research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (OC)5W(μ-dppe)W(CO)5

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Western Illinois University, Macomb, Illinois 61455, USA, and bDepartment of Chemistry, Eastern Illinois University, Charleston, Illinois, 61920, USA
*Correspondence e-mail: b-bellott@wiu.edu

Edited by A. Van der Lee, Université de Montpellier II, France (Received 7 August 2016; accepted 25 August 2016; online 5 September 2016)

The centrosymmetric title complex, [μ-ethane-1,2-diylbis(di­phenyl­phosphane)-κ2P:P′]bis­[penta­carbonyl­tungsten(0)], [W2(C26H24P2)(CO)10], consists of two W(CO)5 moieties bridged by a bis­(di­phenyl­phosphan­yl)ethane (dppe) ligand. The W0 atom has a slightly distorted octa­hedral coordination environment consisting of 5 carbonyl ligands and one P atom from the bridging dppe ligand with the nearest W0 atom 5.625 (5) Å away. The complex resides on a center of symmetry.

1. Chemical context

In 1976, Pickett and Pletcher studied the mechanism of reduction of a group 6 carbonyl complex in the presence of carbon dioxide (Pickett & Pletcher, 1976[Pickett, C. J. & Pletcher, D. (1976). J. Chem. Soc. Dalton Trans. pp. 749.]). Recently Grice & Saucedo (2016[Grice, K. A. & Saucedo, C. (2016). Inorg. Chem. 55, 6240-6246.]) have shown that group 6 metal–carbonyl complexes without `non-innocent' ligands can electrocatalytically reduce CO2. Dickson et al. (1989[Dickson, C. A., McFarlane, A. W. & Coville, N. J. (1989). Inorg. Chim. Acta, 158, 205-209.]) varied the ligand Ph2P(CH2)nPPh2 (n = 2, 4, and 5), finding that the predominate product in the reactions of n = 2 and 5 is the bridged complex (OC)5W[μ-Ph2P(CH2)n]PPh2)W(CO)5, whereas when n = 4 it was reported the chelated product is favored (W(CO)4[μ-Ph2P(CH2)4PPh2]. Tan et al. (1994[Tan, K.-C., Andy Hor, T. S. & Lee, H. K. (1994). J. Liq. Chromatogr. 17, 3671-3680.]) reported the separation of several diphosphine-bridged group 6 deca­carbonyl complexes by HPLC, but no further characterization was reported. Keiter et al. (1981[Keiter, R. L., Kaiser, S. L., Hansen, N. P., Brodack, J. W. & Cary, L. W. (1981). Inorg. Chem. 20, 283-284.]) and Gan et al. (1993[Gan, K.-S., Lee, H. K. & Hor, T. S. A. (1993). J. Organomet. Chem. 460, 197-202.]) have reported group 6 heterobimetallic complexes using dppe as the bridging ligand. The title complex has been reported by Keiter & Shah (1972[Keiter, R. L. & Shah, D. P. (1972). Inorg. Chem. 11, 191-193.]), Ozer et al. (1993[Ozer, Z., Ozkar, S. & Pamuk, H. O. (1993). Z. Naturforsch. Teil B, 48, 37-43.]), and El-Khateeb et al. (2002[El-Khateeb, M., Asali, K. J. & Musa, M. M. (2002). Transition Met. Chem. 27, 163-165.]), but the structure has yet to be published. We report here its single crystal X-ray structure determination.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (OC)5W(μ-dppe)W(CO)5 (Fig. 1[link]) consists of two six-coordinate tungsten(0) atoms, each in a slightly distorted octa­hedral environment. The coordination environment of tungsten has five carbonyl ligands and one phospho­rus atom from the dppe ligand. The axial carbonyl ligands have a bond length of 2.015 (3) Å and the average bond length for the equatorial carbonyl ligands is 2.048 (8) Å. The W1—P1 bond length is 2.5200 (8) Å and the P1—W1—C(axial) bond angle is 178.79 (9)°. The average P1—W1—C(equatorial) bond angle is 90.10 (18)°. Examination of the dppe backbone shows the P1—C13 bond length at 1.843 (3) Å and the C13—C13 bond length at 1.531 (6) Å. The mol­ecule sits on a center of symmetry.

