research communications
2HfSi2O7 by Rietveld refinement
of NaaCEA, DEN, DTCD, Marcoule, BP17171, F-30207 Bagnols sur Ceze, France, and bCRPG, CNRS UMR-5873, Université de Lorraine, BP 20, F-54501 Vandoeuvre les Nancy cedex, France
*Correspondence e-mail: nicolas.massoni@cea.fr
The structure of triclinic disodium hafnium disilicate, Na2HfSi2O7, has been determined by laboratory powder X-ray diffraction and refined by the The structure is a framework made of alternate layers of HfO6 octahedra and SiO4 tetrahedra linked by common O atoms. Sodium atoms are located in the voids of the framework, aligned into tunnels along the [010] direction. Na2HfSi2O7 is isostructural with the parakeldyshite Na2ZrSi2O7 phase.
Keywords: crystal structure; powder diffraction; sodium hafnium disilicate.
CCDC reference: 1502957
1. Chemical context
Laboratory work in order to explore the chemistry of compounds with radioactive elements such as actinides is difficult because of the emission of et al., 1995). The reactivity of uranium with an Na–Si–O glass at high temperatures was thus simulated by using hafnium instead of uranium. We have obtained samples with different phases among which was a sodium hafnium disilicate, similar to the sodium zirconium silicate already observed in a similar glass (Plaisted et al., 1999). The structure of the sodium hafnium disilicate is discussed in this paper.
To overcome this problem, these radionuclides are often replaced by a stable element having similar properties as the radioactive element, for instance by using elements with a similar ionic radius or with the same Hence actinides are often replaced by neodymium, zirconium, europium, or hafnium (Ramsey2. Structural commentary
The Na2HfSi2O7 phase is isostructural with the parakeldyshite phase (Voronkov et al., 1970; Fleischer et al., 1979). As reported in Table 1, the cell parameters of the Na2HfSi2O7 phase are slightly smaller than those of parakeldyshite, and the volume of the cell is 0.8% smaller. For the Na2HfSi2O7 phase, the Hf1O6 octahedral and the Si2O4 tetrahedral volumes are about the same as the analogous Zr octahedral and Si tetrahedral volumes in parakeldyshite. The Si1O4 tetrahedral volume of the Na2HfSi2O7 phase is about 5% smaller than that in parakeldyshite. It is thus in the latter tetrahedron that the bond lengths differ significantly whereas the other bond lengths are quite similar in both phases. The sodium coordination polyhedral volumes are quite similar in volume for the two phases, about 30.1 Å3. A polyhedral view of the Na2HfSi2O7 structure is given in Fig. 1. The Na2ZrSi2O7 phase is capable of ion exchange on the sodium site thanks to the sufficient dimension of the sodium tunnels in the [010] direction (Kostov-Kytin et al., 2008). Since these dimensions are the same in both phases, ion exchange should also be possible in the Na2HfSi2O7 phase. A numerical comparison of the structures of the parakeldyshite and the Na2HfSi2O7 phase was performed with COMPSTRU (de la Flor et al., 2016). The structures' similarities were estimated by different parameters such as the measure of similarity Δ (Bergerhoff et al., 1999). This parameter was determined to be 0.018 for a maximum distance between paired atoms of 1 Å, indicating that structures are effectively isostructural. Since hafnium simulates uranium, the existence of the Na2USi2O7 phase can also be supposed.
3. Database survey
The crystal chemistry of zirconosilicates can be described in terms of an MT framework with MO6 octahedra and TO4 tetrahedra (M = Zr, T = Si; Ilyushin & Blatov, 2002). The voids in the MT framework are filled with alkaline or alkaline earth elements coordinated in an eight-vertex polyhedron. The of sodium zirconosilicates can vary from triclinic (Na2ZrSi2O7) to monoclinic (Na2ZrSi4O11) or trigonal (Na8ZrSi6O18). If we focus on the chemistry of zirconosilicates with Si2O7 diortho groups and their analogs (Pekov et al., 2007), the triclinic phase is privileged such as the parakeldyshite Na2ZrSi2O7 phase (Ferreira et al., 2001) or the keldyshite (Na,H)2ZrSi2O7 phase (Khalilov et al., 1978). The potassium analogue, however, is monoclinic as in the case of khibinskite K2ZrSi2O7 (Chernov et al., 1970; Nosyrev et al., 1976).
4. Synthesis and crystallization
The synthesis of sodium hafnium disilicate was based on the two-step synthesis protocol of parakeldyshite Na2ZrSi2O7 (Lin et al., 1999; Ferreira et al., 2001). The first step was the synthesis of the Hf–petarasite phase Na5Zr2Si6O18(Cl·OH)2·H2O with zirconium totally substituted by hafnium. Adequate quantities of sodium silicate solution (27% SiO2, 8% Na2O), sodium chloride, hafnium chloride, potassium chloride, sodium hydroxide and water were mixed thoroughly in a polytetrafluoroethylene (PTFE) vessel at room temperature for 30 minutes. A gel was obtained with a pH value around 13. The PTFE vessel was put in a Parr digestion apparatus for a hydrothermal synthesis over 10 days at 523 K. The resulting powder was washed, filtered, and dried overnight at 393 K. In spite of the drying process, the powder was still hydrated. Powder X-ray diffraction showed the compound to be isostructural to petarasite. The second step was the of Hf–petarasite over 15 h at 1373 K under air which lead to a white powder. SEM observation of the powder showed large grains with Na, Hf, Si and O and smaller grains with supplementary K. The chemical composition of the major phase was determined by EDS to have the following stoichiometry Na1.7±0.2Hf1.0Si2.3±0.1O7.3±0.9 as compared to the theoretical stoichiometry of Na2HfSi2O7. Thus the major phase is very close to the expected one. The sample was analysed by to determine its melting point. There was no thermal event indicating a melting until 1623 K and the sample was still in powder form. The Na2HfSi2O7 phase therefore has a higher melting point than parakeldyshite which is below 1523 K (Ferreira et al., 2001).
5. Refinement
Crystal data, data collection and structure . Observed and calculated intensities for Na2HfSi2O7 are shown in Fig. 2 along with the difference pattern. The reliability factors of the were quite poor because of an amorphous bump attributed to the second minor phase. Hence the reliability factors were negatively impacted. The isotropic ADP's of the oxygen atoms were constrained to be equal in volume in order to avoid a slightly negative ADP value on O5. The residual electron density is about 2.4 e Å3, which is less than 10% of the electron density of a Hf atom. The occupancies of all atoms were fixed to unity.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1502957
Data collection: X'Pert Data Collector (PANalytical, 2011); cell
JANA2006 (Petříček et al., 2014); data reduction: JANA2006 (Petříček et al., 2014); program(s) used to solve structure: JANA2006 (Petříček et al., 2014); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).Na2HfSi2O7 | Z = 2 |
Mr = 392.6 | F(000) = 356 |
Triclinic, P1 | Dx = 4.387 Mg m−3 |
a = 6.6123 (2) Å | Cu Kα1 radiation, λ = 1.540562, 1.544390 Å |
b = 8.7948 (3) Å | T = 293 K |
c = 5.41074 (15) Å | Particle morphology: plate-like |
α = 92.603 (2)° | white |
β = 94.0843 (18)° | flat_sheet, 25 × 25 mm |
γ = 71.3262 (18)° | Specimen preparation: Prepared at 1393 K and 100 kPa |
V = 297.25 (2) Å3 |
Panalytical XPert MPD Pro diffractometer | Data collection mode: reflection |
Radiation source: sealed X-ray tube | Scan method: step |
Specimen mounting: packed powder pellet | 2θmin = 8.013°, 2θmax = 120.013°, 2θstep = 0.017° |
Rp = 0.024 | 67 parameters |
Rwp = 0.032 | 0 restraints |
Rexp = 0.015 | 6 constraints |
R(F) = 0.024 | Weighting scheme based on measured s.u.'s |
6423 data points | (Δ/σ)max = 0.005 |
Profile function: pseudo-Voigt | Background function: Legendre polynoms |
x | y | z | Uiso*/Ueq | ||
Na1 | 0.8823 (15) | 0.0970 (12) | 0.2630 (18) | 0.035 (4)* | |
Na2 | 0.3456 (14) | 0.5024 (10) | 0.7608 (18) | 0.011 (3)* | |
Hf1 | 0.2880 (3) | 0.2710 (2) | 0.2201 (3) | 0.0158 (7) | |
Si1 | 0.6528 (13) | 0.1435 (9) | 0.7769 (13) | 0.010 (3)* | |
Si2 | 0.9381 (12) | 0.3380 (8) | 0.6861 (15) | 0.006 (2)* | |
O1 | 0.307 (2) | 0.0382 (17) | 0.172 (3) | 0.0030 (15)* | |
O2 | 0.865 (2) | 0.1777 (14) | 0.727 (2) | 0.0030 (15)* | |
O3 | 0.494 (2) | 0.2081 (15) | 0.530 (3) | 0.0030 (15)* | |
O4 | 0.562 (2) | 0.2522 (15) | 0.020 (3) | 0.0030 (15)* | |
O5 | −0.003 (2) | 0.3116 (14) | 0.401 (3) | 0.0030 (15)* | |
O6 | 0.120 (2) | 0.3300 (14) | 0.872 (3) | 0.0030 (15)* | |
O7 | 0.284 (2) | 0.5148 (14) | 0.288 (3) | 0.0030 (15)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hf1 | 0.0148 (10) | 0.0177 (11) | 0.0126 (10) | 0.0003 (7) | 0.0035 (7) | 0.0111 (8) |
O1—Hf1 | 2.017 (15) | Na1—Na1vii | 3.169 (13) |
O1—Si1i | 1.568 (17) | Na1—Na2v | 3.363 (13) |
O2—Si1 | 1.567 (18) | Na1—Hf1viii | 3.513 (12) |
O2—Si2 | 1.660 (17) | Na1—Si1ii | 2.919 (12) |
O3—Hf1 | 2.060 (13) | Na1—Si1 | 3.210 (13) |
O3—Si1 | 1.644 (15) | Na1—Si1vii | 3.140 (11) |
O4—Na1 | 2.450 (15) | Na1—Si2 | 3.132 (13) |
O4—Si1ii | 1.622 (15) | Na2—Na2v | 3.590 (14) |
O5—Na1iii | 2.323 (18) | Na2—Na2ix | 3.174 (13) |
O5—Si2iii | 1.605 (16) | Na2—Hf1 | 3.556 (9) |
O6—Hf1iv | 2.115 (13) | Na2—Hf1iv | 3.399 (10) |
O6—Si2iii | 1.497 (16) | Na2—Hf1v | 3.590 (10) |
O7—Na2v | 2.441 (18) | Na2—Si1 | 3.161 (10) |
O7—Si2v | 1.625 (13) | Na2—Si2v | 3.052 (11) |
Na1—Na1vi | 3.453 (14) | ||
Hf1—O1—Si1i | 161.7 (9) | Na2ix—Na2—Si1 | 76.2 (3) |
Si1—O2—Si2 | 136.8 (8) | Na2ix—Na2—Si2v | 153.7 (4) |
Hf1—O3—Si1 | 175.1 (10) | Hf1—Na2—Hf1iv | 102.1 (3) |
Na1—O4—Si1ii | 89.2 (6) | Hf1—Na2—Hf1v | 119.7 (3) |
Na1iii—O5—Si2iii | 104.3 (9) | Hf1—Na2—Si1 | 66.6 (2) |
Hf1iv—O6—Si2iii | 153.3 (10) | Hf1—Na2—Si2v | 59.6 (2) |
Na2v—O7—Si2v | 134.4 (9) | Hf1iv—Na2—Hf1v | 126.1 (3) |
O4—Na1—O5viii | 97.2 (6) | Hf1iv—Na2—Si1 | 62.6 (2) |
O4—Na1—Na1vi | 91.7 (4) | Hf1iv—Na2—Si2v | 134.1 (4) |
O4—Na1—Na1vii | 152.6 (6) | Hf1v—Na2—Si1 | 102.9 (3) |
O4—Na1—Na2v | 51.1 (4) | Hf1v—Na2—Si2v | 97.7 (3) |
O4—Na1—Hf1viii | 109.2 (5) | Si1—Na2—Si2v | 125.7 (4) |
O4—Na1—Si1ii | 33.8 (4) | O1—Hf1—O3 | 88.5 (5) |
O4—Na1—Si1 | 95.1 (5) | O1—Hf1—O6ii | 91.8 (5) |
O4—Na1—Si1vii | 143.7 (5) | O1—Hf1—Na1iii | 51.7 (4) |
O4—Na1—Si2 | 103.7 (5) | O1—Hf1—Na2ii | 123.8 (4) |
O5viii—Na1—Na1vi | 114.1 (6) | O1—Hf1—Na2 | 131.8 (4) |
O5viii—Na1—Na1vii | 89.9 (5) | O1—Hf1—Na2v | 136.4 (4) |
O5viii—Na1—Na2v | 46.9 (4) | O3—Hf1—O6ii | 171.1 (6) |
O5viii—Na1—Hf1viii | 36.4 (4) | O3—Hf1—Na1iii | 107.6 (5) |
O5viii—Na1—Si1ii | 113.7 (5) | O3—Hf1—Na2ii | 124.6 (5) |
O5viii—Na1—Si1 | 85.7 (5) | O3—Hf1—Na2 | 50.0 (4) |
O5viii—Na1—Si1vii | 94.3 (5) | O3—Hf1—Na2v | 71.4 (5) |
O5viii—Na1—Si2 | 29.8 (4) | O6ii—Hf1—Na1iii | 79.4 (4) |
Na1vi—Na1—Na1vii | 109.5 (3) | O6ii—Hf1—Na2ii | 48.7 (4) |
Na1vi—Na1—Na2v | 116.9 (4) | O6ii—Hf1—Na2 | 133.2 (3) |
Na1vi—Na1—Hf1viii | 79.2 (3) | O6ii—Hf1—Na2v | 102.6 (4) |
Na1vi—Na1—Si1ii | 58.3 (3) | Na1iii—Hf1—Na2ii | 127.8 (2) |
Na1vi—Na1—Si1 | 158.2 (4) | Na1iii—Hf1—Na2 | 111.9 (2) |
Na1vi—Na1—Si1vii | 52.3 (2) | Na1iii—Hf1—Na2v | 171.0 (2) |
Na1vi—Na1—Si2 | 141.2 (4) | Na2ii—Hf1—Na2 | 102.1 (2) |
Na1vii—Na1—Na2v | 125.8 (4) | Na2ii—Hf1—Na2v | 53.9 (2) |
Na1vii—Na1—Hf1viii | 92.0 (3) | Na2—Hf1—Na2v | 60.3 (2) |
Na1vii—Na1—Si1ii | 156.1 (5) | O1i—Si1—O2 | 111.9 (8) |
Na1vii—Na1—Si1 | 59.0 (3) | O1i—Si1—O3 | 113.6 (9) |
Na1vii—Na1—Si1vii | 61.2 (3) | O1i—Si1—O4iv | 109.9 (9) |
Na1vii—Na1—Si2 | 70.6 (3) | O1i—Si1—Na1 | 97.9 (6) |
Na2v—Na1—Hf1viii | 71.7 (3) | O1i—Si1—Na1iv | 76.2 (6) |
Na2v—Na1—Si1ii | 76.5 (3) | O1i—Si1—Na1vii | 61.5 (6) |
Na2v—Na1—Si1 | 83.1 (3) | O1i—Si1—Na2 | 150.4 (7) |
Na2v—Na1—Si1vii | 135.6 (5) | O2—Si1—O3 | 104.6 (8) |
Na2v—Na1—Si2 | 55.9 (3) | O2—Si1—O4iv | 105.7 (9) |
Hf1viii—Na1—Si1ii | 104.5 (4) | O2—Si1—Na1 | 52.6 (6) |
Hf1viii—Na1—Si1 | 117.6 (3) | O2—Si1—Na1iv | 77.6 (6) |
Hf1viii—Na1—Si1vii | 64.0 (3) | O2—Si1—Na1vii | 50.5 (5) |
Hf1viii—Na1—Si2 | 62.2 (3) | O2—Si1—Na2 | 97.4 (6) |
Si1ii—Na1—Si1 | 123.9 (4) | O3—Si1—O4iv | 110.8 (7) |
Si1ii—Na1—Si1vii | 110.6 (4) | O3—Si1—Na1 | 64.3 (6) |
Si1ii—Na1—Si2 | 132.4 (4) | O3—Si1—Na1iv | 167.4 (6) |
Si1—Na1—Si1vii | 120.1 (3) | O3—Si1—Na1vii | 121.8 (6) |
Si1—Na1—Si2 | 56.5 (3) | O3—Si1—Na2 | 59.9 (5) |
Si1vii—Na1—Si2 | 103.3 (3) | O4iv—Si1—Na1 | 150.5 (8) |
O7v—Na2—Na1v | 99.3 (5) | O4iv—Si1—Na1iv | 57.1 (5) |
O7v—Na2—Na2v | 45.5 (4) | O4iv—Si1—Na1vii | 125.7 (6) |
O7v—Na2—Na2ix | 60.6 (4) | O4iv—Si1—Na2 | 55.6 (5) |
O7v—Na2—Hf1 | 96.4 (4) | Na1—Si1—Na1iv | 123.9 (4) |
O7v—Na2—Hf1iv | 113.5 (4) | Na1—Si1—Na1vii | 59.9 (3) |
O7v—Na2—Hf1v | 35.8 (3) | Na1—Si1—Na2 | 103.3 (3) |
O7v—Na2—Si1 | 68.4 (4) | Na1iv—Si1—Na1vii | 69.4 (3) |
O7v—Na2—Si2v | 110.4 (5) | Na1iv—Si1—Na2 | 107.6 (3) |
Na1v—Na2—Na2v | 91.8 (3) | Na1vii—Si1—Na2 | 147.9 (4) |
Na1v—Na2—Na2ix | 97.3 (3) | O2—Si2—O5viii | 100.7 (8) |
Na1v—Na2—Hf1 | 117.5 (3) | O2—Si2—O6viii | 106.7 (8) |
Na1v—Na2—Hf1iv | 124.7 (3) | O2—Si2—O7v | 102.8 (8) |
Na1v—Na2—Hf1v | 64.7 (3) | O2—Si2—Na1 | 55.3 (5) |
Na1v—Na2—Si1 | 167.6 (4) | O2—Si2—Na2v | 103.7 (6) |
Na1v—Na2—Si2v | 58.2 (3) | O5viii—Si2—O6viii | 116.1 (9) |
Na2v—Na2—Na2ix | 106.1 (3) | O5viii—Si2—O7v | 109.8 (8) |
Na2v—Na2—Hf1 | 60.3 (2) | O5viii—Si2—Na1 | 46.0 (6) |
Na2v—Na2—Hf1iv | 142.8 (3) | O5viii—Si2—Na2v | 53.3 (5) |
Na2v—Na2—Hf1v | 59.4 (2) | O6viii—Si2—O7v | 118.2 (8) |
Na2v—Na2—Si1 | 80.2 (3) | O6viii—Si2—Na1 | 131.2 (6) |
Na2v—Na2—Si2v | 68.4 (3) | O6viii—Si2—Na2v | 149.4 (8) |
Na2ix—Na2—Hf1 | 141.7 (3) | O7v—Si2—Na1 | 110.3 (6) |
Na2ix—Na2—Hf1iv | 66.1 (3) | O7v—Si2—Na2v | 57.1 (6) |
Na2ix—Na2—Hf1v | 60.0 (3) | Na1—Si2—Na2v | 65.9 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z−1; (iii) x−1, y, z; (iv) x, y, z+1; (v) −x+1, −y+1, −z+1; (vi) −x+2, −y, −z; (vii) −x+2, −y, −z+1; (viii) x+1, y, z; (ix) −x+1, −y+1, −z+2. |
Cell parameters of Na2ZrSi2O7 are from Ferreira et al. (2001). |
Na2HfSi2O7 | Na2ZrSi2O7 | ||
a, b, c | 6.6123 (2), 8.7948 (3), 5.41074 (15) | a, b, c | 6.6364 (4), 8.8120 (5), 5.4233 (3) |
α, β, γ | 92.603 (2), 94.084 (2), 71.326 (2) | α, β, γ | 92.697 (4), 94.204 (3), 71.355 (3) |
Vcell | 297.25 (2) | Vcell | 299.61 (3) |
Hf1 octahedron | Zr octahedron | ||
O1—O7 | 4.15 (4) | O1—O7 | 4.22 (2) |
O4—O5 | 4.28 (3) | O4—O5 | 4.24 (2) |
O3—O6 | 4.22 (4) | O3—O6 | 4.18 (2) |
Hf1—O7 | 2.23 (3) | Zr—O7 | 2.13 (2) |
Hf1—O1 | 1.92 (3) | Zr—O1 | 2.08 (2) |
Hf1—O3 | 2.30 (3) | Zr—O3 | 2.11 (2) |
Hf1—O4 | 2.04 (2) | Zr—O4 | 2.16 (3) |
Hf1—O5 | 2.26 (3) | Zr—O5 | 2.09 (3) |
Hf1—O6 | 1.93 (2) | Zr—O6 | 2.03 (2) |
Hf1—O7—Si2 | 116.7 (6) | Zr—O7—Si2 | 124.0 (4) |
Polyhedron volume | 12.5 | Polyhedron volume | 12.4 |
Si1 tetrahedron | Si1 tetrahedron | ||
Si1—O2i | 1.55 (3) | Si1—O2i | 1.62 (2) |
Si1—O3i | 1.37 (4) | Si1—O3i | 1.58 (1) |
Si1—O4i | 1.66 (3) | Si1—O4i | 1.55 (1) |
