research communications
Crystal structures of diaquadi-μ-hydroxido-tris[trimethyltin(IV)] diformatotrimethylstannate(IV) and di-μ-hydroxido-tris[trimethyltin(IV)] chloride monohydrate
aTechnische Universität Dortmund, Anorganische Chemie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de
The title compounds, [Sn3(CH3)9(OH)2(H2O)2][Sn(CH3)3(CHO2)2] (1) and [Sn3(CH3)9(OH)2]Cl·H2O (2), are partially condensed products of hydrolysed trimethyltin chloride. In the structures of 1 and 2, short cationic tristannatoxanes (C9H29O2Sn3) are bridged by a diformatotrimethyltin anion or a chloride anion, respectively. Hydrogen bridges are present and supposedly stabilize these structures against further polymerization to the known polymeric trimethyltin hydroxide. Especially noteworthy is that the formate present in this structure was formed from atmospheric CO2.
Keywords: crystal structure; tin; trimethyltin hydroxide; formate; chloride; hydrolysis; hydrogen bonding.
1. Chemical context
Nowadays, there are many discussions about climate change and CO2 emissions. Therefore, the activation of CO2 plays an important role in today's research. It is already known that CO2 is activated by electroreduction of different metals (Machunda et al., 2011). A selective method to transform CO2 into formate uses nanostructured tin catalysts (Zhang et al., 2014). Compound 1 (Fig. 1) was formed from atmospheric CO2 and thus can be regarded in the context of tin-mediated CO2 activation. Compound 2 (Fig. 2) shows structural analogies and is also discussed herein. Structures 1 and 2 were obtained as byproducts from trapping reactions with trimethyltin chloride (Däschlein et al., 2010; Unkelbach et al., 2012; Koller et al., 2015).
2. Structural commentary
In the crystal structures, no polymeric Sn–O structures were formed, as found in the trimethyltin hydroxide. The short trimethyltin hydroxide chain has a positive and the chloride or bisformatostannate a negative charge. In the structure of 1, both the cation and the anion are located about a twofold rotation axis whereas in that of 2 all atoms are on general positions. Owing to the presence of hydrogen bonds, there is a change to a smaller Sn—O—Sn angle relative to the polymeric trimethyltin hydroxide (Sn—O—Sn = 140°; Anderson et al., 2011). In 1, the Sn1—O1—Sn2 angle is 135.44 (9)° while in 2 it is 135.30 (17)°. In the chloride structure 2, a change in two further angles is noticed. The O1—Sn1—Cl1 angle [177.58 (10)°] and the O2—Sn3—Cl1′ angle [175.5 (12)°] decreases (compare Lerner et al., 2005). The water molecules exist in different situations in the two structures. In the formate structure 1, a water molecule coordinates directly to the Sn2 atom. In compound 2, the water is embedded in a hydrogen-bonded network between the negatively charged hydroxyl unit (O3⋯H2–O2) and the chloride anion.
3. Supramolecular features
As described, both structures are intermolecularly linked via hydrogen bonds. In structure 1 (Fig. 3 and Table 1), the formate anion is sterically too demanding to coordinate directly to the outer tin atom of the cationic chain. Therefore, the formate bridges four cationic tristannoxanes via hydrogen-bonding interactions (O3⋯H2A-–O2, O4⋯H2B-–O2), thus forming a two-dimensional network. Additionally, hydrogen bonds between these sheets form a two-dimensional network along the bc plane (O4⋯H1—O1).
In the chloride structure 2 (Fig. 4 and Table 2), the chloride anion bridges three cationic tristannoxanes, two by Sn⋯Cl interactions [Sn1⋯Cl1 = 3.024 (14); Sn3iii⋯Cl1 = 3.166 (15) Å], one by a Cl1⋯H1i—O1i hydrogen bond [3.251 (4) Å]. A fourth hydrogen bond, Cl1⋯H3ii—O3ii [3.068 (5) Å], results in a distorted tetrahedral environment. Thus, a three-dimensional network of hydrogen bridges is formed. The interactions between Sn–Cl differ due to steric repulsion of the C2 and C7iii methyl groups. The van der Waals radius of a methyl group is 2 Å (Brown et al., 2009) and the distance between the two units is ca 3.9 Å.
4. Database survey
The basic building block, trimethyltin hydroxide, has been known for a long time and has been completely characterized (Kraus & Bullard, 1929; Okawara & Yasuda, 1964). Since then, studies using single crystal X-ray analysis have been made for the exact structure. A polymeric structure with eight units has been found, which has an angle of ca 140° for the Sn—O—Sn bond (Anderson et al., 2011). Tiekink (1986) succeeded in obtaining a bis(trimethyltin)carbonate, wherein the basic polymeric structure has been changed. Here, the trimethyltin units are linked via a carbonate. A dimeric structure including chloride as anion and water is also noted. The tin atoms are coordinated by the bridging Cl and HO substituents and angles of 133.2 (2)° for Sn1—Cl1—Sn2 and 179.2 (2)° for O1—Sn1—Cl1 were observed (Lerner et al., 2005).
5. Synthesis and crystallization
The two structures were obtained as byproducts from trapping reactions with trimethyltin chloride (Strohmann et al., 2006; Ott et al., 2008). The samples were stored under atmospheric conditions for a few months. By reaction with atmospheric moisture, partial hydrolysis occurred. In the case of compound 1, CO2 was also activated by a tin-mediated reaction.
6. Refinement
Crystal data, data collection and structure . H atoms involved in hydrogen bonding were located in a difference Fourier synthesis map and freely refined. All other H atoms were positioned geometrically and refined using a riding model: C—H = 0.98 Å with Uiso(H) = 1.5Ueq(Cmethyl). The CH3 hydrogen atoms were allowed to rotate but not to tip. Due to symmetry 2 of both the cation and anion in 1, with the twofold rotation axis running through the respective central Sn atom and one of the methyl groups, the latter is equally disordered over two positions.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989016014912/su5326sup1.cif
contains datablocks Global, 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989016014912/su53261sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989016014912/su53262sup3.hkl
For both compounds, data collection: APEX3 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Sn3(CH3)9(OH)2(H2O)2][Sn(CH3)3(CHO2)2] | Dx = 1.925 Mg m−3 |
Mr = 407.62 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P21212 | Cell parameters from 9917 reflections |
a = 11.0786 (8) Å | θ = 3–60° |
b = 18.9529 (14) Å | µ = 3.54 mm−1 |
c = 6.6990 (5) Å | T = 154 K |
V = 1406.60 (18) Å3 | Block, colourless |
Z = 4 | 0.16 × 0.10 × 0.08 mm |
F(000) = 784 |
Bruker D8 VENTURE area detector diffractometer | 3966 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 3811 reflections with I > 2σ(I) |
HELIOS mirror optics monochromator | Rint = 0.036 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 29.6°, θmin = 2.8° |
ω and φ scans | h = −15→15 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −26→26 |
Tmin = 0.016, Tmax = 0.038 | l = −9→9 |
56576 measured reflections |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0094P)2 + 0.4247P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.014 | (Δ/σ)max = 0.004 |
wR(F2) = 0.027 | Δρmax = 0.37 e Å−3 |
S = 1.06 | Δρmin = −0.33 e Å−3 |
3966 reflections | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
144 parameters | Extinction coefficient: 0.00294 (12) |
2 restraints | Absolute structure: Flack x determined using 1569 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.040 (19) |
Hydrogen site location: mixed |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Sn1 | 0.5000 | 1.0000 | 0.39740 (3) | 0.01976 (5) | |
Sn2 | 0.51010 (2) | 0.78803 (2) | 0.42354 (2) | 0.01984 (4) | |
Sn3 | 0.5000 | 0.5000 | 0.09198 (3) | 0.01949 (5) | |
O1 | 0.43169 (16) | 0.88858 (8) | 0.3940 (3) | 0.0275 (4) | |
O2 | 0.6162 (2) | 0.67229 (10) | 0.4624 (3) | 0.0395 (5) | |
H2A | 0.621 (4) | 0.6398 (17) | 0.370 (5) | 0.070 (12)* | |
H2B | 0.639 (3) | 0.6499 (15) | 0.567 (4) | 0.047 (9)* | |
O3 | 0.63477 (16) | 0.59175 (9) | 0.1188 (3) | 0.0275 (4) | |
O4 | 0.69708 (18) | 0.60086 (10) | −0.1986 (3) | 0.0321 (4) | |
C1 | 0.5000 | 1.0000 | 0.0790 (5) | 0.0341 (7) | |
H1A | 0.5212 | 0.9529 | 0.0302 | 0.051* | 0.5 |
H1B | 0.5592 | 1.0343 | 0.0302 | 0.051* | 0.5 |
H1C | 0.4195 | 1.0128 | 0.0302 | 0.051* | 0.5 |
C2 | 0.6556 (2) | 0.96914 (13) | 0.5607 (4) | 0.0284 (5) | |
H2C | 0.6378 | 0.9263 | 0.6370 | 0.043* | |
H2D | 0.6787 | 1.0071 | 0.6524 | 0.043* | |
H2E | 0.7221 | 0.9598 | 0.4679 | 0.043* | |
C3 | 0.6662 (2) | 0.81086 (14) | 0.2519 (4) | 0.0306 (6) | |
H3A | 0.6517 | 0.8531 | 0.1709 | 0.046* | |
H3B | 0.6842 | 0.7708 | 0.1643 | 0.046* | |
H3C | 0.7347 | 0.8192 | 0.3414 | 0.046* | |
C4 | 0.5122 (3) | 0.78733 (14) | 0.7404 (3) | 0.0326 (5) | |
H4A | 0.5957 | 0.7907 | 0.7878 | 0.049* | |
H4B | 0.4762 | 0.7433 | 0.7891 | 0.049* | |
H4C | 0.4657 | 0.8276 | 0.7908 | 0.049* | |
C5 | 0.3709 (2) | 0.72972 (13) | 0.2806 (4) | 0.0308 (6) | |
H5A | 0.2923 | 0.7504 | 0.3140 | 0.046* | |
H5B | 0.3733 | 0.6806 | 0.3261 | 0.046* | |
H5C | 0.3827 | 0.7313 | 0.1357 | 0.046* | |
C6 | 0.3758 (2) | 0.56431 (13) | −0.0639 (4) | 0.0318 (6) | |
H6A | 0.3182 | 0.5848 | 0.0307 | 0.048* | |
H6B | 0.3323 | 0.5357 | −0.1622 | 0.048* | |
H6C | 0.4195 | 0.6022 | −0.1324 | 0.048* | |
C7 | 0.5000 | 0.5000 | 0.4082 (4) | 0.0354 (8) | |
H7A | 0.5631 | 0.4681 | 0.4570 | 0.053* | 0.5 |
H7B | 0.4212 | 0.4840 | 0.4570 | 0.053* | 0.5 |
H7C | 0.5156 | 0.5479 | 0.4570 | 0.053* | 0.5 |
C8 | 0.6991 (3) | 0.61657 (14) | −0.0214 (4) | 0.0293 (6) | |
H8 | 0.754 (3) | 0.6574 (18) | 0.034 (5) | 0.059 (11)* | |
H1 | 0.365 (3) | 0.8863 (17) | 0.352 (5) | 0.051 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.01811 (9) | 0.01947 (9) | 0.02172 (9) | 0.00005 (9) | 0.000 | 0.000 |
Sn2 | 0.02197 (7) | 0.01935 (7) | 0.01820 (7) | −0.00208 (7) | −0.00006 (8) | 0.00073 (5) |
Sn3 | 0.02102 (9) | 0.02158 (9) | 0.01588 (9) | 0.00227 (9) | 0.000 | 0.000 |
O1 | 0.0229 (8) | 0.0186 (8) | 0.0409 (11) | −0.0023 (6) | −0.0077 (9) | 0.0001 (8) |
O2 | 0.0672 (15) | 0.0270 (10) | 0.0243 (10) | 0.0151 (10) | −0.0095 (10) | −0.0033 (8) |
O3 | 0.0312 (9) | 0.0298 (9) | 0.0215 (9) | −0.0063 (7) | 0.0027 (7) | −0.0014 (7) |
O4 | 0.0402 (11) | 0.0324 (10) | 0.0237 (9) | 0.0027 (8) | 0.0069 (8) | 0.0040 (8) |
C1 | 0.0422 (19) | 0.0356 (17) | 0.0246 (15) | −0.0051 (19) | 0.000 | 0.000 |
C2 | 0.0232 (11) | 0.0292 (12) | 0.0328 (14) | 0.0009 (9) | −0.0063 (11) | −0.0031 (11) |
C3 | 0.0274 (13) | 0.0346 (14) | 0.0298 (14) | −0.0020 (10) | 0.0062 (11) | 0.0034 (11) |
C4 | 0.0401 (14) | 0.0367 (12) | 0.0209 (10) | 0.0067 (16) | 0.0047 (13) | −0.0009 (9) |
C5 | 0.0332 (14) | 0.0272 (12) | 0.0320 (14) | −0.0078 (10) | −0.0052 (11) | −0.0016 (10) |
C6 | 0.0341 (13) | 0.0263 (12) | 0.0350 (15) | 0.0070 (10) | −0.0090 (13) | −0.0015 (11) |
C7 | 0.0332 (17) | 0.056 (2) | 0.0170 (14) | −0.014 (2) | 0.000 | 0.000 |
C8 | 0.0310 (14) | 0.0290 (14) | 0.0280 (14) | −0.0054 (11) | 0.0015 (10) | 0.0024 (10) |
Sn1—O1 | 2.2433 (16) | C1—H1B | 0.9800 |
Sn1—O1i | 2.2433 (16) | C1—H1C | 0.9800 |
Sn1—C1 | 2.133 (3) | C2—H2C | 0.9800 |
Sn1—C2 | 2.124 (2) | C2—H2D | 0.9800 |
Sn1—C2i | 2.124 (2) | C2—H2E | 0.9800 |
Sn2—O1 | 2.1036 (16) | C3—H3A | 0.9800 |
Sn2—O2 | 2.5023 (19) | C3—H3B | 0.9800 |
Sn2—C3 | 2.121 (2) | C3—H3C | 0.9800 |
Sn2—C4 | 2.123 (2) | C4—H4A | 0.9800 |
Sn2—C5 | 2.126 (2) | C4—H4B | 0.9800 |
Sn3—O3ii | 2.2991 (17) | C4—H4C | 0.9800 |
Sn3—O3 | 2.2990 (17) | C5—H5A | 0.9800 |
Sn3—C6 | 2.114 (2) | C5—H5B | 0.9800 |
Sn3—C6ii | 2.114 (2) | C5—H5C | 0.9800 |
Sn3—C7 | 2.119 (3) | C6—H6A | 0.9800 |
O1—H1 | 0.79 (4) | C6—H6B | 0.9800 |
O2—H2A | 0.87 (2) | C6—H6C | 0.9800 |
O2—H2B | 0.86 (2) | C7—H7A | 0.9800 |
O3—C8 | 1.269 (3) | C7—H7B | 0.9800 |
O4—C8 | 1.224 (3) | C7—H7C | 0.9800 |
C1—H1A | 0.9800 | C8—H8 | 1.05 (3) |
O1—Sn1—O1i | 178.83 (11) | H1A—C1—H1C | 109.5 |
C1—Sn1—O1i | 89.42 (5) | H1B—C1—H1C | 109.5 |
C1—Sn1—O1 | 89.42 (5) | Sn1—C2—H2C | 109.5 |
C2—Sn1—O1 | 91.14 (8) | Sn1—C2—H2D | 109.5 |
C2—Sn1—O1i | 89.46 (8) | Sn1—C2—H2E | 109.5 |
C2i—Sn1—O1 | 89.46 (8) | H2C—C2—H2D | 109.5 |
C2i—Sn1—O1i | 91.14 (8) | H2C—C2—H2E | 109.5 |
C2i—Sn1—C1 | 121.00 (7) | H2D—C2—H2E | 109.5 |
C2—Sn1—C1 | 121.00 (7) | Sn2—C3—H3A | 109.5 |
C2—Sn1—C2i | 118.01 (15) | Sn2—C3—H3B | 109.5 |
O1—Sn2—O2 | 176.30 (8) | Sn2—C3—H3C | 109.5 |
O1—Sn2—C3 | 95.79 (9) | H3A—C3—H3B | 109.5 |
O1—Sn2—C4 | 95.99 (9) | H3A—C3—H3C | 109.5 |
O1—Sn2—C5 | 97.41 (9) | H3B—C3—H3C | 109.5 |
C3—Sn2—O2 | 81.51 (9) | Sn2—C4—H4A | 109.5 |
C3—Sn2—C4 | 122.30 (12) | Sn2—C4—H4B | 109.5 |
C3—Sn2—C5 | 116.97 (11) | Sn2—C4—H4C | 109.5 |
C4—Sn2—O2 | 83.41 (9) | H4A—C4—H4B | 109.5 |
C4—Sn2—C5 | 117.08 (11) | H4A—C4—H4C | 109.5 |
C5—Sn2—O2 | 86.09 (9) | H4B—C4—H4C | 109.5 |
O3—Sn3—O3ii | 171.04 (9) | Sn2—C5—H5A | 109.5 |
C6—Sn3—O3ii | 92.99 (9) | Sn2—C5—H5B | 109.5 |
C6ii—Sn3—O3ii | 91.44 (9) | Sn2—C5—H5C | 109.5 |
C6ii—Sn3—O3 | 92.99 (9) | H5A—C5—H5B | 109.5 |
C6—Sn3—O3 | 91.43 (9) | H5A—C5—H5C | 109.5 |
C6ii—Sn3—C6 | 120.80 (16) | H5B—C5—H5C | 109.5 |
C6—Sn3—C7 | 119.60 (8) | Sn3—C6—H6A | 109.5 |
C6ii—Sn3—C7 | 119.60 (8) | Sn3—C6—H6B | 109.5 |
C7—Sn3—O3ii | 85.52 (4) | Sn3—C6—H6C | 109.5 |
C7—Sn3—O3 | 85.52 (4) | H6A—C6—H6B | 109.5 |
Sn1—O1—H1 | 112 (2) | H6A—C6—H6C | 109.5 |
Sn2—O1—Sn1 | 135.44 (9) | H6B—C6—H6C | 109.5 |
Sn2—O1—H1 | 112 (2) | Sn3—C7—H7A | 109.5 |
Sn2—O2—H2A | 125 (3) | Sn3—C7—H7B | 109.5 |
Sn2—O2—H2B | 131 (2) | Sn3—C7—H7C | 109.5 |
H2A—O2—H2B | 102 (3) | H7A—C7—H7B | 109.5 |
C8—O3—Sn3 | 125.94 (17) | H7A—C7—H7C | 109.5 |
Sn1—C1—H1A | 109.5 | H7B—C7—H7C | 109.5 |
Sn1—C1—H1B | 109.5 | O3—C8—H8 | 110 (2) |
Sn1—C1—H1C | 109.5 | O4—C8—O3 | 128.1 (3) |
H1A—C1—H1B | 109.5 | O4—C8—H8 | 122 (2) |
Sn3—O3—C8—O4 | 5.5 (4) |
Symmetry codes: (i) −x+1, −y+2, z; (ii) −x+1, −y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O3 | 0.87 (2) | 1.92 (3) | 2.770 (3) | 164 (4) |
O2—H2B···O4iii | 0.86 (2) | 1.93 (2) | 2.791 (3) | 178 (3) |
O1—H1···O4iv | 0.79 (4) | 2.14 (4) | 2.917 (3) | 167 (3) |
Symmetry codes: (iii) x, y, z+1; (iv) x−1/2, −y+3/2, −z. |
[Sn3(CH3)9(OH)2]Cl·H2O | Dx = 2.000 Mg m−3 |
Mr = 578.86 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 9903 reflections |
a = 12.623 (3) Å | θ = 2.9–29.6° |
b = 8.2675 (18) Å | µ = 4.00 mm−1 |
c = 18.421 (5) Å | T = 100 K |
V = 1922.4 (8) Å3 | Block, colourless |
Z = 4 | 0.16 × 0.14 × 0.07 mm |
F(000) = 1104 |
Bruker D8 VENTURE area detector diffractometer | 5072 reflections with I > 2σ(I) |
Detector resolution: 10.4167 pixels mm-1 | Rint = 0.019 |
φ and ω scans | θmax = 29.7°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −15→17 |
Tmin = 0.010, Tmax = 0.032 | k = −11→11 |
16017 measured reflections | l = −25→25 |
5320 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.022 | w = 1/[σ2(Fo2) + (0.0269P)2 + 0.6817P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.050 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 1.01 e Å−3 |
5320 reflections | Δρmin = −0.38 e Å−3 |
170 parameters | Absolute structure: Flack x determined using 2271 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
5 restraints | Absolute structure parameter: −0.026 (19) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7513 (5) | 0.1853 (7) | 0.7655 (3) | 0.0397 (11) | |
H1A | 0.7352 | 0.2995 | 0.7566 | 0.059* | |
H1B | 0.8181 | 0.1767 | 0.7924 | 0.059* | |
H1C | 0.6941 | 0.1366 | 0.7941 | 0.059* | |
C2 | 0.7054 (4) | −0.1756 (6) | 0.6542 (3) | 0.0345 (10) | |
H2A | 0.6448 | −0.1902 | 0.6868 | 0.052* | |
H2B | 0.7609 | −0.2537 | 0.6667 | 0.052* | |
H2C | 0.6828 | −0.1931 | 0.6039 | 0.052* | |
C3 | 0.8814 (4) | 0.1523 (7) | 0.5927 (3) | 0.0358 (11) | |
H3A | 0.8661 | 0.1136 | 0.5435 | 0.054* | |
H3B | 0.9515 | 0.1141 | 0.6077 | 0.054* | |
H3C | 0.8802 | 0.2709 | 0.5933 | 0.054* | |
C4 | 0.6887 (5) | 0.4752 (7) | 0.5271 (3) | 0.0436 (13) | |
H4A | 0.7587 | 0.4640 | 0.5046 | 0.065* | |
H4B | 0.6969 | 0.4882 | 0.5797 | 0.065* | |
H4C | 0.6527 | 0.5702 | 0.5071 | 0.065* | |
C5 | 0.4333 (5) | 0.2706 (8) | 0.5290 (3) | 0.0490 (15) | |
H5A | 0.4053 | 0.3790 | 0.5191 | 0.073* | |
H5B | 0.4221 | 0.2438 | 0.5802 | 0.073* | |
H5C | 0.3965 | 0.1915 | 0.4984 | 0.073* | |
C6 | 0.6638 (5) | 0.0545 (6) | 0.4578 (3) | 0.0381 (11) | |
H6A | 0.6173 | 0.0158 | 0.4189 | 0.057* | |
H6B | 0.6712 | −0.0298 | 0.4948 | 0.057* | |
H6C | 0.7336 | 0.0803 | 0.4376 | 0.057* | |
C7 | 0.7215 (4) | 0.6488 (6) | 0.3435 (3) | 0.0367 (10) | |
H7A | 0.7630 | 0.5597 | 0.3640 | 0.055* | |
H7B | 0.7275 | 0.7439 | 0.3750 | 0.055* | |
H7C | 0.7485 | 0.6753 | 0.2950 | 0.055* | |
C8 | 0.4542 (4) | 0.7036 (6) | 0.4051 (3) | 0.0359 (11) | |
H8A | 0.3839 | 0.6535 | 0.4026 | 0.054* | |
H8B | 0.4493 | 0.8169 | 0.3898 | 0.054* | |
H8C | 0.4806 | 0.6985 | 0.4551 | 0.054* | |
C9 | 0.5063 (5) | 0.4823 (7) | 0.2352 (3) | 0.0390 (11) | |
H9A | 0.5524 | 0.5207 | 0.1960 | 0.059* | |
H9B | 0.4335 | 0.5179 | 0.2260 | 0.059* | |
H9C | 0.5085 | 0.3639 | 0.2371 | 0.059* | |
O1 | 0.6340 (3) | 0.1729 (4) | 0.61594 (19) | 0.0327 (7) | |
H1 | 0.575 (4) | 0.168 (9) | 0.648 (3) | 0.06 (2)* | |
O2 | 0.5652 (3) | 0.3638 (4) | 0.39350 (19) | 0.0333 (7) | |
H2 | 0.519 (4) | 0.293 (6) | 0.369 (3) | 0.040 (16)* | |
Sn1 | 0.76540 (2) | 0.06256 (3) | 0.66540 (2) | 0.02692 (7) | |
Sn2 | 0.59742 (2) | 0.26536 (3) | 0.50553 (2) | 0.02755 (7) | |
Sn3 | 0.55935 (2) | 0.57842 (4) | 0.33566 (2) | 0.02786 (7) | |
O3 | 0.4394 (3) | 0.1219 (5) | 0.3417 (3) | 0.0488 (10) | |
H3D | 0.467 (7) | 0.043 (8) | 0.308 (4) | 0.08 (3)* | |
H3E | 0.365 (4) | 0.127 (15) | 0.328 (10) | 0.18 (6)* | |
Cl1 | 0.94986 (10) | −0.10984 (17) | 0.73601 (7) | 0.0379 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.037 (3) | 0.049 (3) | 0.033 (3) | 0.000 (3) | −0.002 (2) | −0.011 (2) |
C2 | 0.033 (2) | 0.034 (2) | 0.037 (3) | −0.0031 (19) | −0.002 (2) | 0.0016 (19) |
C3 | 0.029 (2) | 0.042 (3) | 0.036 (3) | −0.003 (2) | 0.002 (2) | 0.004 (2) |
C4 | 0.058 (4) | 0.037 (3) | 0.035 (3) | −0.009 (3) | −0.009 (2) | 0.003 (2) |
C5 | 0.035 (3) | 0.068 (4) | 0.044 (3) | 0.007 (3) | 0.004 (2) | 0.019 (3) |
C6 | 0.048 (3) | 0.034 (2) | 0.032 (2) | 0.007 (2) | −0.006 (2) | −0.0010 (19) |
C7 | 0.032 (2) | 0.044 (3) | 0.034 (2) | −0.002 (2) | 0.000 (2) | 0.006 (2) |
C8 | 0.036 (3) | 0.041 (3) | 0.031 (2) | 0.003 (2) | 0.003 (2) | 0.002 (2) |
C9 | 0.046 (3) | 0.039 (3) | 0.032 (2) | 0.000 (2) | −0.008 (2) | 0.001 (2) |
O1 | 0.0276 (17) | 0.0410 (18) | 0.0295 (17) | 0.0025 (15) | 0.0020 (14) | 0.0056 (14) |
O2 | 0.041 (2) | 0.0288 (17) | 0.0306 (17) | −0.0010 (15) | −0.0037 (15) | 0.0010 (13) |
Sn1 | 0.02689 (14) | 0.02985 (14) | 0.02403 (13) | −0.00150 (11) | 0.00091 (13) | 0.00026 (11) |
Sn2 | 0.02642 (14) | 0.02809 (14) | 0.02815 (14) | 0.00031 (11) | −0.00014 (13) | 0.00004 (12) |
Sn3 | 0.02768 (15) | 0.02928 (14) | 0.02664 (14) | 0.00066 (11) | −0.00002 (13) | 0.00054 (12) |
O3 | 0.047 (2) | 0.045 (2) | 0.054 (3) | 0.0023 (18) | −0.005 (2) | −0.011 (2) |
Cl1 | 0.0311 (6) | 0.0487 (7) | 0.0339 (6) | 0.0014 (5) | −0.0004 (5) | 0.0028 (5) |
C1—H1A | 0.9800 | C6—Sn2 | 2.125 (5) |
C1—H1B | 0.9800 | C7—H7A | 0.9800 |
C1—H1C | 0.9800 | C7—H7B | 0.9800 |
C1—Sn1 | 2.113 (5) | C7—H7C | 0.9800 |
C2—H2A | 0.9800 | C7—Sn3 | 2.133 (5) |
C2—H2B | 0.9800 | C8—H8A | 0.9800 |
C2—H2C | 0.9800 | C8—H8B | 0.9800 |
C2—Sn1 | 2.120 (5) | C8—H8C | 0.9800 |
C3—H3A | 0.9800 | C8—Sn3 | 2.114 (5) |
C3—H3B | 0.9800 | C9—H9A | 0.9800 |
C3—H3C | 0.9800 | C9—H9B | 0.9800 |
C3—Sn1 | 2.118 (5) | C9—H9C | 0.9800 |
C4—H4A | 0.9800 | C9—Sn3 | 2.123 (5) |
C4—H4B | 0.9800 | O1—H1 | 0.95 (3) |
C4—H4C | 0.9800 | O1—Sn1 | 2.100 (3) |
C4—Sn2 | 2.120 (5) | O1—Sn2 | 2.222 (3) |
C5—H5A | 0.9800 | O2—H2 | 0.94 (3) |
C5—H5B | 0.9800 | O2—Sn2 | 2.255 (4) |
C5—H5C | 0.9800 | O2—Sn3 | 2.071 (3) |
C5—Sn2 | 2.117 (6) | Sn1—Cl1 | 3.0240 (14) |
C6—H6A | 0.9800 | O3—H3D | 0.97 (3) |
C6—H6B | 0.9800 | O3—H3E | 0.98 (3) |
C6—H6C | 0.9800 | Cl1—Sn3i | 3.1663 (15) |
H1A—C1—H1B | 109.5 | H8B—C8—H8C | 109.5 |
H1A—C1—H1C | 109.5 | Sn3—C8—H8A | 109.5 |
H1B—C1—H1C | 109.5 | Sn3—C8—H8B | 109.5 |
Sn1—C1—H1A | 109.5 | Sn3—C8—H8C | 109.5 |
Sn1—C1—H1B | 109.5 | H9A—C9—H9B | 109.5 |
Sn1—C1—H1C | 109.5 | H9A—C9—H9C | 109.5 |
H2A—C2—H2B | 109.5 | H9B—C9—H9C | 109.5 |
H2A—C2—H2C | 109.5 | Sn3—C9—H9A | 109.5 |
H2B—C2—H2C | 109.5 | Sn3—C9—H9B | 109.5 |
Sn1—C2—H2A | 109.5 | Sn3—C9—H9C | 109.5 |
Sn1—C2—H2B | 109.5 | Sn1—O1—H1 | 109 (4) |
Sn1—C2—H2C | 109.5 | Sn1—O1—Sn2 | 135.30 (17) |
H3A—C3—H3B | 109.5 | Sn2—O1—H1 | 115 (4) |
H3A—C3—H3C | 109.5 | Sn2—O2—H2 | 109 (4) |
H3B—C3—H3C | 109.5 | Sn3—O2—H2 | 105 (4) |
Sn1—C3—H3A | 109.5 | Sn3—O2—Sn2 | 141.84 (17) |
Sn1—C3—H3B | 109.5 | C1—Sn1—C2 | 120.1 (2) |
Sn1—C3—H3C | 109.5 | C1—Sn1—C3 | 116.2 (2) |
H4A—C4—H4B | 109.5 | C1—Sn1—Cl1 | 85.16 (17) |
H4A—C4—H4C | 109.5 | C2—Sn1—Cl1 | 83.06 (14) |
H4B—C4—H4C | 109.5 | C3—Sn1—C2 | 120.7 (2) |
Sn2—C4—H4A | 109.5 | C3—Sn1—Cl1 | 84.55 (15) |
Sn2—C4—H4B | 109.5 | O1—Sn1—C1 | 95.96 (19) |
Sn2—C4—H4C | 109.5 | O1—Sn1—C2 | 94.52 (17) |
H5A—C5—H5B | 109.5 | O1—Sn1—C3 | 96.85 (17) |
H5A—C5—H5C | 109.5 | O1—Sn1—Cl1 | 177.58 (10) |
H5B—C5—H5C | 109.5 | C4—Sn2—C6 | 122.3 (3) |
Sn2—C5—H5A | 109.5 | C4—Sn2—O1 | 89.81 (18) |
Sn2—C5—H5B | 109.5 | C4—Sn2—O2 | 88.55 (17) |
Sn2—C5—H5C | 109.5 | C5—Sn2—C4 | 118.5 (3) |
H6A—C6—H6B | 109.5 | C5—Sn2—C6 | 119.2 (3) |
H6A—C6—H6C | 109.5 | C5—Sn2—O1 | 91.36 (18) |
H6B—C6—H6C | 109.5 | C5—Sn2—O2 | 90.15 (19) |
Sn2—C6—H6A | 109.5 | C6—Sn2—O1 | 90.83 (17) |
Sn2—C6—H6B | 109.5 | C6—Sn2—O2 | 89.35 (17) |
Sn2—C6—H6C | 109.5 | O1—Sn2—O2 | 178.17 (14) |
H7A—C7—H7B | 109.5 | C8—Sn3—C7 | 115.3 (2) |
H7A—C7—H7C | 109.5 | C8—Sn3—C9 | 120.9 (2) |
H7B—C7—H7C | 109.5 | C9—Sn3—C7 | 117.6 (2) |
Sn3—C7—H7A | 109.5 | O2—Sn3—C7 | 99.50 (18) |
Sn3—C7—H7B | 109.5 | O2—Sn3—C8 | 97.50 (17) |
Sn3—C7—H7C | 109.5 | O2—Sn3—C9 | 97.99 (18) |
H8A—C8—H8B | 109.5 | H3D—O3—H3E | 102 (10) |
H8A—C8—H8C | 109.5 | Sn1—Cl1—Sn3i | 127.21 (4) |
Symmetry code: (i) −x+3/2, y−1, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3 | 0.94 (3) | 1.81 (3) | 2.726 (5) | 164 (6) |
O1—H1···Cl1ii | 0.95 (3) | 2.32 (3) | 3.251 (4) | 168 (6) |
O3—H3D···Cl1iii | 0.97 (3) | 2.10 (3) | 3.068 (5) | 171 (8) |
Symmetry codes: (ii) x−1/2, −y, z; (iii) −x+3/2, y, z−1/2. |
Acknowledgements
We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support.
References
Anderson, K. M., Tallentire, S. E., Probert, M. R., Goeta, A. E., Mendis, B. G. & Steed, J. W. (2011). Cryst. Growth Des. 11, 820–826. CSD CrossRef CAS Google Scholar
Brown, W. H., Foote, C. S., Iverson, B. L. & Anslyn, E. V. (2009). Editors. Organic Chemistry, 5th ed., p. 289. Salt Lake City: Brooks Cole. Google Scholar
Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Däschlein, C., Gessner, V. H. & Strohmann, C. (2010). Chem. Eur. J. 16, 4048–4062. Web of Science PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Koller, S. G., Kroesen, U. & Strohmann, C. (2015). Chem. Eur. J. 21, 641–647. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kraus, C. A. & Bullard, R. H. (1929). J. Am. Chem. Soc. 51, 3605–3609. CrossRef CAS Google Scholar
Lerner, H.-W., Ilkhechi, A. H., Bolte, M. & Wagner, M. (2005). Z. Naturforsch. Teil B, 60, 413–415. CAS Google Scholar
Machunda, R. L., Ju, H. & Lee, J. (2011). Curr. Appl. Phys. 11, 986–988. CrossRef Google Scholar
Okawara, R. & Yasuda, K. (1964). J. Organomet. Chem. 1, 356–359. CrossRef CAS Google Scholar
Ott, H., Däschlein, C., Leusser, D., Schildbach, D., Seibel, T., Stalke, D. & Strohmann, C. (2008). J. Am. Chem. Soc. 130, 11901–11911. Web of Science CSD CrossRef PubMed CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Strohmann, C., Lehmen, K. & Dilsky, S. (2006). J. Am. Chem. Soc. 128, 8102–8103. Web of Science CSD CrossRef PubMed CAS Google Scholar
Tiekink, E. R. T. (1986). J. Organomet. Chem. 302, C1–C3. CAS Google Scholar
Unkelbach, C., Abele, B. C., Lehmen, K., Schildbach, D., Waerder, B., Wild, K. & Strohmann, C. (2012). Chem. Commun. 48, 2492–2494. CSD CrossRef CAS Google Scholar
Zhang, S., Kang, P. & Meyer, T. J. (2014). J. Am. Chem. Soc. 136, 1734–1737. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.