[Figure 1]
Figure 1
The mol­ecular structure of (OC)5W(μ-Ph2PCH2CH2PPh2)W(CO)5 with displacement ellipsoids drawn at 50% probability level for non-H atoms and H atoms shown as spheres of arbitrary size. Non-labelled atoms are generated by the symmetry operationx, −y + 1, −z + 1.

3. Supra­molecular features

The two tungsten atoms in each of the mol­ecules (OC)5W(μ-dppe)W(CO)5 are bridged by a diphosphine approximately along the c axis and the mol­ecules themselves are stacked along the a axis. No significant van der Waals-type inter­actions such as C—H⋯π or ππ contacts between adjacent mol­ecules are observed.

4. Database survey

A search of the database for homonuclear deca­carbonyl group 6 complexes bridged by symmetric phosphines yielded four complexes. There are two tungsten complexes (OC)5W[μ-Ph2P(CH2)5PPh2]W(CO)5 (Ueng & Shih, 1995[Ueng, C.-H. & Shih, G.-Y. (1995). Acta Cryst. C51, 1524-1526.]), (OC)5W(μ-Ph2PCH2PPh2)W(CO)5 (Benson et al., 1998[Benson, J. W., Keiter, R. L., Keiter, E. A., Rheingold, A. L., Yap, G. P. A. & Mainz, V. V. (1998). Organometallics, 17, 4275-4281.]), one molybdenum complex (OC)5Mo[μ-Ph2P(CH2)2PPh2]Mo(CO)5 (Alyea et al., 1990[Alyea, E. C., Ferguson, G., Fisher, K. J., Gossage, R. A. & Jennings, M. C. (1990). Polyhedron, 9, 2393-2397.]), and one chromium complex (OC)5Cr[μ-Ph2P(CH2)5PPh2]Cr(CO)5 (Ueng & Shih, 1995[Ueng, C.-H. & Shih, G.-Y. (1995). Acta Cryst. C51, 1524-1526.]).

5. Synthesis and crystallization

All synthesis and crystallization procedures were carried out using standard Schlenk techniques. Di­chloro­methane was added to a mixture of W(CO)5(NH2C6H5) (0.10 g, 2.9 mmol) and dppe (0.12 g, 3.0 mmol) to produce a golden yellow solution. After two h, methanol was added to precipitate a yellow solid. The precipitate was collected and washed with methanol (3 x 20 mL). The resulting yellow solid was recrystallized from a 1:5 mixture of di­chloro­methane:methanol at 253 K.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1[link]. The phenyl H-atom positions and the methyl­ene H atoms on the ligand backbone have been positioned according to idealized C—H distances.

Table 1
Experimental details

Crystal data
Chemical formula [W2(C26H24P2)(CO)10]
Mr 1046.17
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.8193 (4), 16.0492 (7), 11.3312 (5)
β (°) 96.511 (2)
V3) 1774.19 (13)
Z 2
Radiation type Cu Kα
μ (mm−1) 13.15
Crystal size (mm) 0.15 × 0.14 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.254, 0.756
No. of measured, independent and observed [I > 2σ(I)] reflections 26419, 3256, 2954
Rint 0.056
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.048, 1.06
No. of reflections 3256
No. of parameters 226
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.58
Computer programs: APEX2 and SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

[µ-Ethane-1,2-diylbis(diphenylphosphane)-κ2P:P']bis[pentacarbonyltungsten(0)] top
Crystal data top
[W2(C26H24P2)(CO)10]F(000) = 996
Mr = 1046.17Dx = 1.958 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 9.8193 (4) ÅCell parameters from 8094 reflections
b = 16.0492 (7) Åθ = 4.6–66.6°
c = 11.3312 (5) ŵ = 13.15 mm1
β = 96.511 (2)°T = 100 K
V = 1774.19 (13) Å3Transparent rhomboid, colorless
Z = 20.15 × 0.14 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
2954 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.056
phi and ω scansθmax = 68.2°, θmin = 4.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 1111
Tmin = 0.254, Tmax = 0.756k = 1919
26419 measured reflectionsl = 1313
3256 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0218P)2 + 0.5664P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3256 reflectionsΔρmax = 0.54 e Å3
226 parametersΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All nonhydrogen atoms were located in a single difference Fourier electron density maps and refined using anisotropic diplacement parameters. All C-H hydrogen atoms were placed in calculated positions with Uiso = 1.2xUeqiv of the connected C atoms

