research communications
5W(μ-dppe)W(CO)5
of (OC)aDepartment of Chemistry, Western Illinois University, Macomb, Illinois 61455, USA, and bDepartment of Chemistry, Eastern Illinois University, Charleston, Illinois, 61920, USA
*Correspondence e-mail: b-bellott@wiu.edu
The centrosymmetric title complex, [μ-ethane-1,2-diylbis(diphenylphosphane)-κ2P:P′]bis[pentacarbonyltungsten(0)], [W2(C26H24P2)(CO)10], consists of two W(CO)5 moieties bridged by a bis(diphenylphosphanyl)ethane (dppe) ligand. The W0 atom has a slightly distorted octahedral coordination environment consisting of 5 carbonyl ligands and one P atom from the bridging dppe ligand with the nearest W0 atom 5.625 (5) Å away. The complex resides on a center of symmetry.
Keywords: crystal structure; group 6 carbonyl; bridging dppe; bimetallic.
CCDC reference: 1500991
1. Chemical context
In 1976, Pickett and Pletcher studied the mechanism of reduction of a group 6 carbonyl complex in the presence of carbon dioxide (Pickett & Pletcher, 1976). Recently Grice & Saucedo (2016) have shown that group 6 metal–carbonyl complexes without `non-innocent' ligands can electrocatalytically reduce CO2. Dickson et al. (1989) varied the ligand Ph2P(CH2)nPPh2 (n = 2, 4, and 5), finding that the predominate product in the reactions of n = 2 and 5 is the bridged complex (OC)5W[μ-Ph2P(CH2)n]PPh2)W(CO)5, whereas when n = 4 it was reported the chelated product is favored (W(CO)4[μ-Ph2P(CH2)4PPh2]. Tan et al. (1994) reported the separation of several diphosphine-bridged group 6 decacarbonyl complexes by HPLC, but no further characterization was reported. Keiter et al. (1981) and Gan et al. (1993) have reported group 6 heterobimetallic complexes using dppe as the bridging ligand. The title complex has been reported by Keiter & Shah (1972), Ozer et al. (1993), and El-Khateeb et al. (2002), but the structure has yet to be published. We report here its single crystal X-ray structure determination.
2. Structural commentary
The molecular structure of (OC)5W(μ-dppe)W(CO)5 (Fig. 1) consists of two six-coordinate tungsten(0) atoms, each in a slightly distorted octahedral environment. The coordination environment of tungsten has five carbonyl ligands and one phosphorus atom from the dppe ligand. The axial carbonyl ligands have a bond length of 2.015 (3) Å and the average bond length for the equatorial carbonyl ligands is 2.048 (8) Å. The W1—P1 bond length is 2.5200 (8) Å and the P1—W1—C(axial) bond angle is 178.79 (9)°. The average P1—W1—C(equatorial) bond angle is 90.10 (18)°. Examination of the dppe backbone shows the P1—C13 bond length at 1.843 (3) Å and the C13—C13 bond length at 1.531 (6) Å. The molecule sits on a center of symmetry.
3. Supramolecular features
The two tungsten atoms in each of the molecules (OC)5W(μ-dppe)W(CO)5 are bridged by a diphosphine approximately along the c axis and the molecules themselves are stacked along the a axis. No significant van der Waals-type interactions such as C—H⋯π or π–π contacts between adjacent molecules are observed.
4. Database survey
A search of the database for homonuclear decacarbonyl group 6 complexes bridged by symmetric 5W[μ-Ph2P(CH2)5PPh2]W(CO)5 (Ueng & Shih, 1995), (OC)5W(μ-Ph2PCH2PPh2)W(CO)5 (Benson et al., 1998), one molybdenum complex (OC)5Mo[μ-Ph2P(CH2)2PPh2]Mo(CO)5 (Alyea et al., 1990), and one chromium complex (OC)5Cr[μ-Ph2P(CH2)5PPh2]Cr(CO)5 (Ueng & Shih, 1995).
yielded four complexes. There are two tungsten complexes (OC)5. Synthesis and crystallization
All synthesis and crystallization procedures were carried out using standard Schlenk techniques. Dichloromethane was added to a mixture of W(CO)5(NH2C6H5) (0.10 g, 2.9 mmol) and dppe (0.12 g, 3.0 mmol) to produce a golden yellow solution. After two h, methanol was added to precipitate a yellow solid. The precipitate was collected and washed with methanol (3 x 20 mL). The resulting yellow solid was recrystallized from a 1:5 mixture of dichloromethane:methanol at 253 K.
6. Refinement
Crystal data, data collection, and structure . The phenyl H-atom positions and the methylene H atoms on the ligand backbone have been positioned according to idealized C—H distances.
details are summarized in Table 1Supporting information
CCDC reference: 1500991
https://doi.org/10.1107/S2056989016013670/vn2114sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016013670/vn2114Isup2.hkl
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).[W2(C26H24P2)(CO)10] | F(000) = 996 |
Mr = 1046.17 | Dx = 1.958 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 9.8193 (4) Å | Cell parameters from 8094 reflections |
b = 16.0492 (7) Å | θ = 4.6–66.6° |
c = 11.3312 (5) Å | µ = 13.15 mm−1 |
β = 96.511 (2)° | T = 100 K |
V = 1774.19 (13) Å3 | Transparent rhomboid, colorless |
Z = 2 | 0.15 × 0.14 × 0.06 mm |
Bruker APEXII CCD diffractometer | 2954 reflections with I > 2σ(I) |
Detector resolution: 8.33 pixels mm-1 | Rint = 0.056 |
phi and ω scans | θmax = 68.2°, θmin = 4.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | h = −11→11 |
Tmin = 0.254, Tmax = 0.756 | k = −19→19 |
26419 measured reflections | l = −13→13 |
3256 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.048 | w = 1/[σ2(Fo2) + (0.0218P)2 + 0.5664P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
3256 reflections | Δρmax = 0.54 e Å−3 |
226 parameters | Δρmin = −0.58 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All nonhydrogen atoms were located in a single difference Fourier electron density maps and refined using anisotropic diplacement parameters. All C-H hydrogen atoms were placed in calculated positions with Uiso = 1.2xUeqiv of the connected C atoms |
x | y | z | Uiso*/Ueq | ||
W1 | 0.17092 (2) | 0.47944 (2) | 0.81902 (2) | 0.01462 (6) | |
P1 | 0.15114 (8) | 0.56563 (5) | 0.63197 (7) | 0.01359 (16) | |
O1 | 0.1345 (2) | 0.64362 (16) | 0.9701 (2) | 0.0277 (6) | |
O2 | −0.1519 (2) | 0.44991 (18) | 0.7958 (2) | 0.0324 (6) | |
O3 | 0.2025 (2) | 0.36975 (16) | 1.0520 (2) | 0.0286 (6) | |
O4 | 0.2103 (3) | 0.31759 (16) | 0.6641 (2) | 0.0317 (6) | |
O5 | 0.4947 (2) | 0.50864 (15) | 0.8560 (2) | 0.0274 (6) | |
C1 | 0.0518 (3) | 0.66234 (19) | 0.6298 (3) | 0.0162 (6) | |
C2 | 0.0733 (3) | 0.7262 (2) | 0.5503 (3) | 0.0206 (7) | |
H2 | 0.1383 | 0.7188 | 0.4950 | 0.025* | |
C3 | 0.0010 (3) | 0.8002 (2) | 0.5510 (3) | 0.0251 (8) | |
H3 | 0.0155 | 0.8429 | 0.4958 | 0.030* | |
C4 | −0.0924 (3) | 0.8119 (2) | 0.6323 (3) | 0.0253 (8) | |
H4 | −0.1402 | 0.8633 | 0.6342 | 0.030* | |
C5 | −0.1164 (3) | 0.7490 (2) | 0.7106 (3) | 0.0238 (7) | |
H5 | −0.1813 | 0.7571 | 0.7657 | 0.029* | |
C6 | −0.0453 (3) | 0.6737 (2) | 0.7089 (3) | 0.0196 (7) | |
H6 | −0.0633 | 0.6301 | 0.7618 | 0.023* | |
C7 | 0.3146 (3) | 0.60406 (19) | 0.5907 (3) | 0.0149 (6) | |
C8 | 0.3683 (3) | 0.5823 (2) | 0.4868 (3) | 0.0202 (7) | |
H8 | 0.3191 | 0.5455 | 0.4319 | 0.024* | |
C9 | 0.4940 (3) | 0.6143 (2) | 0.4630 (3) | 0.0264 (8) | |
H9 | 0.5300 | 0.5991 | 0.3917 | 0.032* | |
C10 | 0.5671 (3) | 0.6679 (2) | 0.5420 (3) | 0.0260 (8) | |
H10 | 0.6532 | 0.6892 | 0.5256 | 0.031* | |
C11 | 0.5130 (4) | 0.6903 (2) | 0.6460 (3) | 0.0269 (8) | |
H11 | 0.5614 | 0.7280 | 0.7001 | 0.032* | |
C12 | 0.3894 (3) | 0.6578 (2) | 0.6706 (3) | 0.0218 (7) | |
H12 | 0.3546 | 0.6722 | 0.7428 | 0.026* | |
C13 | 0.0738 (3) | 0.51389 (19) | 0.4953 (3) | 0.0146 (6) | |
H13A | 0.0747 | 0.5528 | 0.4275 | 0.018* | |
H13B | 0.1297 | 0.4647 | 0.4793 | 0.018* | |
C14 | 0.1472 (3) | 0.5850 (2) | 0.9158 (3) | 0.0205 (7) | |
C15 | −0.0363 (4) | 0.4607 (2) | 0.8030 (3) | 0.0213 (7) | |
C16 | 0.1906 (3) | 0.4096 (2) | 0.9678 (3) | 0.0207 (7) | |
C17 | 0.1959 (3) | 0.3754 (2) | 0.7191 (3) | 0.0202 (7) | |
C18 | 0.3793 (4) | 0.4984 (2) | 0.8413 (3) | 0.0205 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
W1 | 0.01547 (9) | 0.01626 (9) | 0.01235 (9) | −0.00103 (5) | 0.00255 (5) | 0.00059 (6) |
P1 | 0.0139 (4) | 0.0142 (4) | 0.0128 (4) | −0.0021 (3) | 0.0019 (3) | −0.0009 (3) |
O1 | 0.0315 (14) | 0.0288 (14) | 0.0221 (13) | 0.0051 (11) | −0.0009 (10) | −0.0088 (12) |
O2 | 0.0196 (14) | 0.0540 (18) | 0.0243 (13) | −0.0101 (12) | 0.0050 (10) | 0.0027 (13) |
O3 | 0.0304 (14) | 0.0356 (15) | 0.0209 (13) | 0.0049 (11) | 0.0071 (10) | 0.0106 (12) |
O4 | 0.0430 (16) | 0.0231 (14) | 0.0311 (14) | −0.0061 (11) | 0.0128 (12) | −0.0054 (12) |
O5 | 0.0162 (13) | 0.0269 (13) | 0.0380 (15) | −0.0008 (10) | −0.0017 (10) | 0.0032 (12) |
C1 | 0.0159 (15) | 0.0160 (15) | 0.0157 (16) | −0.0016 (12) | −0.0030 (12) | −0.0033 (13) |
C2 | 0.0194 (16) | 0.0193 (17) | 0.0230 (17) | 0.0002 (13) | 0.0012 (13) | −0.0001 (15) |
C3 | 0.0227 (17) | 0.0193 (17) | 0.0319 (19) | −0.0013 (14) | −0.0028 (14) | 0.0053 (16) |
C4 | 0.0167 (16) | 0.0219 (17) | 0.035 (2) | 0.0033 (14) | −0.0070 (14) | −0.0069 (16) |
C5 | 0.0157 (16) | 0.0307 (19) | 0.0244 (18) | 0.0028 (14) | 0.0003 (13) | −0.0076 (16) |
C6 | 0.0157 (15) | 0.0255 (18) | 0.0170 (16) | 0.0007 (13) | 0.0001 (13) | −0.0011 (14) |
C7 | 0.0159 (15) | 0.0133 (15) | 0.0158 (15) | −0.0010 (12) | 0.0029 (12) | 0.0043 (13) |
C8 | 0.0186 (16) | 0.0198 (17) | 0.0224 (17) | −0.0024 (13) | 0.0027 (13) | 0.0000 (14) |
C9 | 0.0210 (17) | 0.033 (2) | 0.0259 (18) | 0.0012 (15) | 0.0080 (14) | 0.0037 (17) |
C10 | 0.0179 (17) | 0.0234 (18) | 0.037 (2) | −0.0029 (14) | 0.0057 (15) | 0.0068 (17) |
C11 | 0.0228 (18) | 0.0254 (18) | 0.032 (2) | −0.0090 (14) | 0.0025 (15) | −0.0033 (17) |
C12 | 0.0184 (16) | 0.0236 (18) | 0.0243 (18) | −0.0023 (14) | 0.0063 (13) | −0.0030 (15) |
C13 | 0.0177 (16) | 0.0152 (15) | 0.0109 (15) | −0.0028 (12) | 0.0007 (12) | −0.0027 (13) |
C14 | 0.0175 (16) | 0.0303 (19) | 0.0136 (16) | 0.0017 (13) | 0.0016 (13) | 0.0012 (15) |
C15 | 0.029 (2) | 0.0228 (18) | 0.0132 (16) | −0.0016 (14) | 0.0055 (13) | 0.0010 (14) |
C16 | 0.0192 (16) | 0.0230 (17) | 0.0209 (18) | 0.0021 (13) | 0.0062 (13) | −0.0015 (16) |
C17 | 0.0241 (17) | 0.0188 (17) | 0.0186 (17) | −0.0033 (13) | 0.0067 (13) | 0.0024 (15) |
C18 | 0.029 (2) | 0.0147 (16) | 0.0180 (17) | −0.0001 (14) | 0.0025 (14) | 0.0002 (14) |
W1—C16 | 2.015 (3) | C4—C5 | 1.381 (5) |
W1—C15 | 2.044 (4) | C4—H4 | 0.9500 |
W1—C14 | 2.045 (4) | C5—C6 | 1.398 (5) |
W1—C17 | 2.048 (3) | C5—H5 | 0.9500 |
W1—C18 | 2.056 (4) | C6—H6 | 0.9500 |
W1—P1 | 2.5200 (8) | C7—C8 | 1.388 (4) |
P1—C7 | 1.829 (3) | C7—C12 | 1.397 (5) |
P1—C1 | 1.832 (3) | C8—C9 | 1.391 (5) |
P1—C13 | 1.843 (3) | C8—H8 | 0.9500 |
O1—C14 | 1.140 (4) | C9—C10 | 1.382 (5) |
O2—C15 | 1.143 (4) | C9—H9 | 0.9500 |
O3—C16 | 1.144 (4) | C10—C11 | 1.394 (5) |
O4—C17 | 1.135 (4) | C10—H10 | 0.9500 |
O5—C18 | 1.139 (4) | C11—C12 | 1.378 (5) |
C1—C6 | 1.393 (4) | C11—H11 | 0.9500 |
C1—C2 | 1.397 (5) | C12—H12 | 0.9500 |
C2—C3 | 1.384 (5) | C13—C13i | 1.531 (6) |
C2—H2 | 0.9500 | C13—H13A | 0.9900 |
C3—C4 | 1.385 (5) | C13—H13B | 0.9900 |
C3—H3 | 0.9500 | ||
C16—W1—C15 | 89.55 (13) | C4—C5—H5 | 119.9 |
C16—W1—C14 | 91.03 (13) | C6—C5—H5 | 119.9 |
C15—W1—C14 | 89.83 (13) | C1—C6—C5 | 120.1 (3) |
C16—W1—C17 | 90.16 (13) | C1—C6—H6 | 120.0 |
C15—W1—C17 | 90.64 (13) | C5—C6—H6 | 120.0 |
C14—W1—C17 | 178.72 (13) | C8—C7—C12 | 118.8 (3) |
C16—W1—C18 | 88.85 (13) | C8—C7—P1 | 124.1 (2) |
C15—W1—C18 | 178.03 (12) | C12—C7—P1 | 117.0 (2) |
C14—W1—C18 | 89.05 (13) | C7—C8—C9 | 120.2 (3) |
C17—W1—C18 | 90.52 (13) | C7—C8—H8 | 119.9 |
C16—W1—P1 | 178.79 (9) | C9—C8—H8 | 119.9 |
C15—W1—P1 | 91.45 (9) | C10—C9—C8 | 120.7 (3) |
C14—W1—P1 | 89.64 (9) | C10—C9—H9 | 119.6 |
C17—W1—P1 | 89.16 (9) | C8—C9—H9 | 119.6 |
C18—W1—P1 | 90.16 (9) | C9—C10—C11 | 119.2 (3) |
C7—P1—C1 | 101.08 (14) | C9—C10—H10 | 120.4 |
C7—P1—C13 | 103.13 (14) | C11—C10—H10 | 120.4 |
C1—P1—C13 | 101.69 (14) | C12—C11—C10 | 120.2 (3) |
C7—P1—W1 | 114.44 (10) | C12—C11—H11 | 119.9 |
C1—P1—W1 | 117.80 (11) | C10—C11—H11 | 119.9 |
C13—P1—W1 | 116.38 (10) | C11—C12—C7 | 120.8 (3) |
C6—C1—C2 | 118.9 (3) | C11—C12—H12 | 119.6 |
C6—C1—P1 | 120.3 (2) | C7—C12—H12 | 119.6 |
C2—C1—P1 | 120.7 (2) | C13i—C13—P1 | 112.1 (3) |
C3—C2—C1 | 120.7 (3) | C13i—C13—H13A | 109.2 |
C3—C2—H2 | 119.6 | P1—C13—H13A | 109.2 |
C1—C2—H2 | 119.6 | C13i—C13—H13B | 109.2 |
C2—C3—C4 | 120.0 (3) | P1—C13—H13B | 109.2 |
C2—C3—H3 | 120.0 | H13A—C13—H13B | 107.9 |
C4—C3—H3 | 120.0 | O1—C14—W1 | 179.7 (3) |
C5—C4—C3 | 120.1 (3) | O2—C15—W1 | 179.0 (3) |
C5—C4—H4 | 119.9 | O3—C16—W1 | 179.6 (3) |
C3—C4—H4 | 119.9 | O4—C17—W1 | 179.6 (3) |
C4—C5—C6 | 120.2 (3) | O5—C18—W1 | 178.7 (3) |
C7—P1—C1—C6 | −146.7 (3) | W1—P1—C7—C8 | 117.1 (3) |
C13—P1—C1—C6 | 107.2 (3) | C1—P1—C7—C12 | 65.5 (3) |
W1—P1—C1—C6 | −21.3 (3) | C13—P1—C7—C12 | 170.5 (3) |
C7—P1—C1—C2 | 32.5 (3) | W1—P1—C7—C12 | −62.2 (3) |
C13—P1—C1—C2 | −73.6 (3) | C12—C7—C8—C9 | −0.5 (5) |
W1—P1—C1—C2 | 157.9 (2) | P1—C7—C8—C9 | −179.7 (3) |
C6—C1—C2—C3 | 1.0 (5) | C7—C8—C9—C10 | 0.0 (5) |
P1—C1—C2—C3 | −178.1 (3) | C8—C9—C10—C11 | −0.5 (5) |
C1—C2—C3—C4 | 0.9 (5) | C9—C10—C11—C12 | 1.4 (5) |
C2—C3—C4—C5 | −1.7 (5) | C10—C11—C12—C7 | −1.8 (5) |
C3—C4—C5—C6 | 0.7 (5) | C8—C7—C12—C11 | 1.4 (5) |
C2—C1—C6—C5 | −2.1 (5) | P1—C7—C12—C11 | −179.4 (3) |
P1—C1—C6—C5 | 177.1 (2) | C7—P1—C13—C13i | −172.8 (3) |
C4—C5—C6—C1 | 1.2 (5) | C1—P1—C13—C13i | −68.3 (3) |
C1—P1—C7—C8 | −115.3 (3) | W1—P1—C13—C13i | 61.0 (3) |
C13—P1—C7—C8 | −10.3 (3) |
Symmetry code: (i) −x, −y+1, −z+1. |
Acknowledgements
We gratefully acknowledge the NSF Major Research Instrumentation Grant MRI 1337159 for the NMR spectrometer used in the study and NSF grant No. CHE-0722547 for supporting the X-ray facilities at Eastern Illinois University. We also acknowledge Western Illinois University's College of Arts and Sciences Undergraduate Research and Scholarly Activity Grants (WIU–CAS–UGR) and the Joe Bellott memorial research fund which supported this work.
References
Alyea, E. C., Ferguson, G., Fisher, K. J., Gossage, R. A. & Jennings, M. C. (1990). Polyhedron, 9, 2393–2397. CSD CrossRef CAS Web of Science Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Benson, J. W., Keiter, R. L., Keiter, E. A., Rheingold, A. L., Yap, G. P. A. & Mainz, V. V. (1998). Organometallics, 17, 4275–4281. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dickson, C. A., McFarlane, A. W. & Coville, N. J. (1989). Inorg. Chim. Acta, 158, 205–209. CrossRef CAS Web of Science Google Scholar
El-Khateeb, M., Asali, K. J. & Musa, M. M. (2002). Transition Met. Chem. 27, 163–165. CAS Google Scholar
Gan, K.-S., Lee, H. K. & Hor, T. S. A. (1993). J. Organomet. Chem. 460, 197–202. CAS Google Scholar
Grice, K. A. & Saucedo, C. (2016). Inorg. Chem. 55, 6240–6246. Web of Science CrossRef CAS PubMed Google Scholar
Keiter, R. L., Kaiser, S. L., Hansen, N. P., Brodack, J. W. & Cary, L. W. (1981). Inorg. Chem. 20, 283–284. CrossRef CAS Web of Science Google Scholar
Keiter, R. L. & Shah, D. P. (1972). Inorg. Chem. 11, 191–193. CrossRef CAS Web of Science Google Scholar
Ozer, Z., Ozkar, S. & Pamuk, H. O. (1993). Z. Naturforsch. Teil B, 48, 37–43. CAS Google Scholar
Pickett, C. J. & Pletcher, D. (1976). J. Chem. Soc. Dalton Trans. pp. 749. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tan, K.-C., Andy Hor, T. S. & Lee, H. K. (1994). J. Liq. Chromatogr. 17, 3671–3680. CrossRef CAS Web of Science Google Scholar
Ueng, C.-H. & Shih, G.-Y. (1995). Acta Cryst. C51, 1524–1526. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.