Si1—O1 | 1.68 (3) | Si1—O1 | 1.57 (1) |
Polyhedron volume | 1.94 | Polyhedron volume | 2.02 |
Si2 tetrahedron | Si2 tetrahedron | ||
Si2—O2 | 1.77 (3) | Si2—O2 | 1.67 (2) |
Si2—O7i | 1.61 (3) | Si2—O7i | 1.64 (1) |
Si2—O5 | 1.61 (3) | Si2—O5 | 1.62 (1) |
Si2—O6 | 1.60 (3) | Si2—O6 | 1.53 (1) |
Polyhedron volume | 2.12 | Polyhedron volume | 2.14 |
Symmetry code: (i) -x, -y, -z. |
Acknowledgements
NM would like to thank Professor Philippe Deniard (Institut des Matériaux de Nantes) for his continuous support of the Rietveld refinements. The authors gratefully acknowledge AREVA and ANDRA for their financial support of this work.
References
Bergerhoff, G., Berndt, M., Brandenburg, K. & Degen, T. (1999). Acta Cryst. B55, 147–156. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chernov, A. N., Maksimov, B. A., Ilyukhin, V. V. & Belov, N. V. (1970). Dokl. Akad. Nauk SSSR, 193, 1293–1296. CAS Google Scholar
Ferreira, P., Ferreira, A., Rocha, J. & Soares, M. R. (2001). Chem. Mater. 13, 355–363. Web of Science CrossRef CAS Google Scholar
Fleischer, M., Chao, G. Y. & Mandarino, J. A. (1979). Am. Mineral. 64, 652–659. Google Scholar
Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664. Web of Science CrossRef IUCr Journals Google Scholar
Ilyushin, G. D. & Blatov, V. A. (2002). Acta Cryst. B58, 198–218. Web of Science CrossRef CAS IUCr Journals Google Scholar
Khalilov, A. D., Khomyakov, A. P. & Makhmudov, S. A. (1978). Dokl. Akad. Nauk SSSR, 238, 573–575. CAS Google Scholar
Kostov-Kytin, V., Fujiwara, K., Nakayama, N. & Nikolova, R. (2008). Proc. Bulg. Geol. Soc. pp. 13–14. Google Scholar
Lin, Z., Rocha, J., Ferreira, P., Thursfield, A., Agger, J. R. & Anderson, M. W. (1999). J. Phys. Chem. B, 103, 957–963. Web of Science CrossRef CAS Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nosyrev, N. A., Treushnikov, E. N. & Voronkov, A. A. (1976). Dokl. Akad. Nauk SSSR, 231, 1351–1353. CAS Google Scholar
PANalytical (2011). X'Pert Data Collector. PANalytical BV, Almelo, The Netherlands. Google Scholar
Pekov, I. V., Zubkova, N. V., Pushcharovsky, D. Yu., Kolitsch, U. & Tillmanns, E. (2007). Crystallogr. Rep. 52, 1066–1071. Web of Science CrossRef CAS Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. Cryst. Mater. 229, 345–352. Google Scholar
Plaisted, T., Hrma, P., Vienna, J. & Jiricka, A. (1999). Proceedings of MRS 608, 13–14. Google Scholar
Ramsey, W. G., Bibler, N. E. & Meaker, T. F. (1995). WM Symposia, Waste Management, 95, 23828–23907. Google Scholar
Voronkov, A. A., Shumyatskaya, N. G. & Pyatenko, Yu. A. (1970). Zh. Strukt. Khim. 11, 932–933. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.