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.17092 (2)0.47944 (2)0.81902 (2)0.01462 (6)
P10.15114 (8)0.56563 (5)0.63197 (7)0.01359 (16)
O10.1345 (2)0.64362 (16)0.9701 (2)0.0277 (6)
O20.1519 (2)0.44991 (18)0.7958 (2)0.0324 (6)
O30.2025 (2)0.36975 (16)1.0520 (2)0.0286 (6)
O40.2103 (3)0.31759 (16)0.6641 (2)0.0317 (6)
O50.4947 (2)0.50864 (15)0.8560 (2)0.0274 (6)
C10.0518 (3)0.66234 (19)0.6298 (3)0.0162 (6)
C20.0733 (3)0.7262 (2)0.5503 (3)0.0206 (7)
H20.13830.71880.49500.025*
C30.0010 (3)0.8002 (2)0.5510 (3)0.0251 (8)
H30.01550.84290.49580.030*
C40.0924 (3)0.8119 (2)0.6323 (3)0.0253 (8)
H40.14020.86330.63420.030*
C50.1164 (3)0.7490 (2)0.7106 (3)0.0238 (7)
H50.18130.75710.76570.029*
C60.0453 (3)0.6737 (2)0.7089 (3)0.0196 (7)
H60.06330.63010.76180.023*
C70.3146 (3)0.60406 (19)0.5907 (3)0.0149 (6)
C80.3683 (3)0.5823 (2)0.4868 (3)0.0202 (7)
H80.31910.54550.43190.024*
C90.4940 (3)0.6143 (2)0.4630 (3)0.0264 (8)
H90.53000.59910.39170.032*
C100.5671 (3)0.6679 (2)0.5420 (3)0.0260 (8)
H100.65320.68920.52560.031*
C110.5130 (4)0.6903 (2)0.6460 (3)0.0269 (8)
H110.56140.72800.70010.032*
C120.3894 (3)0.6578 (2)0.6706 (3)0.0218 (7)
H120.35460.67220.74280.026*
C130.0738 (3)0.51389 (19)0.4953 (3)0.0146 (6)
H13A0.07470.55280.42750.018*
H13B0.12970.46470.47930.018*
C140.1472 (3)0.5850 (2)0.9158 (3)0.0205 (7)
C150.0363 (4)0.4607 (2)0.8030 (3)0.0213 (7)
C160.1906 (3)0.4096 (2)0.9678 (3)0.0207 (7)
C170.1959 (3)0.3754 (2)0.7191 (3)0.0202 (7)
C180.3793 (4)0.4984 (2)0.8413 (3)0.0205 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01547 (9)0.01626 (9)0.01235 (9)0.00103 (5)0.00255 (5)0.00059 (6)
P10.0139 (4)0.0142 (4)0.0128 (4)0.0021 (3)0.0019 (3)0.0009 (3)
O10.0315 (14)0.0288 (14)0.0221 (13)0.0051 (11)0.0009 (10)0.0088 (12)
O20.0196 (14)0.0540 (18)0.0243 (13)0.0101 (12)0.0050 (10)0.0027 (13)
O30.0304 (14)0.0356 (15)0.0209 (13)0.0049 (11)0.0071 (10)0.0106 (12)
O40.0430 (16)0.0231 (14)0.0311 (14)0.0061 (11)0.0128 (12)0.0054 (12)
O50.0162 (13)0.0269 (13)0.0380 (15)0.0008 (10)0.0017 (10)0.0032 (12)
C10.0159 (15)0.0160 (15)0.0157 (16)0.0016 (12)0.0030 (12)0.0033 (13)
C20.0194 (16)0.0193 (17)0.0230 (17)0.0002 (13)0.0012 (13)0.0001 (15)
C30.0227 (17)0.0193 (17)0.0319 (19)0.0013 (14)0.0028 (14)0.0053 (16)
C40.0167 (16)0.0219 (17)0.035 (2)0.0033 (14)0.0070 (14)0.0069 (16)
C50.0157 (16)0.0307 (19)0.0244 (18)0.0028 (14)0.0003 (13)0.0076 (16)
C60.0157 (15)0.0255 (18)0.0170 (16)0.0007 (13)0.0001 (13)0.0011 (14)
C70.0159 (15)0.0133 (15)0.0158 (15)0.0010 (12)0.0029 (12)0.0043 (13)
C80.0186 (16)0.0198 (17)0.0224 (17)0.0024 (13)0.0027 (13)0.0000 (14)
C90.0210 (17)0.033 (2)0.0259 (18)0.0012 (15)0.0080 (14)0.0037 (17)
C100.0179 (17)0.0234 (18)0.037 (2)0.0029 (14)0.0057 (15)0.0068 (17)
C110.0228 (18)0.0254 (18)0.032 (2)0.0090 (14)0.0025 (15)0.0033 (17)
C120.0184 (16)0.0236 (18)0.0243 (18)0.0023 (14)0.0063 (13)0.0030 (15)
C130.0177 (16)0.0152 (15)0.0109 (15)0.0028 (12)0.0007 (12)0.0027 (13)
C140.0175 (16)0.0303 (19)0.0136 (16)0.0017 (13)0.0016 (13)0.0012 (15)
C150.029 (2)0.0228 (18)0.0132 (16)0.0016 (14)0.0055 (13)0.0010 (14)
