research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of bis­(1-{[(quinolin-8-yl)imino]methyl}pyrene-κ2N,N′)silver(I) tri­fluoro­methane­sulfonate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of California Santa Cruz, CA 95064 USA
*Correspondence e-mail: pradip@ucsc.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 July 2016; accepted 26 September 2016; online 30 September 2016)

The title compound, [Ag(qPyr)2]CF3SO3 where qPyr = 1-(quinoline-2-yl­methyl­ene)amino­pyrene, C26H16N2, was synthesized from a reaction of silver tri­fluoro­methane­sulfonate and qPyr in di­chloro­methane–methanol mixed media. In this design, the qPyr ligand was chosen for its characteristic excitation and emission profiles, which could enable the tracking of the silver complex within biological targets. The AgI atom resides in a distorted tetra­hedral N4 coordination sphere. Analysis of the packing pattern revealed significant intra- and inter­molecular ππ stacking inter­actions between the [Ag(qPyr)2]+ cations. In addition, a weak C—H⋯O hydrogen bond consolidates the packing between cations and anions.

1. Chemical context

Silver metal and its salts have been used for their well known anti­microbial properties since ancient times (Chernousova & Epple, 2013[Chernousova, S. & Epple, M. (2013). Angew. Chem. Int. Ed. 52, 1636-1653.]). In recent years, the use of silver has regained inter­est due to the emergence of multidrug-resistant organisms (MDROs) (Kresse et al., 2007[Kresse, H., Belsey, M. J. & Rovini, H. (2007). Nat. Rev. Drug Discov. 6, 19-20.]; Liu et al., 2010[Liu, J., Sonshine, D. A., Shervani, S. & Hurt, R. H. (2010). ACS Nano, 4, 6903-6913.]; Thornton et al., 2016[Thornton, L., Dixit, V., Assad, L. O. N., Ribeiro, T. P., Queiroz, D. D., Kellett, A., Casey, A., Colleran, J., Pereira, M. D., Rochford, G., McCann, M., O'Shea, D., Dempsey, R., McClean, S., Kia, A. F. A., Walsh, M., Creaven, B., Howe, O. & Devereux, M. (2016). J. Inorg. Biochem. 159, 120-132.]). Silver is primarily used topically to treat chronic infections in burn wounds (deBoer et al., 2015[deBoer, T. R., Chakraborty, I. & Mascharak, P. K. (2015). J. Mater. Sci. Mater. Med. 26, 243.]). The metal exerts its microbial toxicity by slowly releasing AgI ions that inflict damage on cell walls, produce reactive oxygen species and bind to DNA base pairs as well as proteins, impeding normal cellular functions (Liu et al., 2010[Liu, J., Sonshine, D. A., Shervani, S. & Hurt, R. H. (2010). ACS Nano, 4, 6903-6913.]; Thornton et al., 2016[Thornton, L., Dixit, V., Assad, L. O. N., Ribeiro, T. P., Queiroz, D. D., Kellett, A., Casey, A., Colleran, J., Pereira, M. D., Rochford, G., McCann, M., O'Shea, D., Dempsey, R., McClean, S., Kia, A. F. A., Walsh, M., Creaven, B., Howe, O. & Devereux, M. (2016). J. Inorg. Biochem. 159, 120-132.]). As silver ions tend to precipitate as AgCl in the presence of blood plasma chloride (Chernousova & Epple, 2013[Chernousova, S. & Epple, M. (2013). Angew. Chem. Int. Ed. 52, 1636-1653.]), there is a need for stable silver complexes that can slowly and sustainably release silver ions into biological matrices. Herein we report the synthesis and characterization of a novel silver complex, [Ag(qPyr)2]CF3SO3 [where qPyr = 1-(quinoline-2-yl­methyl­ene)amino­pyrene] which could serve as a stable complex for the delivery of silver. In the design of this compound, qPyr was included due to its characteristic absorption and emission profile, which could allow tracking of the ligand and silver within the cell membrane of the bacteria (Ray et al., 2006[Ray, G. B., Chakraborty, I. & Moulik, S. P. (2006). J. Colloid Interface Sci. 294, 248-254.]).

2. Structural commentary

The mol­ecular structure of the cation in the title complex is shown in Fig. 1[link]. The coordination environment of the AgI atom in the cationic complex is distorted tetra­hedral (Table 1[link]). The qPyr ligand binds to the metal in a bidentate fashion. In this complex, the chelate rings composed of atoms Ag1, N2, C8, C9, N1 and Ag1, N4, C34, C35, N3 are reasonably planar, with mean deviations of 0.054 (3) and 0.059 (3) Å, respectively. The dihedral angle between these two chelate planes is 69.0 (4)°. The two quinoline fragments within the qPyr ligand in the title complex are satisfactorily planar, with mean deviations of 0.031 (4) and 0.035 (4) Å. The dihedral angles between the quinoline moieties and the pyrene rings are quite similar [73.5 (4) and 73.8 (3)°].

[Scheme 1]

Table 1
Selected geometric parameters (Å, °)

Ag1—N3 2.249 (4) Ag1—N4 2.411 (4)
Ag1—N1 2.228 (4) Ag1—N2 2.399 (4)
       
N3—Ag1—N4 72.24 (15) N1—Ag1—N4 119.33 (15)
N3—Ag1—N2 120.45 (15) N1—Ag1—N2 73.09 (15)
N1—Ag1—N3 151.52 (16) N2—Ag1—N4 131.88 (14)
[Figure 1]
Figure 1
The mol­ecular structure of the cation in the title salt. Displacement ellipsoids correspond to the 50% probability level; the counter-anion is not shown.

3. Supra­molecular features

The packing pattern exhibits the presence of both intra- and inter­molecular offset ππ stacking inter­actions (Figs. 2[link] and 3[link]). The extent of the inter­molecular ππ inter­action is found to be relatively stronger [3.543 (5) Å] compared to the intra­molecular ππ stacking inter­actions [3.642 (5) and 3.617 (5) Å]. In both cases, the angle between the ring normal and the vector between the ring centroids is close to 20° and centroid-to-centroid distances are within the upper limit of 3.8 Å (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). The crystal packing of the complex reveals also a non-classical hydrogen-bonding inter­action (Steiner, 1996[Steiner, T. (1996). Crystallogr. Rev. 6, 1-51.]) of the type C—H⋯O between the cation and the triflate anion (Table 2[link], Fig. 4[link]). The arrangement of the two types of mol­ecules along the c axis is shown in Fig. 5[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.93 2.44 3.359 (10) 140
Symmetry code: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Representation of intra­molecular ππ stacking within the title complex.
[Figure 3]
Figure 3
Representation of inter­molecular ππ stacking within the title complex.
[Figure 4]
Figure 4
Packing pattern of the title salt showing the C—H⋯O inter­action between cation and anion.
[Figure 5]
Figure 5
Packing diagram of the title salt along the c axis.

4. Database survey

A search of Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that mol­ecular systems where AgI resides in a distorted tetra­hedral coordination environment are primarily of a supra­molecular nature. In a relatively recent report, two discrete Ag complexes, namely [Ag(HL1)2](PF6) and [Ag(HL1)2](NO3)(H2O) (where HL1 = (n-Py)—CH=N—C10H6–COOH) are reported (Lee & Lee, 2013[Lee, Y. J. & Lee, S. W. (2013). Polyhedron, 53, 103-112.]) which are structurally similar to the title complex. Both these mol­ecules adopt triclinic symmetry in space group P[\overline{1}]. The average Ag—N distances for these complexes are slightly longer (2.349 and 2.346 Å) than that of the title complex (2.322 Å). Unlike the present complex, these two Ag complexes are characterized by significant intra­molecular O—H⋯F and O—H⋯O hydrogen-bonding inter­actions with the PF6 and NO3 counter-ions. In another report, three Ag complexes, namely [Ag(1)2](NO3), [Ag(1)2](PF6) and [Ag(1)2](OTf) [where 1 = (R)-2-(pyridin-2-yl­methyl­imino)-2′-(di­methyl­amino)-1,1′-binapth­yl] are described with similar structural features (Zhang et al., 2011[Zhang, H., Chen, L., Song, H. & Zi, G. (2011). Inorg. Chim. Acta, 366, 320-336.]). In this study, [Ag(1)2](NO3) and [Ag(1)2](PF6) crystallize in space group P212121 while [Ag(1)2](OTf) crystallizes in P21. Here the Ag—N distances span the range 2.354–2.376 Å, noticeably longer than that of the title complex.

5. Synthesis and crystallization

Synthesis of the qPyr ligand

A solution of 1-pyrenecarboxaldehyde (115 mg, 0.50 mmol) in 10 ml of di­chloro­methane was added drop wise to a solution of 8-amino­quinoline (72 mg, 0.50 mmol) in 10 ml of methanol. The mixture was heated to reflux for 16 h and then concentrated under reduced pressure. The precipitate thus formed was collected by vacuum filtration affording 162 mg (91% yield) of N-(1-pyrene)-1-quinolin-2-ylmethanimine (qPyr) as a light-brown powder.

Synthesis of the title complex

Two equivalents of qPyr (100 mg, 0.28 mmol) were dissolved in 20 ml of 1:1 methanol:di­chloro­methane along with one equivalent of silver tri­fluoro­methane­sulfonate (36 mg, 0.14 mmol). The reaction mixture was then stirred for 12 h. After this time, the solution was concentrated under reduced pressure. The resulting precipitate was collected through vacuum filtration affording a light-yellow powder. This powder was recrystallized from methanol to obtain [Ag(qPyr)2]CF3SO3 as a light yellow–brown powder (124 mg, 91%). Single crystals were obtained by vapor diffusion of ethyl ether into a solution of [Ag(qPyr)2]CF3SO3 in methanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were included in calculated positions on the C atoms to which they are bonded, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Ag(C26H16N2)2]CF3SO3
Mr 969.75
Crystal system, space group Monoclinic, P21/c
Temperature (K) 273
a, b, c (Å) 17.132 (1), 13.6108 (8), 18.9712 (11)
β (°) 110.887 (1)
V3) 4133.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.61
Crystal size (mm) 0.15 × 0.07 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.627, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 35302, 7406, 4227
Rint 0.084
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.181, 1.03
No. of reflections 7406
No. of parameters 587
No. of restraints 598
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −0.54
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CrystalMaker (Palmer, 2014[Palmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and CrystalMaker (Palmer, 2014); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(1-{[(quinolin-8-yl)imino]methyl}pyrene-κ2N,N')silver(I) trifluoromethanesulfonate top
Crystal data top
[Ag(C26H16N2)2]CF3SO3F(000) = 1968
Mr = 969.75Dx = 1.558 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.132 (1) ÅCell parameters from 3637 reflections
b = 13.6108 (8) Åθ = 2.5–18.3°
c = 18.9712 (11) ŵ = 0.61 mm1
β = 110.887 (1)°T = 273 K
V = 4133.0 (4) Å3Block, yellow
Z = 40.15 × 0.07 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
4227 reflections with I > 2σ(I)
ω scansRint = 0.084
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 25.3°, θmin = 2.5°
Tmin = 0.627, Tmax = 0.745h = 2020
35302 measured reflectionsk = 1616
7406 independent reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0931P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.181(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.60 e Å3
7406 reflectionsΔρmin = 0.54 e Å3
587 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
598 restraintsExtinction coefficient: 0.0017 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.16881 (3)0.57600 (3)0.42954 (2)0.0629 (2)
N30.2384 (3)0.6205 (3)0.5499 (2)0.0534 (11)
N10.0647 (3)0.5949 (3)0.3193 (2)0.0501 (10)
N40.1663 (3)0.4387 (3)0.5090 (2)0.0542 (11)
N20.2312 (3)0.5968 (3)0.3356 (2)0.0507 (10)
C240.3877 (3)0.5755 (4)0.4763 (3)0.0488 (12)
C250.4482 (3)0.5944 (4)0.5490 (3)0.0558 (13)
C510.0012 (3)0.3458 (3)0.2843 (3)0.0518 (12)
C40.0211 (4)0.5902 (3)0.1821 (3)0.0583 (14)
C90.0843 (3)0.5942 (3)0.2556 (3)0.0499 (12)
C500.0659 (3)0.3530 (3)0.3558 (3)0.0501 (12)
C230.3550 (3)0.4777 (4)0.4605 (3)0.0525 (13)
H230.31780.46270.41240.063*
C110.3654 (3)0.6531 (4)0.4234 (3)0.0523 (12)
C30.0622 (4)0.5898 (4)0.1778 (4)0.0682 (16)
H30.10500.58720.13090.082*
C350.2569 (3)0.5489 (4)0.6040 (3)0.0514 (12)
C520.0219 (3)0.3404 (3)0.2178 (3)0.0553 (13)
C20.0806 (4)0.5930 (4)0.2405 (4)0.0716 (17)
H20.13590.59410.23760.086*
C490.1512 (3)0.3484 (4)0.3605 (3)0.0545 (13)
H490.19380.34950.40760.065*
C270.2729 (3)0.7083 (4)0.5691 (3)0.0618 (15)
H270.25990.75720.53240.074*
C470.1073 (4)0.3406 (4)0.2239 (3)0.0594 (13)
C10.0154 (4)0.5946 (4)0.3103 (4)0.0623 (15)
H10.02930.59560.35340.075*
C210.4332 (3)0.4254 (4)0.5877 (3)0.0593 (14)
C80.1705 (3)0.5955 (3)0.2629 (3)0.0512 (12)
C260.4708 (3)0.5186 (4)0.6047 (3)0.0568 (13)
C220.3767 (3)0.4072 (4)0.5136 (3)0.0593 (14)
H220.35400.34470.50130.071*
C380.0409 (3)0.3561 (4)0.4127 (3)0.0665 (16)
H380.05530.35790.45550.080*
C370.0425 (3)0.3630 (4)0.4205 (3)0.0551 (13)
C480.1704 (3)0.3424 (4)0.2978 (3)0.0612 (14)
H480.22630.33930.30250.073*
C340.2188 (3)0.4562 (4)0.5850 (3)0.0568 (13)
C140.4859 (3)0.6873 (5)0.5674 (3)0.0659 (15)
C400.0837 (3)0.3446 (4)0.2778 (3)0.0592 (14)
C280.3280 (3)0.7312 (5)0.6420 (3)0.0701 (16)
H280.35040.79400.65330.084*
C100.2978 (3)0.6468 (4)0.3491 (3)0.0571 (14)
H100.30420.68170.30940.069*
C50.0460 (5)0.5865 (4)0.1188 (3)0.0726 (17)
H50.00570.58550.07060.087*
C120.4057 (4)0.7427 (4)0.4422 (4)0.0702 (16)
H120.39300.79230.40610.084*
C360.1001 (3)0.3865 (4)0.4959 (3)0.0617 (14)
H360.08840.36240.53690.074*
C60.1272 (5)0.5843 (4)0.1275 (3)0.0796 (18)
H60.14190.57960.08490.096*
C430.0416 (4)0.3368 (4)0.1457 (3)0.0679 (15)
C390.1028 (4)0.3465 (4)0.3430 (4)0.0701 (16)
H390.15820.34130.33940.084*
C70.1901 (4)0.5889 (4)0.1982 (3)0.0649 (15)
H70.24580.58770.20220.078*
C460.1265 (4)0.3377 (4)0.1576 (3)0.0738 (16)
H460.18180.33940.16040.089*
C200.4531 (4)0.3517 (5)0.6449 (4)0.0767 (17)
H200.42870.28980.63450.092*
C290.3478 (3)0.6613 (5)0.6949 (3)0.0708 (16)
H290.38540.67530.74300.085*
C300.3127 (3)0.5674 (5)0.6789 (3)0.0616 (14)
C410.1471 (4)0.3425 (4)0.2036 (4)0.0736 (16)
H410.20310.34370.19860.088*
C420.1271 (4)0.3387 (4)0.1413 (4)0.0787 (17)
H420.16960.33740.09420.094*
C130.4634 (4)0.7603 (5)0.5121 (4)0.0780 (17)
H130.48820.82200.52310.094*
C310.3279 (4)0.4912 (5)0.7325 (3)0.0789 (18)
H310.36340.50230.78190.095*
C170.5302 (3)0.5385 (5)0.6787 (3)0.0716 (16)
C440.0196 (5)0.3334 (4)0.0827 (4)0.0834 (18)
H440.06140.33180.03520.100*
C180.5467 (4)0.4642 (6)0.7317 (4)0.0867 (19)
H180.58480.47600.78000.104*
C190.5093 (4)0.3742 (6)0.7158 (4)0.092 (2)
H190.52190.32690.75370.110*
C450.0616 (5)0.3323 (5)0.0877 (4)0.089 (2)
H450.07410.32790.04400.107*
C160.5670 (4)0.6338 (6)0.6939 (4)0.0846 (18)
H160.60640.64750.74130.102*
C330.2366 (4)0.3821 (5)0.6390 (3)0.0767 (18)
H330.21260.32020.62670.092*
C150.5460 (4)0.7034 (6)0.6414 (4)0.0836 (19)
H150.57130.76470.65310.100*
C320.2919 (4)0.4028 (6)0.7128 (4)0.091 (2)
H320.30370.35350.74910.109*
O30.8030 (4)0.9279 (7)0.4993 (4)0.201 (4)
O20.6998 (7)1.0435 (7)0.4268 (5)0.227 (4)
O10.6838 (6)0.8797 (8)0.3980 (5)0.226 (4)
S10.72380 (15)0.9402 (2)0.45628 (13)0.1150 (8)
C530.6710 (9)0.9393 (10)0.5169 (9)0.159 (4)
F20.6754 (6)0.8555 (6)0.5521 (5)0.248 (4)
F10.6960 (7)0.9994 (8)0.5715 (5)0.265 (4)
F30.5898 (6)0.9540 (8)0.4846 (7)0.282 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0616 (3)0.0814 (4)0.0401 (3)0.0132 (2)0.0113 (2)0.0016 (2)
N30.050 (3)0.065 (3)0.043 (2)0.006 (2)0.0139 (19)0.008 (2)
N10.051 (2)0.042 (2)0.054 (2)0.0020 (18)0.0144 (19)0.0029 (19)
N40.048 (2)0.060 (3)0.052 (2)0.0033 (19)0.0148 (19)0.000 (2)
N20.052 (2)0.052 (3)0.045 (2)0.0022 (19)0.0137 (19)0.0049 (19)
C240.037 (3)0.056 (3)0.054 (3)0.002 (2)0.016 (2)0.002 (2)
C250.038 (3)0.069 (3)0.059 (3)0.002 (2)0.014 (2)0.007 (2)
C510.054 (3)0.034 (3)0.058 (3)0.002 (2)0.008 (2)0.005 (2)
C40.072 (3)0.038 (3)0.048 (3)0.005 (2)0.001 (2)0.001 (2)
C90.055 (3)0.044 (3)0.040 (3)0.003 (2)0.004 (2)0.004 (2)
C500.048 (3)0.038 (3)0.060 (3)0.003 (2)0.015 (2)0.001 (2)
C230.043 (3)0.054 (3)0.057 (3)0.004 (2)0.014 (2)0.002 (2)
C110.043 (3)0.055 (3)0.061 (3)0.001 (2)0.021 (2)0.001 (2)
C30.059 (3)0.051 (3)0.066 (4)0.007 (3)0.012 (3)0.002 (3)
C350.041 (3)0.072 (3)0.041 (3)0.004 (2)0.015 (2)0.006 (2)
C520.069 (3)0.035 (3)0.054 (3)0.006 (2)0.013 (2)0.002 (2)
C20.058 (3)0.053 (4)0.085 (4)0.002 (3)0.003 (3)0.003 (3)
C490.046 (3)0.056 (3)0.057 (3)0.001 (2)0.013 (2)0.008 (3)
C270.059 (3)0.064 (3)0.057 (3)0.006 (3)0.014 (3)0.015 (3)
C470.073 (3)0.039 (3)0.064 (3)0.002 (2)0.023 (3)0.005 (2)
C10.053 (3)0.058 (4)0.071 (4)0.000 (2)0.016 (3)0.007 (3)
C210.039 (3)0.072 (3)0.061 (3)0.011 (2)0.010 (2)0.008 (2)
C80.061 (3)0.046 (3)0.040 (3)0.007 (2)0.010 (2)0.010 (2)
C260.035 (3)0.079 (3)0.054 (3)0.010 (2)0.012 (2)0.002 (2)
C220.042 (3)0.064 (3)0.066 (3)0.004 (2)0.012 (2)0.003 (3)
C380.055 (3)0.069 (4)0.078 (4)0.016 (3)0.026 (3)0.011 (3)
C370.049 (3)0.050 (3)0.063 (3)0.008 (2)0.016 (2)0.005 (2)
C480.057 (3)0.053 (3)0.073 (3)0.000 (3)0.023 (3)0.008 (3)
C340.050 (3)0.073 (3)0.043 (3)0.002 (2)0.011 (2)0.002 (2)
C140.047 (3)0.079 (4)0.070 (3)0.010 (3)0.019 (3)0.015 (3)
C400.049 (3)0.039 (3)0.077 (3)0.005 (2)0.008 (2)0.005 (3)
C280.053 (3)0.080 (4)0.069 (4)0.007 (3)0.011 (3)0.028 (3)
C100.060 (3)0.054 (3)0.058 (3)0.003 (2)0.022 (2)0.009 (2)
C50.099 (4)0.060 (4)0.041 (3)0.009 (3)0.004 (3)0.003 (3)
C120.060 (3)0.064 (3)0.083 (4)0.009 (3)0.022 (3)0.000 (3)
C360.060 (3)0.065 (3)0.059 (3)0.009 (3)0.020 (3)0.001 (3)
C60.107 (4)0.080 (4)0.044 (3)0.016 (4)0.018 (3)0.008 (3)
C430.085 (4)0.046 (3)0.057 (3)0.001 (3)0.006 (3)0.005 (3)
C390.052 (3)0.062 (4)0.092 (4)0.006 (3)0.020 (3)0.013 (3)
C70.081 (4)0.066 (4)0.048 (3)0.010 (3)0.022 (3)0.010 (3)
C460.101 (4)0.056 (4)0.069 (4)0.008 (3)0.037 (3)0.003 (3)
C200.057 (4)0.091 (4)0.080 (4)0.021 (3)0.020 (3)0.025 (3)
C290.051 (3)0.097 (4)0.055 (3)0.002 (3)0.007 (3)0.021 (3)
C300.045 (3)0.091 (4)0.043 (3)0.007 (3)0.009 (2)0.008 (2)
C410.053 (3)0.057 (4)0.089 (4)0.004 (3)0.001 (3)0.008 (3)
C420.080 (4)0.055 (4)0.076 (4)0.000 (3)0.003 (3)0.007 (3)
C130.061 (4)0.074 (4)0.094 (4)0.019 (3)0.021 (3)0.017 (3)
C310.064 (4)0.111 (4)0.048 (3)0.007 (3)0.002 (3)0.005 (3)
C170.044 (3)0.107 (4)0.058 (3)0.011 (3)0.011 (3)0.011 (3)
C440.112 (5)0.061 (4)0.065 (4)0.008 (4)0.016 (3)0.002 (3)
C180.057 (4)0.131 (5)0.062 (4)0.018 (3)0.009 (3)0.007 (4)
C190.067 (4)0.124 (5)0.071 (4)0.027 (4)0.008 (3)0.024 (4)
C450.129 (5)0.069 (4)0.066 (4)0.012 (4)0.030 (4)0.005 (3)
C160.054 (4)0.122 (5)0.069 (4)0.002 (3)0.012 (3)0.023 (3)
C330.066 (4)0.088 (4)0.065 (3)0.005 (3)0.009 (3)0.015 (3)
C150.056 (4)0.105 (5)0.081 (4)0.018 (3)0.014 (3)0.030 (3)
C320.086 (5)0.113 (5)0.053 (4)0.005 (4)0.000 (3)0.023 (3)
O30.100 (4)0.401 (13)0.090 (4)0.045 (5)0.021 (4)0.048 (5)
O20.256 (10)0.187 (6)0.246 (10)0.016 (6)0.099 (8)0.088 (6)
O10.201 (8)0.253 (8)0.170 (7)0.016 (6)0.000 (6)0.078 (7)
S10.0939 (16)0.157 (2)0.0820 (15)0.0174 (15)0.0165 (12)0.0017 (14)
C530.173 (8)0.130 (7)0.210 (9)0.030 (6)0.112 (7)0.010 (6)
F20.316 (10)0.199 (7)0.310 (9)0.005 (6)0.210 (8)0.070 (6)
F10.336 (10)0.268 (9)0.281 (9)0.081 (7)0.221 (8)0.093 (7)
F30.160 (6)0.309 (10)0.416 (12)0.006 (6)0.151 (7)0.077 (8)
Geometric parameters (Å, º) top
Ag1—N32.249 (4)C48—H480.9300
Ag1—N12.228 (4)C34—C331.392 (8)
Ag1—N42.411 (4)C14—C131.396 (8)
Ag1—N22.399 (4)C14—C151.431 (8)
N3—C351.368 (7)C40—C391.387 (8)
N3—C271.326 (6)C40—C411.440 (7)
N1—C91.364 (7)C28—H280.9300
N1—C11.321 (7)C28—C291.336 (8)
N4—C341.420 (7)C10—H100.9300
N4—C361.286 (6)C5—H50.9300
N2—C81.400 (6)C5—C61.342 (9)
N2—C101.274 (6)C12—H120.9300
C24—C251.424 (7)C12—C131.364 (8)
C24—C231.434 (7)C36—H360.9300
C24—C111.413 (7)C6—H60.9300
C25—C261.427 (7)C6—C71.391 (8)
C25—C141.406 (7)C43—C421.437 (9)
C51—C501.416 (7)C43—C441.377 (9)
C51—C521.428 (8)C39—H390.9300
C51—C401.417 (7)C7—H70.9300
C4—C91.430 (7)C46—H460.9300
C4—C31.400 (8)C46—C451.395 (8)
C4—C51.412 (9)C20—H200.9300
C9—C81.434 (7)C20—C191.382 (9)
C50—C491.434 (7)C29—H290.9300
C50—C371.426 (7)C29—C301.400 (8)
C23—H230.9300C30—C311.410 (8)
C23—C221.344 (7)C41—H410.9300
C11—C101.473 (7)C41—C421.344 (9)
C11—C121.384 (7)C42—H420.9300
C3—H30.9300C13—H130.9300
C3—C21.336 (9)C31—H310.9300
C35—C341.407 (7)C31—C321.343 (9)
C35—C301.424 (7)C17—C181.382 (9)
C52—C471.426 (8)C17—C161.427 (9)
C52—C431.413 (7)C44—H440.9300
C2—H20.9300C44—C451.359 (9)
C2—C11.396 (8)C18—H180.9300
C49—H490.9300C18—C191.366 (10)
C49—C481.346 (7)C19—H190.9300
C27—H270.9300C45—H450.9300
C27—C281.404 (7)C16—H160.9300
C47—C481.433 (7)C16—C151.327 (9)
C47—C461.410 (8)C33—H330.9300
C1—H10.9300C33—C321.411 (8)
C21—C261.406 (8)C15—H150.9300
C21—C221.417 (8)C32—H320.9300
C21—C201.426 (8)O3—S11.321 (7)
C8—C71.386 (7)O2—S11.515 (9)
C26—C171.436 (7)O1—S11.352 (8)
C22—H220.9300S1—C531.698 (11)
C38—H380.9300C53—F21.309 (13)
C38—C371.387 (7)C53—F11.268 (13)
C38—C391.375 (7)C53—F31.320 (15)
C37—C361.454 (7)
N3—Ag1—N472.24 (15)C51—C40—C41118.5 (6)
N3—Ag1—N2120.45 (15)C39—C40—C51119.0 (5)
N1—Ag1—N3151.52 (16)C39—C40—C41122.5 (6)
N1—Ag1—N4119.33 (15)C27—C28—H28120.5
N1—Ag1—N273.09 (15)C29—C28—C27118.9 (6)
N2—Ag1—N4131.88 (14)C29—C28—H28120.5
C35—N3—Ag1117.9 (3)N2—C10—C11124.4 (5)
C27—N3—Ag1123.0 (4)N2—C10—H10117.8
C27—N3—C35118.3 (5)C11—C10—H10117.8
C9—N1—Ag1117.5 (3)C4—C5—H5119.6
C1—N1—Ag1124.6 (4)C6—C5—C4120.8 (6)
C1—N1—C9117.3 (5)C6—C5—H5119.6
C34—N4—Ag1111.0 (3)C11—C12—H12119.1
C36—N4—Ag1121.2 (4)C13—C12—C11121.8 (6)
C36—N4—C34119.0 (5)C13—C12—H12119.1
C8—N2—Ag1111.0 (3)N4—C36—C37123.7 (5)
C10—N2—Ag1121.2 (4)N4—C36—H36118.2
C10—N2—C8120.1 (5)C37—C36—H36118.2
C25—C24—C23117.8 (5)C5—C6—H6119.0
C11—C24—C25118.2 (5)C5—C6—C7121.9 (6)
C11—C24—C23124.0 (5)C7—C6—H6119.0
C24—C25—C26119.8 (5)C52—C43—C42118.2 (6)
C14—C25—C24121.0 (5)C44—C43—C52119.2 (6)
C14—C25—C26119.2 (5)C44—C43—C42122.6 (6)
C50—C51—C52119.6 (5)C38—C39—C40120.9 (6)
C50—C51—C40120.8 (5)C38—C39—H39119.6
C40—C51—C52119.6 (5)C40—C39—H39119.6
C3—C4—C9117.4 (6)C8—C7—C6120.6 (6)
C3—C4—C5124.1 (6)C8—C7—H7119.7
C5—C4—C9118.5 (6)C6—C7—H7119.7
N1—C9—C4121.6 (5)C47—C46—H46120.4
N1—C9—C8119.0 (4)C45—C46—C47119.3 (7)
C4—C9—C8119.4 (5)C45—C46—H46120.4
C51—C50—C49119.2 (5)C21—C20—H20120.7
C51—C50—C37117.9 (5)C19—C20—C21118.6 (7)
C37—C50—C49122.9 (5)C19—C20—H20120.7
C24—C23—H23119.2C28—C29—H29119.5
C22—C23—C24121.5 (5)C28—C29—C30120.9 (5)
C22—C23—H23119.2C30—C29—H29119.5
C24—C11—C10123.9 (5)C29—C30—C35117.5 (5)
C12—C11—C24119.5 (5)C29—C30—C31124.1 (6)
C12—C11—C10116.5 (5)C31—C30—C35118.4 (6)
C4—C3—H3119.8C40—C41—H41119.3
C2—C3—C4120.4 (6)C42—C41—C40121.4 (6)
C2—C3—H3119.8C42—C41—H41119.3
N3—C35—C34118.9 (5)C43—C42—H42119.2
N3—C35—C30121.1 (5)C41—C42—C43121.6 (6)
C34—C35—C30120.0 (5)C41—C42—H42119.2
C47—C52—C51119.9 (5)C14—C13—H13119.5
C43—C52—C51120.6 (6)C12—C13—C14121.1 (6)
C43—C52—C47119.5 (5)C12—C13—H13119.5
C3—C2—H2120.5C30—C31—H31119.7
C3—C2—C1118.9 (6)C32—C31—C30120.6 (6)
C1—C2—H2120.5C32—C31—H31119.7
C50—C49—H49119.6C18—C17—C26117.6 (6)
C48—C49—C50120.9 (5)C18—C17—C16123.9 (6)
C48—C49—H49119.6C16—C17—C26118.5 (6)
N3—C27—H27118.4C43—C44—H44119.0
N3—C27—C28123.2 (6)C45—C44—C43121.9 (7)
C28—C27—H27118.4C45—C44—H44119.0
C52—C47—C48118.3 (5)C17—C18—H18118.8
C46—C47—C52119.1 (5)C19—C18—C17122.5 (7)
C46—C47—C48122.6 (6)C19—C18—H18118.8
N1—C1—C2124.4 (6)C20—C19—H19119.2
N1—C1—H1117.8C18—C19—C20121.5 (7)
C2—C1—H1117.8C18—C19—H19119.2
C26—C21—C22118.7 (5)C46—C45—H45119.5
C26—C21—C20119.7 (5)C44—C45—C46121.0 (7)
C22—C21—C20121.6 (6)C44—C45—H45119.5
N2—C8—C9118.2 (5)C17—C16—H16119.5
C7—C8—N2123.0 (5)C15—C16—C17121.0 (6)
C7—C8—C9118.7 (5)C15—C16—H16119.5
C25—C26—C17119.8 (6)C34—C33—H33120.7
C21—C26—C25120.1 (5)C34—C33—C32118.7 (6)
C21—C26—C17120.0 (6)C32—C33—H33120.7
C23—C22—C21121.8 (5)C14—C15—H15118.8
C23—C22—H22119.1C16—C15—C14122.3 (7)
C21—C22—H22119.1C16—C15—H15118.8
C37—C38—H38119.3C31—C32—C33122.2 (6)
C39—C38—H38119.3C31—C32—H32118.9
C39—C38—C37121.4 (6)C33—C32—H32118.9
C50—C37—C36124.6 (5)O3—S1—O2115.4 (6)
C38—C37—C50119.7 (5)O3—S1—O1122.5 (6)
C38—C37—C36115.6 (5)O3—S1—C53105.0 (6)
C49—C48—C47121.9 (5)O2—S1—C5396.7 (6)
C49—C48—H48119.0O1—S1—O2105.8 (6)
C47—C48—H48119.0O1—S1—C53108.2 (7)
C35—C34—N4118.6 (5)F2—C53—S1113.8 (10)
C33—C34—N4121.2 (5)F2—C53—F3103.2 (10)
C33—C34—C35120.0 (5)F1—C53—S1116.2 (9)
C25—C14—C15119.1 (6)F1—C53—F2101.8 (13)
C13—C14—C25118.3 (5)F1—C53—F3105.9 (12)
C13—C14—C15122.6 (6)F3—C53—S1114.4 (12)
Ag1—N3—C35—C3411.9 (6)C49—C50—C37—C3611.2 (8)
Ag1—N3—C35—C30169.1 (4)C27—N3—C35—C34178.1 (5)
Ag1—N3—C27—C28168.9 (4)C27—N3—C35—C300.9 (7)
Ag1—N1—C9—C4170.0 (3)C27—C28—C29—C301.7 (9)
Ag1—N1—C9—C88.7 (6)C47—C52—C43—C42178.7 (5)
Ag1—N1—C1—C2170.8 (4)C47—C52—C43—C440.1 (8)
Ag1—N4—C34—C355.4 (6)C47—C46—C45—C442.4 (9)
Ag1—N4—C34—C33170.8 (4)C1—N1—C9—C41.9 (7)
Ag1—N4—C36—C3736.1 (7)C1—N1—C9—C8179.4 (4)
Ag1—N2—C8—C97.1 (5)C21—C26—C17—C181.5 (8)
Ag1—N2—C8—C7168.5 (4)C21—C26—C17—C16180.0 (5)
Ag1—N2—C10—C1133.2 (7)C21—C20—C19—C181.1 (10)
N3—C35—C34—N43.7 (7)C8—N2—C10—C11179.9 (5)
N3—C35—C34—C33179.9 (5)C26—C25—C14—C13179.6 (5)
N3—C35—C30—C290.0 (8)C26—C25—C14—C150.2 (8)
N3—C35—C30—C31178.8 (5)C26—C21—C22—C233.5 (8)
N3—C27—C28—C290.7 (9)C26—C21—C20—C190.1 (9)
N1—C9—C8—N20.4 (7)C26—C17—C18—C190.3 (10)
N1—C9—C8—C7176.3 (4)C26—C17—C16—C151.2 (9)
N4—C34—C33—C32177.4 (6)C22—C21—C26—C253.6 (8)
N2—C8—C7—C6177.6 (5)C22—C21—C26—C17178.2 (5)
C24—C25—C26—C210.2 (8)C22—C21—C20—C19179.4 (6)
C24—C25—C26—C17178.4 (5)C38—C37—C36—N4146.2 (6)
C24—C25—C14—C130.9 (8)C37—C50—C49—C48177.7 (5)
C24—C25—C14—C15179.7 (5)C37—C38—C39—C400.8 (9)
C24—C23—C22—C210.2 (8)C48—C47—C46—C45177.5 (5)
C24—C11—C10—N232.7 (8)C34—N4—C36—C37179.3 (5)
C24—C11—C12—C133.6 (9)C34—C35—C30—C29179.1 (5)
C25—C24—C23—C223.6 (7)C34—C35—C30—C310.2 (8)
C25—C24—C11—C10173.5 (5)C34—C33—C32—C310.3 (11)
C25—C24—C11—C123.3 (7)C14—C25—C26—C21179.3 (5)
C25—C26—C17—C18176.7 (5)C14—C25—C26—C171.1 (8)
C25—C26—C17—C161.8 (8)C40—C51—C50—C49176.5 (4)
C25—C14—C13—C120.8 (9)C40—C51—C50—C372.4 (7)
C25—C14—C15—C160.8 (9)C40—C51—C52—C47179.4 (4)
C51—C50—C49—C483.5 (7)C40—C51—C52—C431.8 (7)
C51—C50—C37—C386.0 (7)C40—C41—C42—C430.0 (9)
C51—C50—C37—C36169.9 (5)C28—C29—C30—C351.4 (8)
C51—C52—C47—C482.4 (7)C28—C29—C30—C31177.4 (6)
C51—C52—C47—C46178.5 (5)C10—N2—C8—C9142.8 (5)
C51—C52—C43—C420.1 (8)C10—N2—C8—C741.5 (7)
C51—C52—C43—C44178.9 (5)C10—C11—C12—C13173.4 (6)
C51—C40—C39—C384.4 (8)C5—C4—C9—N1178.0 (5)
C51—C40—C41—C421.9 (8)C5—C4—C9—C80.7 (7)
C4—C9—C8—N2178.3 (4)C5—C4—C3—C2179.7 (5)
C4—C9—C8—C72.5 (7)C5—C6—C7—C80.4 (9)
C4—C3—C2—C11.4 (8)C12—C11—C10—N2144.2 (6)
C4—C5—C6—C72.2 (9)C36—N4—C34—C35142.6 (6)
C9—N1—C1—C20.5 (7)C36—N4—C34—C3341.3 (8)
C9—C4—C3—C20.0 (7)C43—C52—C47—C48178.8 (5)
C9—C4—C5—C61.6 (8)C43—C52—C47—C460.3 (7)
C9—C8—C7—C62.0 (8)C43—C44—C45—C462.0 (10)
C50—C51—C52—C471.1 (7)C39—C38—C37—C504.5 (8)
C50—C51—C52—C43177.7 (4)C39—C38—C37—C36171.7 (5)
C50—C51—C40—C392.7 (7)C39—C40—C41—C42178.7 (6)
C50—C51—C40—C41176.7 (5)C46—C47—C48—C49177.8 (5)
C50—C49—C48—C470.2 (8)C20—C21—C26—C25176.9 (5)
C50—C37—C36—N429.9 (9)C20—C21—C26—C171.3 (8)
C23—C24—C25—C263.4 (7)C20—C21—C22—C23177.0 (5)
C23—C24—C25—C14177.1 (5)C29—C30—C31—C32180.0 (6)
C23—C24—C11—C108.4 (8)C30—C35—C34—N4177.2 (5)
C23—C24—C11—C12174.8 (5)C30—C35—C34—C331.0 (8)
C11—C24—C25—C26178.4 (5)C30—C31—C32—C331.0 (11)
C11—C24—C25—C141.1 (8)C41—C40—C39—C38175.0 (5)
C11—C24—C23—C22178.3 (5)C42—C43—C44—C45179.5 (6)
C11—C12—C13—C141.5 (10)C13—C14—C15—C16179.8 (6)
C3—C4—C9—N11.7 (7)C17—C18—C19—C200.9 (11)
C3—C4—C9—C8179.6 (4)C17—C16—C15—C140.1 (10)
C3—C4—C5—C6178.1 (5)C44—C43—C42—C41179.7 (6)
C3—C2—C1—N11.2 (8)C18—C17—C16—C15177.3 (6)
C35—N3—C27—C280.6 (8)C16—C17—C18—C19178.8 (6)
C35—C34—C33—C321.3 (9)C15—C14—C13—C12179.9 (6)
C35—C30—C31—C321.2 (9)O3—S1—C53—F263.8 (13)
C52—C51—C50—C494.0 (7)O3—S1—C53—F153.9 (14)
C52—C51—C50—C37177.1 (4)O3—S1—C53—F3177.8 (10)
C52—C51—C40—C39177.8 (5)O2—S1—C53—F2177.6 (12)
C52—C51—C40—C412.7 (7)O2—S1—C53—F164.7 (14)
C52—C47—C48—C493.1 (8)O2—S1—C53—F359.3 (11)
C52—C47—C46—C451.5 (8)O1—S1—C53—F268.5 (14)
C52—C43—C42—C411.0 (8)O1—S1—C53—F1173.7 (12)
C52—C43—C44—C450.8 (9)O1—S1—C53—F349.8 (12)
C49—C50—C37—C38172.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.443.359 (10)140
Symmetry code: (i) x1, y+3/2, z1/2.
 

Acknowledgements

Financial support from NSF grant DMR-1409335 is gratefully acknowledged.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChernousova, S. & Epple, M. (2013). Angew. Chem. Int. Ed. 52, 1636–1653.  CrossRef CAS Google Scholar
First citationdeBoer, T. R., Chakraborty, I. & Mascharak, P. K. (2015). J. Mater. Sci. Mater. Med. 26, 243.  CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKresse, H., Belsey, M. J. & Rovini, H. (2007). Nat. Rev. Drug Discov. 6, 19–20.  CrossRef PubMed CAS Google Scholar
First citationLee, Y. J. & Lee, S. W. (2013). Polyhedron, 53, 103–112.  CSD CrossRef CAS Google Scholar
First citationLiu, J., Sonshine, D. A., Shervani, S. & Hurt, R. H. (2010). ACS Nano, 4, 6903–6913.  CrossRef CAS PubMed Google Scholar
First citationPalmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.  Google Scholar
First citationRay, G. B., Chakraborty, I. & Moulik, S. P. (2006). J. Colloid Interface Sci. 294, 248–254.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (1996). Crystallogr. Rev. 6, 1–51.  CrossRef CAS Google Scholar
First citationThornton, L., Dixit, V., Assad, L. O. N., Ribeiro, T. P., Queiroz, D. D., Kellett, A., Casey, A., Colleran, J., Pereira, M. D., Rochford, G., McCann, M., O'Shea, D., Dempsey, R., McClean, S., Kia, A. F. A., Walsh, M., Creaven, B., Howe, O. & Devereux, M. (2016). J. Inorg. Biochem. 159, 120–132.  CrossRef CAS PubMed Google Scholar
First citationZhang, H., Chen, L., Song, H. & Zi, G. (2011). Inorg. Chim. Acta, 366, 320–336.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds