research communications
N-methylpyridine-2-carboxamide-κ2N1,O)(thiocyanato-κN)rhenium(I)
of a second polymorph of tricarbonyl(aInstitute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
*Correspondence e-mail: k.lyczko@ichtj.waw.pl
A new polymorph of the title compound, [Re(NCS)(C7H8N2O)(CO)3], crystallizing in the P21/n, has been obtained and structurally characterized by the experiment and DFT calculations. In this complex, the rhenium(I) cation is octahedrally coordinated by three carbonyl groups in a facial configuration, the N,O-bidentate N-methylpyridine-2-carboxamide ligand and the N-bonded thiocyanate anion. Neighbouring molecules are linked into a three-dimensional network by intermolecular N—H⋯S and C—H⋯S interactions.
Keywords: crystal structure; tricarbonylrhenium(I) complex; N-methylpyridine-2-carboxyamide ligand; thiocyanate ion; polymorphism.
CCDC reference: 1501544
1. Chemical context
Tricarbonylrhenium(I) complexes in the `2 + 1' system (with one bidentate and one monodentate ligand) are still widely studied because of their interesting photophysical and photochemical properties (Pizarro et al., 2015; Zhao et al., 2015; Portenkirchner et al., 2015) and possible applications in medicine (Ma et al., 2014; Wähler et al., 2014; Collery et al., 2015). Recently, a few tricarbonyl compounds of rhenium(I) with the bidentate N,O-donor ligand N-methylpyridine-2-carboxyamide [LH(Me)NO] and with different monodentate ligands being either an anion (Cl−, Br−, I− and SCN−) or a neutral molecule [imidazole (Him) and 3,5-dimethylpyrazole (Hdmpz)] have been characterized, among others, by X-ray crystallographic analysis (Lyczko et al., 2015). The first polymorph of the title complex [Re(CO)3(LH(Me)NO)NCS] to be reported (Lyczko et al., 2015) has triclinic symmetry and crystallizes in the P.
In the current study, a second polymorph of this compound crystallizing in the monoclinic P21/n has been obtained and its structure is reported here, including a comparison of the triclinic and monoclinic polymorphs.
2. Structural commentary
The molecular structure of the monoclinic polymorph of the studied tricarbonylrhenium(I) complex with a bidentate ligand and a pseudohalide anion is presented in Fig. 1. The metal ion is surrounded in a slightly distorted octahedral coordination environment by six donor atoms, including three carbon atoms of the carbonyl groups, two nitrogen atoms and one oxygen atom. The three CO ligands occupy the facial positions of this octahedron. The Re—C bond lengths are in the range 1.9028 (16)–1.9201 (16) Å. The three remaining positions in the fac-[Re(CO)3]+ core are occupied by one bidentate ligand and one monodentate ligand, which results in a so called `2 + 1' system. N-methylpyridine-2-carboxyamide behaves in the complex as a neutral ligand and chelates the rhenium(I) ion by means of oxygen and nitrogen atoms with bond lengths of 2.1583 (10) and 2.1836 (13) Å, respectively, forming a five-membered ring. The N1—Re1—O4 bite angle of 74.33 (4)° is typical for that type of chelate ring. The sixth coordination position of the metal ion is occupied by the N atom of the thiocyanate anion. The use of the NCS− ion in the reaction mixture together with an LH(Me)NO ligand leads to the formation of a neutral complex. This pseudohalide ion, which can exhibit an ambidentate character acting with the central metal cation either by its sulfur or nitrogen atom, coordinates in the present complex through the N atom, which is generally typical for hard metal ions using the `hard and soft acids and bases' (HSAB) concept. All of the structural parameters mentioned above are very similar to those previously reported for the triclinic polymorph of the title compound (see Table 1). The molecular structures of the two polymorphic forms are compared in Fig. 2.
It can be ruled out that the use of AgBF4 for precipitation of Cl− ions during the synthesis of the title complex (see Section 5) leads to the crystallization of its monoclinic polymorph, while the presence of PF6− anions, originating from the silver salt, contributes to the formation of its triclinic form (Lyczko et al., 2015).
3. DFT calculations
The bond lengths and angles for the present complex originating from the ) performed by means of the B3LYP functional and three different basis sets for non-metallic atoms (the Re atom was described by the LANL2DZ basis set) using the GAUSSIAN09 software (Frisch et al., 2009). In most cases, the differences between experimentally and theoretically determined atomic distances are no larger than 0.03 Å. In only a few cases, this difference larger than 0.03 Å, with the largest difference being about 0.08, 0.07 or 0.06 Å using the 6-31G(d,p), 6-31G++(d,p) or 6-311G++(d,p) basis sets, respectively, for the Re1—O4 bond length. The use of three different basis sets gave similar results. However, a slightly better correlation with the experiment can be observed by using the 6-311G++(d,p) basis set. It is especially noticeable if the C12—N3—Re1 angle and the bond lengths involving the chelating atoms (Re1—N1 and Re1—O4) are compared. The good agreement between the DFT-optimized and the experimentally determined structures is illustrated in Fig. 2.
determination are in good agreement with DFT calculations (see Table 14. Supramolecular features
The molecular structure of both polymorphic forms of the [Re(CO)3(LH(Me)NO)NCS] complex are very similar, but their crystal structures display different packing features. In the of the monoclinic polymorph, the molecules are held together by N2—H2⋯S1 hydrogen bonds [3.3642 (14) Å] and two other weaker interactions [C7—H7⋯S1, 3.8255 (16) Å and C10—H10C⋯S1, 3.8445 (17) Å; Table 2, Fig. 3). In turn, the molecular packing in the triclinic form is characterized by the presence of intermolecular hydrogen bonds of 3.335 (3) Å (N2—H2⋯S1), 3.743 (4) Å (C6—H6⋯S1) and 3.921 (4) Å (C7—H7⋯S1) (Lyczko et al., 2015). The shortest distances between neighbouring S atoms of the thiocyanate ions [7.033 (1) and 7.175 (1) Å] in the monoclinic polymorph are much longer than the respective S⋯S contacts [4.736 (2) Å] in the triclinic form.
5. Database survey
The triclinic polymorph of the title complex has been presented recently (Lyczko et al., 2015). Only a few crystal structures in which the thiocyanate ion coordinates to a tricarbonylrhenium(I) core can be found in the Cambridge Structural Database (Groom et al., 2016) to date. In all these complexes, the thiocyanato group interacts with the central metal atom in an N-bonded mode. The Re—N(NCS) bond lengths in both polymorphs of [Re(CO)3(LH(Me)NO)NCS] [2.1275 (13) Å for the monoclinic form (this work) and 2.117 (3) Å for the triclinic form (Lyczko et al., 2015)] are similar to other such bonds observed in [Re(CO)3(bipy(CH3)(COOH))NCS] [2.125 (3) Å, Cavigli et al., 2016], [Re(CO)3(tBu-DAB)NCS] [2.115 (1) Å; Grupp et al., 2014], [Re(CO)3(bipy-PdTPP)NCS] [2.132 (9) Å; Schneider et al., 2011], [Re(CO)3(Pr-DAB)NCS] [2.115 (7) Å; Rodríguez et al., 2005], [Re(CO)3(bipy)NCS] [2.123 (4) and 2.129 (4) Å; Rodríguez et al., 2005] or [Re(CO)3(NCS)3](NEt4)2 [2.112–2.145 (10) Å; Abram et al., 1996].
6. Synthesis and crystallization
The title complex was synthesized by refluxing a methanol solution (5.0 ml) of Re(CO)5Cl (0.050 g, 0.138 mmol) with N-methylpyridine-2-carboxyamide (0.30 g, 0.220 mmol) and KSCN (0.020 g, 0.206 mmol) after previous precipitation of AgCl by means of AgBF4 (0.027 g, 0.139 mmol), similar to the method described earlier (Lyczko et al., 2015). The volume of this solution was decreased in a desiccator under reduced pressure. A yellow crystalline material was obtained after storing the solution for a few weeks in a refrigerator. Crystallization yield: 0.022 g (34.4%). Elemental analysis calculated for C11H8N3O4ReS: C, 28.44; H, 1.74; N, 9.05. Found: C, 28.33; H, 2.12; N, 9.18%. From the obtained material several crystals were checked crystallographically; the monoclinic form was entirely found.
7. Refinement
Crystal data, data collection and structure . H atoms bonded to C atoms were inserted in calculated positions with C—H = 0.98 (methyl) or 0.95 Å (aromatic) and refined isotropically using a riding model with Uiso(H) equal to 1.5Ueq(C) or 1.2Ueq(C) for methyl and aromatic H atoms, respectively. In turn, the H atom of the NH pair was located in a difference Fourier map and its position was freely refined.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1501544
https://doi.org/10.1107/S205698901601389X/wm5320sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901601389X/wm5320Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Re(NCS)(C7H8N2O)(CO)3] | F(000) = 872 |
Mr = 464.46 | Dx = 2.213 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.3456 (1) Å | Cell parameters from 49644 reflections |
b = 13.3241 (1) Å | θ = 3.1–31.3° |
c = 12.7011 (1) Å | µ = 8.88 mm−1 |
β = 99.284 (1)° | T = 100 K |
V = 1393.83 (2) Å3 | Block, yellow |
Z = 4 | 0.15 × 0.12 × 0.08 mm |
Agilent SuperNova Dual Source diffractometer with an Eos detector | 4060 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 3921 reflections with I > 2σ(I) |
Detector resolution: 16.0131 pixels mm-1 | Rint = 0.041 |
ω scans | θmax = 30.0°, θmin = 2.9° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −11→11 |
Tmin = 0.629, Tmax = 1.000 | k = −18→18 |
77774 measured reflections | l = −17→17 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.011 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.025 | w = 1/[σ2(Fo2) + (0.0082P)2 + 0.8572P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.005 |
4060 reflections | Δρmax = 0.42 e Å−3 |
186 parameters | Δρmin = −0.51 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Re1 | 0.94102 (2) | 0.61839 (2) | 0.78536 (2) | 0.01041 (2) | |
S1 | 0.39614 (5) | 0.76937 (3) | 0.72060 (3) | 0.01731 (8) | |
O2 | 0.81867 (15) | 0.46596 (9) | 0.93364 (10) | 0.0228 (3) | |
N2 | 0.96200 (16) | 0.75572 (10) | 0.48766 (10) | 0.0133 (2) | |
O1 | 1.07960 (14) | 0.74704 (9) | 0.97900 (9) | 0.0203 (2) | |
C2 | 0.86838 (19) | 0.52386 (12) | 0.87960 (12) | 0.0161 (3) | |
O4 | 0.99371 (13) | 0.71917 (8) | 0.66237 (8) | 0.0127 (2) | |
N1 | 0.85068 (15) | 0.54369 (9) | 0.63442 (10) | 0.0125 (2) | |
O3 | 1.27172 (14) | 0.51162 (9) | 0.82262 (9) | 0.0184 (2) | |
C3 | 1.14740 (19) | 0.55136 (11) | 0.80679 (11) | 0.0135 (3) | |
C1 | 1.02572 (18) | 0.69876 (11) | 0.90694 (12) | 0.0145 (3) | |
C5 | 0.7205 (2) | 0.41062 (12) | 0.52690 (14) | 0.0192 (3) | |
H5 | 0.6744 | 0.3453 | 0.5226 | 0.023* | |
C6 | 0.7256 (2) | 0.46596 (12) | 0.43525 (13) | 0.0184 (3) | |
H6 | 0.6811 | 0.4396 | 0.3673 | 0.022* | |
C8 | 0.85873 (18) | 0.59693 (11) | 0.54460 (12) | 0.0120 (3) | |
C4 | 0.78361 (19) | 0.45171 (11) | 0.62492 (13) | 0.0159 (3) | |
H4 | 0.7794 | 0.4136 | 0.6876 | 0.019* | |
C9 | 0.94147 (17) | 0.69584 (11) | 0.56703 (11) | 0.0116 (3) | |
N3 | 0.71182 (16) | 0.69184 (10) | 0.75566 (10) | 0.0149 (2) | |
C7 | 0.79640 (19) | 0.56049 (12) | 0.44386 (12) | 0.0157 (3) | |
H7 | 0.8021 | 0.5995 | 0.3820 | 0.019* | |
C10 | 1.0420 (2) | 0.85309 (12) | 0.50654 (13) | 0.0166 (3) | |
H10A | 0.9883 | 0.8922 | 0.5562 | 0.025* | |
H10B | 1.0349 | 0.8894 | 0.4389 | 0.025* | |
H10C | 1.1563 | 0.8430 | 0.5372 | 0.025* | |
C11 | 0.58131 (19) | 0.72422 (11) | 0.74029 (11) | 0.0130 (3) | |
H2 | 0.921 (3) | 0.7413 (16) | 0.4243 (18) | 0.026 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.01001 (3) | 0.01132 (3) | 0.00967 (3) | 0.00108 (2) | 0.00092 (2) | 0.00183 (2) |
S1 | 0.01461 (18) | 0.02173 (19) | 0.01450 (17) | 0.00703 (14) | −0.00096 (13) | −0.00273 (14) |
O2 | 0.0222 (6) | 0.0262 (6) | 0.0202 (6) | −0.0021 (5) | 0.0040 (5) | 0.0091 (5) |
N2 | 0.0159 (6) | 0.0124 (6) | 0.0111 (6) | −0.0027 (5) | 0.0008 (5) | 0.0007 (4) |
O1 | 0.0199 (6) | 0.0212 (6) | 0.0190 (6) | 0.0012 (5) | 0.0009 (5) | −0.0047 (4) |
C2 | 0.0129 (7) | 0.0196 (7) | 0.0149 (7) | 0.0029 (6) | −0.0005 (5) | 0.0008 (6) |
O4 | 0.0134 (5) | 0.0126 (5) | 0.0117 (5) | −0.0016 (4) | 0.0008 (4) | 0.0012 (4) |
N1 | 0.0118 (6) | 0.0120 (6) | 0.0137 (6) | 0.0010 (4) | 0.0023 (5) | 0.0009 (4) |
O3 | 0.0155 (5) | 0.0195 (5) | 0.0199 (5) | 0.0041 (4) | 0.0016 (4) | 0.0027 (4) |
C3 | 0.0154 (7) | 0.0134 (6) | 0.0115 (6) | −0.0018 (5) | 0.0014 (5) | 0.0008 (5) |
C1 | 0.0118 (7) | 0.0156 (7) | 0.0161 (7) | 0.0035 (5) | 0.0027 (5) | 0.0030 (5) |
C5 | 0.0205 (8) | 0.0145 (7) | 0.0236 (8) | −0.0067 (6) | 0.0061 (6) | −0.0028 (6) |
C6 | 0.0195 (8) | 0.0182 (7) | 0.0180 (7) | −0.0049 (6) | 0.0048 (6) | −0.0053 (6) |
C8 | 0.0110 (7) | 0.0118 (6) | 0.0133 (6) | 0.0000 (5) | 0.0022 (5) | 0.0005 (5) |
C4 | 0.0171 (7) | 0.0124 (7) | 0.0189 (7) | −0.0015 (5) | 0.0051 (6) | 0.0024 (5) |
C9 | 0.0099 (6) | 0.0117 (6) | 0.0131 (6) | 0.0016 (5) | 0.0014 (5) | 0.0011 (5) |
N3 | 0.0155 (6) | 0.0155 (6) | 0.0136 (6) | 0.0012 (5) | 0.0021 (5) | 0.0003 (5) |
C7 | 0.0179 (7) | 0.0161 (7) | 0.0134 (7) | −0.0021 (6) | 0.0036 (6) | −0.0006 (5) |
C10 | 0.0194 (8) | 0.0128 (7) | 0.0170 (7) | −0.0038 (6) | 0.0012 (6) | 0.0022 (5) |
C11 | 0.0165 (7) | 0.0121 (6) | 0.0103 (6) | −0.0006 (5) | 0.0011 (5) | −0.0010 (5) |
Re1—C2 | 1.9028 (16) | O3—C3 | 1.1533 (19) |
Re1—C1 | 1.9180 (16) | C5—C4 | 1.384 (2) |
Re1—C3 | 1.9201 (16) | C5—C6 | 1.384 (2) |
Re1—N3 | 2.1275 (13) | C5—H5 | 0.9500 |
Re1—O4 | 2.1583 (10) | C6—C7 | 1.388 (2) |
Re1—N1 | 2.1836 (13) | C6—H6 | 0.9500 |
S1—C11 | 1.6394 (16) | C8—C7 | 1.389 (2) |
O2—C2 | 1.1533 (19) | C8—C9 | 1.494 (2) |
N2—C9 | 1.3182 (18) | C4—H4 | 0.9500 |
N2—C10 | 1.4610 (19) | N3—C11 | 1.158 (2) |
N2—H2 | 0.84 (2) | C7—H7 | 0.9500 |
O1—C1 | 1.1494 (19) | C10—H10A | 0.9800 |
O4—C9 | 1.2581 (17) | C10—H10B | 0.9800 |
N1—C4 | 1.3446 (19) | C10—H10C | 0.9800 |
N1—C8 | 1.3542 (18) | ||
C2—Re1—C1 | 88.66 (7) | C4—C5—H5 | 120.4 |
C2—Re1—C3 | 88.42 (6) | C6—C5—H5 | 120.4 |
C1—Re1—C3 | 86.56 (6) | C5—C6—C7 | 119.17 (15) |
C2—Re1—N3 | 92.72 (6) | C5—C6—H6 | 120.4 |
C1—Re1—N3 | 95.16 (6) | C7—C6—H6 | 120.4 |
C3—Re1—N3 | 177.96 (5) | N1—C8—C7 | 122.06 (14) |
C2—Re1—O4 | 171.84 (5) | N1—C8—C9 | 112.69 (13) |
C1—Re1—O4 | 98.26 (5) | C7—C8—C9 | 125.25 (13) |
C3—Re1—O4 | 96.27 (5) | N1—C4—C5 | 122.25 (14) |
N3—Re1—O4 | 82.40 (4) | N1—C4—H4 | 118.9 |
C2—Re1—N1 | 98.66 (6) | C5—C4—H4 | 118.9 |
C1—Re1—N1 | 172.54 (6) | O4—C9—N2 | 121.26 (14) |
C3—Re1—N1 | 95.00 (5) | O4—C9—C8 | 118.64 (13) |
N3—Re1—N1 | 83.15 (5) | N2—C9—C8 | 120.08 (13) |
O4—Re1—N1 | 74.33 (4) | C11—N3—Re1 | 174.40 (12) |
C9—N2—C10 | 121.62 (13) | C6—C7—C8 | 118.77 (14) |
C9—N2—H2 | 120.5 (15) | C6—C7—H7 | 120.6 |
C10—N2—H2 | 117.6 (15) | C8—C7—H7 | 120.6 |
O2—C2—Re1 | 177.17 (14) | N2—C10—H10A | 109.5 |
C9—O4—Re1 | 117.61 (9) | N2—C10—H10B | 109.5 |
C4—N1—C8 | 118.59 (13) | H10A—C10—H10B | 109.5 |
C4—N1—Re1 | 125.03 (10) | N2—C10—H10C | 109.5 |
C8—N1—Re1 | 116.34 (10) | H10A—C10—H10C | 109.5 |
O3—C3—Re1 | 178.12 (13) | H10B—C10—H10C | 109.5 |
O1—C1—Re1 | 178.53 (13) | N3—C11—S1 | 179.00 (14) |
C4—C5—C6 | 119.15 (15) | ||
C4—C5—C6—C7 | 1.2 (2) | C10—N2—C9—O4 | −1.8 (2) |
C4—N1—C8—C7 | 1.7 (2) | C10—N2—C9—C8 | 179.84 (13) |
Re1—N1—C8—C7 | −176.03 (12) | N1—C8—C9—O4 | 0.19 (19) |
C4—N1—C8—C9 | −177.88 (13) | C7—C8—C9—O4 | −179.33 (14) |
Re1—N1—C8—C9 | 4.44 (16) | N1—C8—C9—N2 | 178.59 (13) |
C8—N1—C4—C5 | −1.1 (2) | C7—C8—C9—N2 | −0.9 (2) |
Re1—N1—C4—C5 | 176.40 (12) | C5—C6—C7—C8 | −0.6 (2) |
C6—C5—C4—N1 | −0.4 (2) | N1—C8—C7—C6 | −0.8 (2) |
Re1—O4—C9—N2 | 176.79 (11) | C9—C8—C7—C6 | 178.65 (14) |
Re1—O4—C9—C8 | −4.83 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···S1i | 0.84 (2) | 2.57 (2) | 3.3642 (14) | 158.0 (19) |
C7—H7···S1i | 0.95 | 2.90 | 3.8255 (16) | 166 |
C10—H10C···S1ii | 0.98 | 2.98 | 3.8445 (17) | 148 |
Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) x+1, y, z. |
Triclinic(b) | Monoclinic | 6-31G(d,p) | 6-31G++(d,p) | 6-311G++(d,p) | |
Re1—C1 | 1.915 (4) | 1.9180 (16) | 1.9328 | 1.9306 | 1.9329 |
Re1—C2 | 1.901 (4) | 1.9028 (16) | 1.9052 | 1.9016 | 1.9033 |
Re1—C3 | 1.923 (4) | 1.9201 (16) | 1.9342 | 1.9297 | 1.9330 |
Re1—N1 | 2.190 (3) | 2.1836 (13) | 2.2272 | 2.2079 | 2.2049 |
Re1—O4 | 2.159 (2) | 2.1583 (10) | 2.2412 | 2.2257 | 2.2169 |
Re1—N3 | 2.117 (3) | 2.1275 (13) | 2.1268 | 2.1076 | 2.0982 |
C9—O4 | 1.261 (4) | 1.2581 (17) | 1.2524 | 1.2798 | 1.2773 |
C9—N2 | 1.309 (5) | 1.3182 (18) | 1.3384 | 1.3388 | 1.3388 |
C10—N2 | 1.461 (5) | 1.4610 (19) | 1.4630 | 1.4708 | 1.4698 |
N1···O4 | 2.620 (4) | 2.623 (2) | 2.6616 | 2.6496 | 2.6401 |
N1—Re1—O4 | 74.09 (10) | 74.33 (4) | 73.12 | 73.40 | 73.32 |
N1—Re1—N3 | 83.91 (12) | 83.15 (5) | 81.16 | 81.40 | 81.12 |
O4—Re1—N3 | 81.68 (11) | 82.40 (5) | 79.06 | 78.84 | 79.73 |
C11—N3—Re1 | 167.0 (1) | 174.4 (1) | 157.29 | 161.39 | 167.84 |
N1—Re1—C1 | 170.93 (13) | 172.55 (6) | 169.97 | 169.90 | 169.65 |
O4—Re1—C2 | 168.57 (12) | 171.84 (6) | 170.77 | 170.63 | 170.91 |
N3—Re1—C3 | 174.90 (12) | 177.96 (6) | 171.84 | 171.84 | 172.19 |
Notes: (a)DFT Calculations were carried out by means of GAUSSIAN09 software (Frisch et al., 2009) using the B3LYP functional and the LANL2DZ basis set for the Re atom; (b)data from Lyczko et al. (2015). |
Acknowledgements
KL gratefully acknowledges the Institute of
and Technology for financial support within the statutory research. This research was also supported in part by PL-Grid Infrastructure.References
Abram, U., Hubener, R., Alberto, R. & Schibli, R. (1996). Z. Anorg. Allg. Chem. 622, 813–818. CSD CrossRef CAS Web of Science Google Scholar
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Cavigli, P., Balducci, G., Zangrando, E., Demitri, N., Amati, A., Indelli, M. T. & Iengo, E. (2016). Inorg. Chim. Acta, 439, 61–68. Web of Science CSD CrossRef CAS Google Scholar
Collery, P., Mohsen, A., Kermagoret, A., Corre, S., Bastian, G., Tomas, A., Wei, M., Santoni, M., Guerra, N., Desmaële, D. & d'Angelo, J. (2015). Invest. New Drugs, 33, 848–860. Web of Science CrossRef CAS PubMed Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Grupp, A., Bubrin, M., Ehret, F., Kvapilová, H., Záliš, S. & Kaim, W. (2014). J. Organomet. Chem. 751, 678–685. Web of Science CSD CrossRef CAS Google Scholar
Lyczko, K., Lyczko, M. & Mieczkowski, J. (2015). Polyhedron, 87, 122–134. Web of Science CSD CrossRef CAS Google Scholar
Ma, Y., Liang, S., Wu, H. & Wang, H. (2014). J. Radioanal. Nucl. Chem. 299, 1865–1870. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pizarro, N., Duque, M., Chamorro, E., Nonell, S., Manzur, J., de la Fuente, J. R., Günther, G., Cepeda-Plaza, M. & Vega, A. (2015). J. Phys. Chem. A, 119, 3929–3935. Web of Science CrossRef CAS PubMed Google Scholar
Portenkirchner, E., Schlager, S., Apaydin, D., Oppelt, K., Himmelsbach, M., Egbe, D. A. M., Neugebauer, H., Knör, G., Yoshida, T. & Serdar Sariciftci, N. (2015). Electrocatalysis, 6, 185-197. Web of Science CrossRef CAS Google Scholar
Rodríguez, A. M. B., Gabrielsson, A., Motevalli, M., Matousek, P., Towrie, M., Šebera, J., Záliš, S. & Vlček, A. (2005). J. Phys. Chem. A, 109, 5016–5025. PubMed Google Scholar
Schneider, J., Vuong, K. Q., Calladine, J. A., Sun, X.-Z., Whitwood, A. C., George, A. C. & Perutz, R. N. (2011). Inorg. Chem. 50, 11877–11889. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wähler, K., Ludewig, K., Szabo, P., Harms, K. & Meggers, E. (2014). Eur. J. Inorg. Chem. pp. 807–811. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, G.-W., Hu, Y.-X., Chi, H.-J., Dong, Y., Xiao, G.-Y., Li, X. & Zhang, D.-Y. (2015). Opt. Mater. 47, 173–179. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.