C160.0192 (16)0.0230 (17)0.0209 (18)0.0021 (13)0.0062 (13)0.0015 (16)
C170.0241 (17)0.0188 (17)0.0186 (17)0.0033 (13)0.0067 (13)0.0024 (15)
C180.029 (2)0.0147 (16)0.0180 (17)0.0001 (14)0.0025 (14)0.0002 (14)
Geometric parameters (Å, º) top
W1—C162.015 (3)C4—C51.381 (5)
W1—C152.044 (4)C4—H40.9500
W1—C142.045 (4)C5—C61.398 (5)
W1—C172.048 (3)C5—H50.9500
W1—C182.056 (4)C6—H60.9500
W1—P12.5200 (8)C7—C81.388 (4)
P1—C71.829 (3)C7—C121.397 (5)
P1—C11.832 (3)C8—C91.391 (5)
P1—C131.843 (3)C8—H80.9500
O1—C141.140 (4)C9—C101.382 (5)
O2—C151.143 (4)C9—H90.9500
O3—C161.144 (4)C10—C111.394 (5)
O4—C171.135 (4)C10—H100.9500
O5—C181.139 (4)C11—C121.378 (5)
C1—C61.393 (4)C11—H110.9500
C1—C21.397 (5)C12—H120.9500
C2—C31.384 (5)C13—C13i1.531 (6)
C2—H20.9500C13—H13A0.9900
C3—C41.385 (5)C13—H13B0.9900
C3—H30.9500
C16—W1—C1589.55 (13)C4—C5—H5119.9
C16—W1—C1491.03 (13)C6—C5—H5119.9
C15—W1—C1489.83 (13)C1—C6—C5120.1 (3)
C16—W1—C1790.16 (13)C1—C6—H6120.0
C15—W1—C1790.64 (13)C5—C6—H6120.0
C14—W1—C17178.72 (13)C8—C7—C12118.8 (3)
C16—W1—C1888.85 (13)C8—C7—P1124.1 (2)
C15—W1—C18178.03 (12)C12—C7—P1117.0 (2)
C14—W1—C1889.05 (13)C7—C8—C9120.2 (3)
C17—W1—C1890.52 (13)C7—C8—H8119.9
C16—W1—P1178.79 (9)C9—C8—H8119.9
C15—W1—P191.45 (9)C10—C9—C8120.7 (3)
C14—W1—P189.64 (9)C10—C9—H9119.6
C17—W1—P189.16 (9)C8—C9—H9119.6
C18—W1—P190.16 (9)C9—C10—C11119.2 (3)
C7—P1—C1101.08 (14)C9—C10—H10120.4
C7—P1—C13103.13 (14)C11—C10—H10120.4
C1—P1—C13101.69 (14)C12—C11—C10120.2 (3)
C7—P1—W1114.44 (10)C12—C11—H11119.9
C1—P1—W1117.80 (11)C10—C11—H11119.9
C13—P1—W1116.38 (10)C11—C12—C7120.8 (3)
C6—C1—C2118.9 (3)C11—C12—H12119.6
C6—C1—P1120.3 (2)C7—C12—H12119.6
C2—C1—P1120.7 (2)C13i—C13—P1112.1 (3)
C3—C2—C1120.7 (3)C13i—C13—H13A109.2
C3—C2—H2119.6P1—C13—H13A109.2
C1—C2—H2119.6C13i—C13—H13B109.2
C2—C3—C4120.0 (3)P1—C13—H13B109.2
C2—C3—H3120.0H13A—C13—H13B107.9
C4—C3—H3120.0O1—C14—W1179.7 (3)
C5—C4—C3120.1 (3)O2—C15—W1179.0 (3)
C5—C4—H4119.9O3—C16—W1179.6 (3)
C3—C4—H4119.9O4—C17—W1179.6 (3)
C4—C5—C6120.2 (3)O5—C18—W1178.7 (3)
C7—P1—C1—C6146.7 (3)W1—P1—C7—C8117.1 (3)
C13—P1—C1—C6107.2 (3)C1—P1—C7—C1265.5 (3)
W1—P1—C1—C621.3 (3)C13—P1—C7—C12170.5 (3)
C7—P1—C1—C232.5 (3)W1—P1—C7—C1262.2 (3)
C13—P1—C1—C273.6 (3)C12—C7—C8—C90.5 (5)
W1—P1—C1—C2157.9 (2)P1—C7—C8—C9179.7 (3)
C6—C1—C2—C31.0 (5)C7—C8—C9—C100.0 (5)
P1—C1—C2—C3178.1 (3)C8—C9—C10—C110.5 (5)
C1—C2—C3—C40.9 (5)C9—C10—C11—C121.4 (5)
C2—C3—C4—C51.7 (5)C10—C11—C12—C71.8 (5)
C3—C4—C5—C60.7 (5)C8—C7—C12—C111.4 (5)
C2—C1—C6—C52.1 (5)P1—C7—C12—C11179.4 (3)
P1—C1—C6—C5177.1 (2)C7—P1—C13—C13i172.8 (3)
C4—C5—C6—C11.2 (5)C1—P1—C13—C13i68.3 (3)
C1—P1—C7—C8115.3 (3)W1—P1—C13—C13i61.0 (3)
C13—P1—C7—C810.3 (3)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge the NSF Major Research Instrumentation Grant MRI 1337159 for the NMR spectrometer used in the study and NSF grant No. CHE-0722547 for supporting the X-ray facilities at Eastern Illinois University. We also acknowledge Western Illinois University's College of Arts and Sciences Undergraduate Research and Scholarly Activity Grants (WIU–CAS–UGR) and the Joe Bellott memorial research fund which supported this work.

References

First citationAlyea, E. C., Ferguson, G., Fisher, K. J., Gossage, R. A. & Jennings, M. C. (1990). Polyhedron, 9, 2393–2397.  CSD CrossRef CAS Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBenson, J. W., Keiter, R. L., Keiter, E. A., Rheingold, A. L., Yap, G. P. A. & Mainz, V. V. (1998). Organometallics, 17, 4275–4281.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDickson, C. A., McFarlane, A. W. & Coville, N. J. (1989). Inorg. Chim. Acta, 158, 205–209.  CrossRef CAS Web of Science Google Scholar
First citationEl-Khateeb, M., Asali, K. J. & Musa, M. M. (2002). Transition Met. Chem. 27, 163–165.  CAS Google Scholar
First citationGan, K.-S., Lee, H. K. & Hor, T. S. A. (1993). J. Organomet. Chem. 460, 197–202.  CAS Google Scholar
First citationGrice, K. A. & Saucedo, C. (2016). Inorg. Chem. 55, 6240–6246.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKeiter, R. L., Kaiser, S. L., Hansen, N. P., Brodack, J. W. & Cary, L. W. (1981). Inorg. Chem. 20, 283–284.  CrossRef CAS Web of Science Google Scholar
First citationKeiter, R. L. & Shah, D. P. (1972). Inorg. Chem. 11, 191–193.  CrossRef CAS Web of Science Google Scholar
First citationOzer, Z., Ozkar, S. & Pamuk, H. O. (1993). Z. Naturforsch. Teil B, 48, 37–43.  CAS Google Scholar
First citationPickett, C. J. & Pletcher, D. (1976). J. Chem. Soc. Dalton Trans. pp. 749.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, K.-C., Andy Hor, T. S. & Lee, H. K. (1994). J. Liq. Chromatogr. 17, 3671–3680.  CrossRef CAS Web of Science Google Scholar
First citationUeng, C.-H. & Shih, G.-Y. (1995). Acta Cryst. C51, 1524–1526.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds