research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a second polymorph of tricarbon­yl(N-methyl­pyridine-2-carboxamide-κ2N1,O)(thio­cyanato-κN)rhenium(I)

CROSSMARK_Color_square_no_text.svg

aInstitute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
*Correspondence e-mail: k.lyczko@ichtj.waw.pl

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 August 2016; accepted 30 August 2016; online 5 September 2016)

A new polymorph of the title compound, [Re(NCS)(C7H8N2O)(CO)3], crystallizing in the space group P21/n, has been obtained and structurally characterized by the experiment and DFT calculations. In this complex, the rhenium(I) cation is octa­hedrally coordinated by three carbonyl groups in a facial configuration, the N,O-bidentate N-methyl­pyridine-2-carboxamide ligand and the N-bonded thio­cyanate anion. Neighbouring mol­ecules are linked into a three-dimensional network by inter­molecular N—H⋯S and C—H⋯S inter­actions.

1. Chemical context

Tri­carbonyl­rhenium(I) complexes in the `2 + 1' system (with one bidentate and one monodentate ligand) are still widely studied because of their inter­esting photophysical and photochemical properties (Pizarro et al., 2015[Pizarro, N., Duque, M., Chamorro, E., Nonell, S., Manzur, J., de la Fuente, J. R., Günther, G., Cepeda-Plaza, M. & Vega, A. (2015). J. Phys. Chem. A, 119, 3929-3935.]; Zhao et al., 2015[Zhao, G.-W., Hu, Y.-X., Chi, H.-J., Dong, Y., Xiao, G.-Y., Li, X. & Zhang, D.-Y. (2015). Opt. Mater. 47, 173-179.]; Portenkirchner et al., 2015[Portenkirchner, E., Schlager, S., Apaydin, D., Oppelt, K., Himmelsbach, M., Egbe, D. A. M., Neugebauer, H., Knör, G., Yoshida, T. & Serdar Sariciftci, N. (2015). Electrocatalysis, 6, 185-197.]) and possible applications in medicine (Ma et al., 2014[Ma, Y., Liang, S., Wu, H. & Wang, H. (2014). J. Radioanal. Nucl. Chem. 299, 1865-1870.]; Wähler et al., 2014[Wähler, K., Ludewig, K., Szabo, P., Harms, K. & Meggers, E. (2014). Eur. J. Inorg. Chem. pp. 807-811.]; Collery et al., 2015[Collery, P., Mohsen, A., Kermagoret, A., Corre, S., Bastian, G., Tomas, A., Wei, M., Santoni, M., Guerra, N., Desmaële, D. & d'Angelo, J. (2015). Invest. New Drugs, 33, 848-860.]). Recently, a few tricarbonyl compounds of rhenium(I) with the bidentate N,O-donor ligand N-methylpyridine-2-carb­oxy­amide [LH(Me)NO] and with different monodentate ligands being either an anion (Cl, Br, I and SCN) or a neutral mol­ecule [imidazole (Him) and 3,5-di­methyl­pyrazole (Hdmpz)] have been characterized, among others, by X-ray crystallographic analysis (Lyczko et al., 2015[Lyczko, K., Lyczko, M. & Mieczkowski, J. (2015). Polyhedron, 87, 122-134.]). The first polymorph of the title complex [Re(CO)3(LH(Me)NO)NCS] to be reported (Lyczko et al., 2015[Lyczko, K., Lyczko, M. & Mieczkowski, J. (2015). Polyhedron, 87, 122-134.]) has triclinic symmetry and crystallizes in the space group P[\overline{1}].

[Scheme 1]

In the current study, a second polymorph of this compound crystallizing in the monoclinic space group P21/n has been obtained and its structure is reported here, including a comparison of the triclinic and monoclinic polymorphs.

2. Structural commentary

The mol­ecular structure of the monoclinic polymorph of the studied tri­carbonyl­rhenium(I) complex with a bidentate ligand and a pseudohalide anion is presented in Fig. 1[link]. The metal ion is surrounded in a slightly distorted octa­hedral coordination environment by six donor atoms, including three carbon atoms of the carbonyl groups, two nitro­gen atoms and one oxygen atom. The three CO ligands occupy the facial positions of this octa­hedron. The Re—C bond lengths are in the range 1.9028 (16)–1.9201 (16) Å. The three remaining positions in the fac-[Re(CO)3]+ core are occupied by one bidentate ligand and one monodentate ligand, which results in a so called `2 + 1' system. N-methylpyridine-2-carboxy­amide behaves in the complex as a neutral ligand and chelates the rhenium(I) ion by means of oxygen and nitro­gen atoms with bond lengths of 2.1583 (10) and 2.1836 (13) Å, respectively, forming a five-membered ring. The N1—Re1—O4 bite angle of 74.33 (4)° is typical for that type of chelate ring. The sixth coordination position of the metal ion is occupied by the N atom of the thio­cyanate anion. The use of the NCS ion in the reaction mixture together with an LH(Me)NO ligand leads to the formation of a neutral complex. This pseudohalide ion, which can exhibit an ambidentate character acting with the central metal cation either by its sulfur or nitro­gen atom, coordinates in the present complex through the N atom, which is generally typical for hard metal ions using the `hard and soft acids and bases' (HSAB) concept. All of the structural parameters mentioned above are very similar to those previously reported for the triclinic polymorph of the title compound (see Table 1[link]). The mol­ecular structures of the two polymorphic forms are compared in Fig. 2[link].

Table 1
Comparison of selected bond lengths, distances (Å) and angles (°) between the experiments and calculations from three different basis sets for the studied complex(a)

  Triclinic(b) Monoclinic 6–31G(d,p) 6–31G++(d,p) 6–311G++(d,p)
Re1—C1 1.915 (4) 1.9180 (16) 1.9328 1.9306 1.9329
Re1—C2 1.901 (4) 1.9028 (16) 1.9052 1.9016 1.9033
Re1—C3 1.923 (4) 1.9201 (16) 1.9342 1.9297 1.9330
Re1—N1 2.190 (3) 2.1836 (13) 2.2272 2.2079 2.2049
Re1—O4 2.159 (2) 2.1583 (10) 2.2412 2.2257 2.2169
Re1—N3 2.117 (3) 2.1275 (13) 2.1268 2.1076 2.0982
C9—O4 1.261 (4) 1.2581 (17) 1.2524 1.2798 1.2773
C9—N2 1.309 (5) 1.3182 (18) 1.3384 1.3388 1.3388
C10—N2 1.461 (5) 1.4610 (19) 1.4630 1.4708 1.4698
N1⋯O4 2.620 (4) 2.623 (2) 2.6616 2.6496 2.6401
N1—Re1—O4 74.09 (10) 74.33 (4) 73.12 73.40 73.32
N1—Re1—N3 83.91 (12) 83.15 (5) 81.16 81.40 81.12
O4—Re1—N3 81.68 (11) 82.40 (5) 79.06 78.84 79.73
C11—N3—Re1 167.0 (1) 174.4 (1) 157.29 161.39 167.84
N1—Re1—C1 170.93 (13) 172.55 (6) 169.97 169.90 169.65
O4—Re1—C2 168.57 (12) 171.84 (6) 170.77 170.63 170.91
N3—Re1—C3 174.90 (12) 177.96 (6) 171.84 171.84 172.19
Notes: (a)DFT Calculations were carried out by means of GAUSSIAN09 software (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]) using the B3LYP functional and the LANL2DZ basis set for the Re atom; (b)data from Lyczko et al. (2015[Lyczko, K., Lyczko, M. & Mieczkowski, J. (2015). Polyhedron, 87, 122-134.]).
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids for the non-H atoms drawn at the 50% probability level.
[Figure 2]
Figure 2
Graphical representations showing the overlays of the mol­ecular structures obtained for the [Re(CO)3(LH(Me)NO)NCS] complex from diffraction experiments and DFT calculations. The monoclinic form is blue, the triclinic form green and the DFT-optimized structure [B3LYP/LANL2DZ,6–311 G++(d,p)] is red.

It can be ruled out that the use of AgBF4 for precipitation of Cl ions during the synthesis of the title complex (see Section 5) leads to the crystallization of its monoclinic polymorph, while the presence of PF6 anions, originating from the silver salt, contributes to the formation of its triclinic form (Lyczko et al., 2015[Lyczko, K., Lyczko, M. & Mieczkowski, J. (2015). Polyhedron, 87, 122-134.]).

3. DFT calculations

The bond lengths and angles for the present complex origin­ating from the crystal structure determination are in good agreement with DFT calculations (see Table 1[link]) performed by means of the B3LYP functional and three different basis sets for non-metallic atoms (the Re atom was described by the LANL2DZ basis set) using the GAUSSIAN09 software (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). In most cases, the differences between experimentally and theoretically determined atomic distances are no larger than 0.03 Å. In only a few cases, this difference larger than 0.03 Å, with the largest difference being about 0.08, 0.07 or 0.06 Å using the 6-31G(d,p), 6-31G++(d,p) or 6-311G++(d,p) basis sets, respectively, for the Re1—O4 bond length. The use of three different basis sets gave similar results. However, a slightly better correlation with the experiment can be observed by using the 6-311G++(d,p) basis set. It is especially noticeable if the C12—N3—Re1 angle and the bond lengths involving the chelating atoms (Re1—N1 and Re1—O4) are compared. The good agreement between the DFT-optimized and the experimentally determined structures is illustrated in Fig. 2[link].

4. Supra­molecular features

The mol­ecular structure of both polymorphic forms of the [Re(CO)3(LH(Me)NO)NCS] complex are very similar, but their crystal structures display different packing features. In the crystal structure of the monoclinic polymorph, the mol­ecules are held together by N2—H2⋯S1 hydrogen bonds [3.3642 (14) Å] and two other weaker inter­actions [C7—H7⋯S1, 3.8255 (16) Å and C10—H10C⋯S1, 3.8445 (17) Å; Table 2[link], Fig. 3[link]). In turn, the mol­ecular packing in the triclinic form is characterized by the presence of inter­molecular hydrogen bonds of 3.335 (3) Å (N2—H2⋯S1), 3.743 (4) Å (C6—H6⋯S1) and 3.921 (4) Å (C7—H7⋯S1) (Lyczko et al., 2015[Lyczko, K., Lyczko, M. & Mieczkowski, J. (2015). Polyhedron, 87, 122-134.]). The shortest distances between neighbouring S atoms of the thio­cyanate ions [7.033 (1) and 7.175 (1) Å] in the monoclinic polymorph are much longer than the respective S⋯S contacts [4.736 (2) Å] in the triclinic form.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.84 (2) 2.57 (2) 3.3642 (14) 158.0 (19)
C7—H7⋯S1i 0.95 2.90 3.8255 (16) 166
C10—H10C⋯S1ii 0.98 2.98 3.8445 (17) 148
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z.
[Figure 3]
Figure 3
Fragment of the crystal structure of the title complex showing N—H⋯S and C—H⋯S hydrogen-bonding inter­actions as dashed lines.

5. Database survey

The triclinic polymorph of the title complex has been presented recently (Lyczko et al., 2015[Lyczko, K., Lyczko, M. & Mieczkowski, J. (2015). Polyhedron, 87, 122-134.]). Only a few crystal structures in which the thio­cyanate ion coordinates to a tri­carbonyl­rhenium(I) core can be found in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) to date. In all these complexes, the thio­cyanato group inter­acts with the central metal atom in an N-bonded mode. The Re—N(NCS) bond lengths in both polymorphs of [Re(CO)3(LH(Me)NO)NCS] [2.1275 (13) Å for the monoclinic form (this work) and 2.117 (3) Å for the triclinic form (Lyczko et al., 2015[Lyczko, K., Lyczko, M. & Mieczkowski, J. (2015). Polyhedron, 87, 122-134.])] are similar to other such bonds observed in [Re(CO)3(bipy(CH3)(COOH))NCS] [2.125 (3) Å, Cavigli et al., 2016[Cavigli, P., Balducci, G., Zangrando, E., Demitri, N., Amati, A., Indelli, M. T. & Iengo, E. (2016). Inorg. Chim. Acta, 439, 61-68.]], [Re(CO)3(tBu-DAB)NCS] [2.115 (1) Å; Grupp et al., 2014[Grupp, A., Bubrin, M., Ehret, F., Kvapilová, H., Záliš, S. & Kaim, W. (2014). J. Organomet. Chem. 751, 678-685.]], [Re(CO)3(bipy-PdTPP)NCS] [2.132 (9) Å; Schneider et al., 2011[Schneider, J., Vuong, K. Q., Calladine, J. A., Sun, X.-Z., Whitwood, A. C., George, A. C. & Perutz, R. N. (2011). Inorg. Chem. 50, 11877-11889.]], [Re(CO)3(Pr-DAB)NCS] [2.115 (7) Å; Rodríguez et al., 2005[Rodríguez, A. M. B., Gabrielsson, A., Motevalli, M., Matousek, P., Towrie, M., Šebera, J., Záliš, S. & Vlček, A. (2005). J. Phys. Chem. A, 109, 5016-5025.]], [Re(CO)3(bipy)NCS] [2.123 (4) and 2.129 (4) Å; Rodríguez et al., 2005[Rodríguez, A. M. B., Gabrielsson, A., Motevalli, M., Matousek, P., Towrie, M., Šebera, J., Záliš, S. & Vlček, A. (2005). J. Phys. Chem. A, 109, 5016-5025.]] or [Re(CO)3(NCS)3](NEt4)2 [2.112–2.145 (10) Å; Abram et al., 1996[Abram, U., Hubener, R., Alberto, R. & Schibli, R. (1996). Z. Anorg. Allg. Chem. 622, 813-818.]].

6. Synthesis and crystallization

The title complex was synthesized by refluxing a methanol solution (5.0 ml) of Re(CO)5Cl (0.050 g, 0.138 mmol) with N-methylpyridine-2-carb­oxy­amide (0.30 g, 0.220 mmol) and KSCN (0.020 g, 0.206 mmol) after previous precipitation of AgCl by means of AgBF4 (0.027 g, 0.139 mmol), similar to the method described earlier (Lyczko et al., 2015[Lyczko, K., Lyczko, M. & Mieczkowski, J. (2015). Polyhedron, 87, 122-134.]). The volume of this solution was decreased in a desiccator under reduced pressure. A yellow crystalline material was obtained after storing the solution for a few weeks in a refrigerator. Crystallization yield: 0.022 g (34.4%). Elemental analysis calculated for C11H8N3O4ReS: C, 28.44; H, 1.74; N, 9.05. Found: C, 28.33; H, 2.12; N, 9.18%. From the obtained material several crystals were checked crystallographically; the monoclinic form was entirely found.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms bonded to C atoms were inserted in calculated positions with C—H = 0.98 (meth­yl) or 0.95 Å (aromatic) and refined isotropically using a riding model with Uiso(H) equal to 1.5Ueq(C) or 1.2Ueq(C) for methyl and aromatic H atoms, respectively. In turn, the H atom of the NH pair was located in a difference Fourier map and its position was freely refined.

Table 3
Experimental details

Crystal data
Chemical formula [Re(NCS)(C7H8N2O)(CO)3]
Mr 464.46
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.3456 (1), 13.3241 (1), 12.7011 (1)
β (°) 99.284 (1)
V3) 1393.83 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.88
Crystal size (mm) 0.15 × 0.12 × 0.08
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Eos detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.629, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 77774, 4060, 3921
Rint 0.041
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.011, 0.025, 1.11
No. of reflections 4060
No. of parameters 186
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.51
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Tricarbonyl(N-methylpyridine-2-carboxamide-κ2N1,O)(thiocyanato-κN)rhenium(I) top
Crystal data top
[Re(NCS)(C7H8N2O)(CO)3]F(000) = 872
Mr = 464.46Dx = 2.213 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.3456 (1) ÅCell parameters from 49644 reflections
b = 13.3241 (1) Åθ = 3.1–31.3°
c = 12.7011 (1) ŵ = 8.88 mm1
β = 99.284 (1)°T = 100 K
V = 1393.83 (2) Å3Block, yellow
Z = 40.15 × 0.12 × 0.08 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Eos detector
4060 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3921 reflections with I > 2σ(I)
Detector resolution: 16.0131 pixels mm-1Rint = 0.041
ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1111
Tmin = 0.629, Tmax = 1.000k = 1818
77774 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.011H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.025 w = 1/[σ2(Fo2) + (0.0082P)2 + 0.8572P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.005
4060 reflectionsΔρmax = 0.42 e Å3
186 parametersΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.94102 (2)0.61839 (2)0.78536 (2)0.01041 (2)
S10.39614 (5)0.76937 (3)0.72060 (3)0.01731 (8)
O20.81867 (15)0.46596 (9)0.93364 (10)0.0228 (3)
N20.96200 (16)0.75572 (10)0.48766 (10)0.0133 (2)
O11.07960 (14)0.74704 (9)0.97900 (9)0.0203 (2)
C20.86838 (19)0.52386 (12)0.87960 (12)0.0161 (3)
O40.99371 (13)0.71917 (8)0.66237 (8)0.0127 (2)
N10.85068 (15)0.54369 (9)0.63442 (10)0.0125 (2)
O31.27172 (14)0.51162 (9)0.82262 (9)0.0184 (2)
C31.14740 (19)0.55136 (11)0.80679 (11)0.0135 (3)
C11.02572 (18)0.69876 (11)0.90694 (12)0.0145 (3)
C50.7205 (2)0.41062 (12)0.52690 (14)0.0192 (3)
H50.67440.34530.52260.023*
C60.7256 (2)0.46596 (12)0.43525 (13)0.0184 (3)
H60.68110.43960.36730.022*
C80.85873 (18)0.59693 (11)0.54460 (12)0.0120 (3)
C40.78361 (19)0.45171 (11)0.62492 (13)0.0159 (3)
H40.77940.41360.68760.019*
C90.94147 (17)0.69584 (11)0.56703 (11)0.0116 (3)
N30.71182 (16)0.69184 (10)0.75566 (10)0.0149 (2)
C70.79640 (19)0.56049 (12)0.44386 (12)0.0157 (3)
H70.80210.59950.38200.019*
C101.0420 (2)0.85309 (12)0.50654 (13)0.0166 (3)
H10A0.98830.89220.55620.025*
H10B1.03490.88940.43890.025*
H10C1.15630.84300.53720.025*
C110.58131 (19)0.72422 (11)0.74029 (11)0.0130 (3)
H20.921 (3)0.7413 (16)0.4243 (18)0.026 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01001 (3)0.01132 (3)0.00967 (3)0.00108 (2)0.00092 (2)0.00183 (2)
S10.01461 (18)0.02173 (19)0.01450 (17)0.00703 (14)0.00096 (13)0.00273 (14)
O20.0222 (6)0.0262 (6)0.0202 (6)0.0021 (5)0.0040 (5)0.0091 (5)
N20.0159 (6)0.0124 (6)0.0111 (6)0.0027 (5)0.0008 (5)0.0007 (4)
O10.0199 (6)0.0212 (6)0.0190 (6)0.0012 (5)0.0009 (5)0.0047 (4)
C20.0129 (7)0.0196 (7)0.0149 (7)0.0029 (6)0.0005 (5)0.0008 (6)
O40.0134 (5)0.0126 (5)0.0117 (5)0.0016 (4)0.0008 (4)0.0012 (4)
N10.0118 (6)0.0120 (6)0.0137 (6)0.0010 (4)0.0023 (5)0.0009 (4)
O30.0155 (5)0.0195 (5)0.0199 (5)0.0041 (4)0.0016 (4)0.0027 (4)
C30.0154 (7)0.0134 (6)0.0115 (6)0.0018 (5)0.0014 (5)0.0008 (5)
C10.0118 (7)0.0156 (7)0.0161 (7)0.0035 (5)0.0027 (5)0.0030 (5)
C50.0205 (8)0.0145 (7)0.0236 (8)0.0067 (6)0.0061 (6)0.0028 (6)
C60.0195 (8)0.0182 (7)0.0180 (7)0.0049 (6)0.0048 (6)0.0053 (6)
C80.0110 (7)0.0118 (6)0.0133 (6)0.0000 (5)0.0022 (5)0.0005 (5)
C40.0171 (7)0.0124 (7)0.0189 (7)0.0015 (5)0.0051 (6)0.0024 (5)
C90.0099 (6)0.0117 (6)0.0131 (6)0.0016 (5)0.0014 (5)0.0011 (5)
N30.0155 (6)0.0155 (6)0.0136 (6)0.0012 (5)0.0021 (5)0.0003 (5)
C70.0179 (7)0.0161 (7)0.0134 (7)0.0021 (6)0.0036 (6)0.0006 (5)
C100.0194 (8)0.0128 (7)0.0170 (7)0.0038 (6)0.0012 (6)0.0022 (5)
C110.0165 (7)0.0121 (6)0.0103 (6)0.0006 (5)0.0011 (5)0.0010 (5)
Geometric parameters (Å, º) top
Re1—C21.9028 (16)O3—C31.1533 (19)
Re1—C11.9180 (16)C5—C41.384 (2)
Re1—C31.9201 (16)C5—C61.384 (2)
Re1—N32.1275 (13)C5—H50.9500
Re1—O42.1583 (10)C6—C71.388 (2)
Re1—N12.1836 (13)C6—H60.9500
S1—C111.6394 (16)C8—C71.389 (2)
O2—C21.1533 (19)C8—C91.494 (2)
N2—C91.3182 (18)C4—H40.9500
N2—C101.4610 (19)N3—C111.158 (2)
N2—H20.84 (2)C7—H70.9500
O1—C11.1494 (19)C10—H10A0.9800
O4—C91.2581 (17)C10—H10B0.9800
N1—C41.3446 (19)C10—H10C0.9800
N1—C81.3542 (18)
C2—Re1—C188.66 (7)C4—C5—H5120.4
C2—Re1—C388.42 (6)C6—C5—H5120.4
C1—Re1—C386.56 (6)C5—C6—C7119.17 (15)
C2—Re1—N392.72 (6)C5—C6—H6120.4
C1—Re1—N395.16 (6)C7—C6—H6120.4
C3—Re1—N3177.96 (5)N1—C8—C7122.06 (14)
C2—Re1—O4171.84 (5)N1—C8—C9112.69 (13)
C1—Re1—O498.26 (5)C7—C8—C9125.25 (13)
C3—Re1—O496.27 (5)N1—C4—C5122.25 (14)
N3—Re1—O482.40 (4)N1—C4—H4118.9
C2—Re1—N198.66 (6)C5—C4—H4118.9
C1—Re1—N1172.54 (6)O4—C9—N2121.26 (14)
C3—Re1—N195.00 (5)O4—C9—C8118.64 (13)
N3—Re1—N183.15 (5)N2—C9—C8120.08 (13)
O4—Re1—N174.33 (4)C11—N3—Re1174.40 (12)
C9—N2—C10121.62 (13)C6—C7—C8118.77 (14)
C9—N2—H2120.5 (15)C6—C7—H7120.6
C10—N2—H2117.6 (15)C8—C7—H7120.6
O2—C2—Re1177.17 (14)N2—C10—H10A109.5
C9—O4—Re1117.61 (9)N2—C10—H10B109.5
C4—N1—C8118.59 (13)H10A—C10—H10B109.5
C4—N1—Re1125.03 (10)N2—C10—H10C109.5
C8—N1—Re1116.34 (10)H10A—C10—H10C109.5
O3—C3—Re1178.12 (13)H10B—C10—H10C109.5
O1—C1—Re1178.53 (13)N3—C11—S1179.00 (14)
C4—C5—C6119.15 (15)
C4—C5—C6—C71.2 (2)C10—N2—C9—O41.8 (2)
C4—N1—C8—C71.7 (2)C10—N2—C9—C8179.84 (13)
Re1—N1—C8—C7176.03 (12)N1—C8—C9—O40.19 (19)
C4—N1—C8—C9177.88 (13)C7—C8—C9—O4179.33 (14)
Re1—N1—C8—C94.44 (16)N1—C8—C9—N2178.59 (13)
C8—N1—C4—C51.1 (2)C7—C8—C9—N20.9 (2)
Re1—N1—C4—C5176.40 (12)C5—C6—C7—C80.6 (2)
C6—C5—C4—N10.4 (2)N1—C8—C7—C60.8 (2)
Re1—O4—C9—N2176.79 (11)C9—C8—C7—C6178.65 (14)
Re1—O4—C9—C84.83 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.84 (2)2.57 (2)3.3642 (14)158.0 (19)
C7—H7···S1i0.952.903.8255 (16)166
C10—H10C···S1ii0.982.983.8445 (17)148
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1, y, z.
Comparison of selected bond lengths, distances (Å) and angles (°) between the experiments and calculations from three different basis sets for the studied complex(a) top
Triclinic(b)Monoclinic6-31G(d,p)6-31G++(d,p)6-311G++(d,p)
Re1—C11.915 (4)1.9180 (16)1.93281.93061.9329
Re1—C21.901 (4)1.9028 (16)1.90521.90161.9033
Re1—C31.923 (4)1.9201 (16)1.93421.92971.9330
Re1—N12.190 (3)2.1836 (13)2.22722.20792.2049
Re1—O42.159 (2)2.1583 (10)2.24122.22572.2169
Re1—N32.117 (3)2.1275 (13)2.12682.10762.0982
C9—O41.261 (4)1.2581 (17)1.25241.27981.2773
C9—N21.309 (5)1.3182 (18)1.33841.33881.3388
C10—N21.461 (5)1.4610 (19)1.46301.47081.4698
N1···O42.620 (4)2.623 (2)2.66162.64962.6401
N1—Re1—O474.09 (10)74.33 (4)73.1273.4073.32
N1—Re1—N383.91 (12)83.15 (5)81.1681.4081.12
O4—Re1—N381.68 (11)82.40 (5)79.0678.8479.73
C11—N3—Re1167.0 (1)174.4 (1)157.29161.39167.84
N1—Re1—C1170.93 (13)172.55 (6)169.97169.90169.65
O4—Re1—C2168.57 (12)171.84 (6)170.77170.63170.91
N3—Re1—C3174.90 (12)177.96 (6)171.84171.84172.19
Notes: (a)DFT Calculations were carried out by means of GAUSSIAN09 software (Frisch et al., 2009) using the B3LYP functional and the LANL2DZ basis set for the Re atom; (b)data from Lyczko et al. (2015).
 

Acknowledgements

KL gratefully acknowledges the Institute of Nuclear Chemistry and Technology for financial support within the statutory research. This research was also supported in part by PL-Grid Infrastructure.

References

First citationAbram, U., Hubener, R., Alberto, R. & Schibli, R. (1996). Z. Anorg. Allg. Chem. 622, 813–818.  CSD CrossRef CAS Web of Science Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationCavigli, P., Balducci, G., Zangrando, E., Demitri, N., Amati, A., Indelli, M. T. & Iengo, E. (2016). Inorg. Chim. Acta, 439, 61–68.  Web of Science CSD CrossRef CAS Google Scholar
First citationCollery, P., Mohsen, A., Kermagoret, A., Corre, S., Bastian, G., Tomas, A., Wei, M., Santoni, M., Guerra, N., Desmaële, D. & d'Angelo, J. (2015). Invest. New Drugs, 33, 848–860.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrupp, A., Bubrin, M., Ehret, F., Kvapilová, H., Záliš, S. & Kaim, W. (2014). J. Organomet. Chem. 751, 678–685.  Web of Science CSD CrossRef CAS Google Scholar
First citationLyczko, K., Lyczko, M. & Mieczkowski, J. (2015). Polyhedron, 87, 122–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Y., Liang, S., Wu, H. & Wang, H. (2014). J. Radioanal. Nucl. Chem. 299, 1865–1870.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPizarro, N., Duque, M., Chamorro, E., Nonell, S., Manzur, J., de la Fuente, J. R., Günther, G., Cepeda-Plaza, M. & Vega, A. (2015). J. Phys. Chem. A, 119, 3929–3935.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPortenkirchner, E., Schlager, S., Apaydin, D., Oppelt, K., Himmelsbach, M., Egbe, D. A. M., Neugebauer, H., Knör, G., Yoshida, T. & Serdar Sariciftci, N. (2015). Electrocatalysis, 6, 185-197.  Web of Science CrossRef CAS Google Scholar
First citationRodríguez, A. M. B., Gabrielsson, A., Motevalli, M., Matousek, P., Towrie, M., Šebera, J., Záliš, S. & Vlček, A. (2005). J. Phys. Chem. A, 109, 5016–5025.  PubMed Google Scholar
First citationSchneider, J., Vuong, K. Q., Calladine, J. A., Sun, X.-Z., Whitwood, A. C., George, A. C. & Perutz, R. N. (2011). Inorg. Chem. 50, 11877–11889.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWähler, K., Ludewig, K., Szabo, P., Harms, K. & Meggers, E. (2014). Eur. J. Inorg. Chem. pp. 807–811.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, G.-W., Hu, Y.-X., Chi, H.-J., Dong, Y., Xiao, G.-Y., Li, X. & Zhang, D.-Y. (2015). Opt. Mater. 47, 173–179.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds