.0023 (18)0.005 (2)0.011 (2)
Cl10.0311 (6)0.0487 (7)0.0339 (6)0.0014 (5)0.0004 (5)0.0028 (5)
Geometric parameters (Å, º) top
C1—H1A0.9800C6—Sn22.125 (5)
C1—H1B0.9800C7—H7A0.9800
C1—H1C0.9800C7—H7B0.9800
C1—Sn12.113 (5)C7—H7C0.9800
C2—H2A0.9800C7—Sn32.133 (5)
C2—H2B0.9800C8—H8A0.9800
C2—H2C0.9800C8—H8B0.9800
C2—Sn12.120 (5)C8—H8C0.9800
C3—H3A0.9800C8—Sn32.114 (5)
C3—H3B0.9800C9—H9A0.9800
C3—H3C0.9800C9—H9B0.9800
C3—Sn12.118 (5)C9—H9C0.9800
C4—H4A0.9800C9—Sn32.123 (5)
C4—H4B0.9800O1—H10.95 (3)
C4—H4C0.9800O1—Sn12.100 (3)
C4—Sn22.120 (5)O1—Sn22.222 (3)
C5—H5A0.9800O2—H20.94 (3)
C5—H5B0.9800O2—Sn22.255 (4)
C5—H5C0.9800O2—Sn32.071 (3)
C5—Sn22.117 (6)Sn1—Cl13.0240 (14)
C6—H6A0.9800O3—H3D0.97 (3)
C6—H6B0.9800O3—H3E0.98 (3)
C6—H6C0.9800Cl1—Sn3i3.1663 (15)
H1A—C1—H1B109.5H8B—C8—H8C109.5
H1A—C1—H1C109.5Sn3—C8—H8A109.5
H1B—C1—H1C109.5Sn3—C8—H8B109.5
Sn1—C1—H1A109.5Sn3—C8—H8C109.5
Sn1—C1—H1B109.5H9A—C9—H9B109.5
Sn1—C1—H1C109.5H9A—C9—H9C109.5
H2A—C2—H2B109.5H9B—C9—H9C109.5
H2A—C2—H2C109.5Sn3—C9—H9A109.5
H2B—C2—H2C109.5Sn3—C9—H9B109.5
Sn1—C2—H2A109.5Sn3—C9—H9C109.5
Sn1—C2—H2B109.5Sn1—O1—H1109 (4)
Sn1—C2—H2C109.5Sn1—O1—Sn2135.30 (17)
H3A—C3—H3B109.5Sn2—O1—H1115 (4)
H3A—C3—H3C109.5Sn2—O2—H2109 (4)
H3B—C3—H3C109.5Sn3—O2—H2105 (4)
Sn1—C3—H3A109.5Sn3—O2—Sn2141.84 (17)
Sn1—C3—H3B109.5C1—Sn1—C2120.1 (2)
Sn1—C3—H3C109.5C1—Sn1—C3116.2 (2)
H4A—C4—H4B109.5C1—Sn1—Cl185.16 (17)
H4A—C4—H4C109.5C2—Sn1—Cl183.06 (14)
H4B—C4—H4C109.5C3—Sn1—C2120.7 (2)
Sn2—C4—H4A109.5C3—Sn1—Cl184.55 (15)
Sn2—C4—H4B109.5O1—Sn1—C195.96 (19)
Sn2—C4—H4C109.5O1—Sn1—C294.52 (17)
H5A—C5—H5B109.5O1—Sn1—C396.85 (17)
H5A—C5—H5C109.5O1—Sn1—Cl1177.58 (10)
H5B—C5—H5C109.5C4—Sn2—C6122.3 (3)
Sn2—C5—H5A109.5C4—Sn2—O189.81 (18)
Sn2—C5—H5B109.5C4—Sn2—O288.55 (17)
Sn2—C5—H5C109.5C5—Sn2—C4118.5 (3)
H6A—C6—H6B109.5C5—Sn2—C6119.2 (3)
H6A—C6—H6C109.5C5—Sn2—O191.36 (18)
H6B—C6—H6C109.5C5—Sn2—O290.15 (19)
Sn2—C6—H6A109.5C6—Sn2—O190.83 (17)
Sn2—C6—H6B109.5C6—Sn2—O289.35 (17)
Sn2—C6—H6C109.5O1—Sn2—O2178.17 (14)
H7A—C7—H7B109.5C8—Sn3—C7115.3 (2)
H7A—C7—H7C109.5C8—Sn3—C9120.9 (2)
H7B—C7—H7C109.5C9—Sn3—C7117.6 (2)
Sn3—C7—H7A109.5O2—Sn3—C799.50 (18)
Sn3—C7—H7B109.5O2—Sn3—C897.50 (17)
Sn3—C7—H7C109.5O2—Sn3—C997.99 (18)
H8A—C8—H8B109.5H3D—O3—H3E102 (10)
H8A—C8—H8C109.5Sn1—Cl1—Sn3i127.21 (4)
Symmetry code: (i) x+3/2, y1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.94 (3)1.81 (3)2.726 (5)164 (6)
O1—H1···Cl1ii0.95 (3)2.32 (3)3.251 (4)168 (6)
O3—H3D···Cl1iii0.97 (3)2.10 (3)3.068 (5)171 (8)
Symmetry codes: (ii) x1/2, y, z; (iii) x+3/2, y, z1/2.
 

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support.

References

First citationAnderson, K. M., Tallentire, S. E., Probert, M. R., Goeta, A. E., Mendis, B. G. & Steed, J. W. (2011). Cryst. Growth Des. 11, 820–826.  CSD CrossRef CAS Google Scholar
First citationBrown, W. H., Foote, C. S., Iverson, B. L. & Anslyn, E. V. (2009). Editors. Organic Chemistry, 5th ed., p. 289. Salt Lake City: Brooks Cole.  Google Scholar
First citationBruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDäschlein, C., Gessner, V. H. & Strohmann, C. (2010). Chem. Eur. J. 16, 4048–4062.  Web of Science PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKoller, S. G., Kroesen, U. & Strohmann, C. (2015). Chem. Eur. J. 21, 641–647.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKraus, C. A. & Bullard, R. H. (1929). J. Am. Chem. Soc. 51, 3605–3609.  CrossRef CAS Google Scholar
First citationLerner, H.-W., Ilkhechi, A. H., Bolte, M. & Wagner, M. (2005). Z. Naturforsch. Teil B, 60, 413–415.  CAS Google Scholar
First citationMachunda, R. L., Ju, H. & Lee, J. (2011). Curr. Appl. Phys. 11, 986–988.  CrossRef Google Scholar
First citationOkawara, R. & Yasuda, K. (1964). J. Organomet. Chem. 1, 356–359.  CrossRef CAS Google Scholar
First citationOtt, H., Däschlein, C., Leusser, D., Schildbach, D., Seibel, T., Stalke, D. & Strohmann, C. (2008). J. Am. Chem. Soc. 130, 11901–11911.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrohmann, C., Lehmen, K. & Dilsky, S. (2006). J. Am. Chem. Soc. 128, 8102–8103.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTiekink, E. R. T. (1986). J. Organomet. Chem. 302, C1–C3.  CAS Google Scholar
First citationUnkelbach, C., Abele, B. C., Lehmen, K., Schildbach, D., Waerder, B., Wild, K. & Strohmann, C. (2012). Chem. Commun. 48, 2492–2494.  CSD CrossRef CAS Google Scholar
First citationZhang, S., Kang, P. & Meyer, T. J. (2014). J. Am. Chem. Soc. 136, 1734–1737.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds