research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of cis-di­chlorido­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)chromium(III) (oxalato-κ2O1,O2)(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)chromium(III) bis­(perchlorate) from synchrotron data

CROSSMARK_Color_square_no_text.svg

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 31 August 2016; accepted 5 September 2016; online 9 September 2016)

In the asymmetric unit of the title compound, [CrCl2(C10H24N4)][Cr(C2O4)(C10H24N4)](ClO4)2 (C10H24N4 = 1,4,8,11-tetra­aza­cyclo­tetra­decane, cyclam; C2O4 = oxalate, ox), there are two independent halves of the [CrCl2(cyclam)]+ and [Cr(ox)(cyclam)]+ cations, and one perchlorate anion. In the complex cations, which are completed by application of twofold rotation symmetry, the CrIII ions are coordinated by the four N atoms of a cyclam ligand, and by two chloride ions or one oxalate bidentate ligand in a cis arrangement, displaying an overall distorted octa­hedral coordination environment. The Cr—N(cyclam) bond lengths are in the range of 2.075 (5) to 2.096 (4) Å while the Cr—Cl and Cr—O(ox) bond lengths are 2.3358 (14) and 1.956 (4) Å, respectively. Both cyclam moieties adopt the cis-V conformation. The slightly distorted tetra­hedral ClO4 anion remains outside the coordination sphere. The supra­molecular architecture includes N—H⋯O and N—H⋯Cl hydrogen bonding between cyclam NH donor groups, O atoms of the oxalate ligand or ClO4 anions and one Cl ligand as acceptors, leading to a three-dimensional network structure.

1. Chemical context

Transition metal complexes with cyclam (1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4) ligands can adopt both planar (trans) and folded (cis) configurations (Poon & Pun, 1980[Poon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568-569.]). The possible conformers of the trans isomer are trans-I (+ + + +), trans-II (+ – + +), trans-III (+ – – +) and trans-V (+ + – –), which differ in the chirality of the sec-NH groups (Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]) and where + indicates if the H atom of the NH group is above the plane of the macrocycle and – indicates if it is below. The trans-I, trans-II and trans-V conformations can fold to form cis-I, cis-II and cis-V conformers, as shown in Fig. 1[link]. The trans-III conformation gives the most thermodynamically stable complex with two six-membered rings in chair and two five-membered rings in gauche conformations (Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]). However, the most stable conformation cannot fold to give the cis-III complex as this requires the diagonal NH groups to both lie above or below the plane of the macrocycle.

[Figure 1]
Figure 1
Possible conformers of cis-[CrL2(cyclam)]n+ complexes.

Recently, it has been shown that cyclam derivatives and their metal complexes exhibit anti-HIV activity (Ronconi & Sadler, 2007[Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633-1648.]; De Clercq, 2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]; Ross et al., 2012[Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408-6418.]). The conformation of the macrocyclic ligand and the orientations of the N—H bonds are very important factors for co-receptor recognition. Therefore, knowledge of the conformation and crystal packing of transition metal complexes containing the cyclam ligand has become important in the development of new highly effective anti-HIV drugs that specially target alternative events in the HIV replicative cycle (De Clercq, 2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]).

In this communication, we report on the synthesis and structural characterization of a new double complex, [CrCl2(cyclam)][Cr(ox)(cyclam)](ClO4)2, (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit contains two halves of the [CrCl2(cyclam)]+ and [Cr(ox)(cyclam)]+ cations, and one perchlorate anion. Each cyclam moiety exhibits point group symmetry ..2 and can be described as being in the cis-V (antianti) conformation (Fig. 1[link]). In each complex cation, the CrIII ions are coordinated by the N atoms of the cyclam ligands; two oxygen atoms of the oxalato ligand for one and two chlorido ligands for the other cation complete distorted octa­hedral coordination spheres binding their N atoms in a cis configuration (Fig. 1[link]). The Cr—N bond lengths from the donor atoms of the cyclam ligands are in the range of 2.075 (5) to 2.096 (4) Å, in good agreement with those determined in cis-[Cr(N3)2(cyclam)]ClO4 [2.069 (3)–2.103 (3) Å] (Meyer et al., 1998[Meyer, K., Bendix, J., Bill, E., Weyhermüller, T. & Wieghardt, K. (1998). Inorg. Chem. 37, 5180-5188.]), cis-[Cr(ONO)2(cyclam)]NO2 [2.0874 (16)–2.0916 (15) Å] (Choi et al., 2004a[Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238-m240.]), [Cr(acac)(cyclam)](ClO4)2·0.5H2O [2.070 (5)–2.089 (5) Å] (acac = acetyl­acetonate; Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]) and cis-[Cr(NCS)2(cyclam)]NCS [2.0851 (14)–2.0897 (14) Å] (Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]). However, the Cr—N bond lengths of the cyclam ligand in the cis conformation are slightly longer than those found in trans-[Cr(NCS)2(cyclam)]ClO4 [2.046 (2)–2.060 (2) Å] (Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]), trans-[Cr(ONO)2(cyclam)]BF4 [2.064 (4)–2.073 (4) Å] (De Leo et al., 2000[De Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300-302, 944-950.]), trans-[Cr(NH3)2(cyclam)][ZnCl4]Cl·H2O [2.0501 (15)–2.0615 (15) Å] (Moon & Choi, 2016[Moon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 456-459.]) and trans-[Cr(nic-O)2(cyclam)]ClO4 [2.058 (4)–2.064 (4) Å] (nic-O = O-coordinated nicotinate; Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]). The Cr—N bond lengths of the secondary amine are also comparable to those involving the primary amine found in trans-[CrCl2(Me2tn)2]2ZnCl4 (Me2tn = 2,2-di­methyl­propane-1,3-di­amine; Choi et al., 2011[Choi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194-1198.]), trans-[Cr(N3)2(Me2tn)2]ClO4·2H2O (Moon & Choi, 2015[Moon, D. & Choi, J.-H. (2015). Spectrochim. Acta Part A, 138, 774-779.]), trans-[Cr(NCS)2(Me2tn)2]SCN·0.5H2O (Choi & Lee, 2009[Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84-89.]) and trans-[Cr(2,2,3-tet)F2]ClO4 (2,2,3-tet = 1,4,7,11-tetra­aza­undecane; Choi & Moon, 2014[Choi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325-331.]). The Cr1A—O1A bond length of 1.956 (4) Å for the oxalate ligand is close to the mean of 1.959 (4) Å found in [Cr(ox)(cyclam)]ClO4 (Choi et al., 2004b[Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39-44.]). The Cr1B—Cl1B bond length of 2.3358 (14) Å is comparable to those found in cis-[CrCl2(cyclam)]ClO4 [2.331 (2) Å] (House & McKee, 1984[House, D. A. & McKee, V. (1984). Inorg. Chem. 23, 4237-4242.]), cis-[CrCl2(2,2,3-tet)]ClO4 [2.3157 (7) Å] (Choi et al., 2008[Choi, J.-H., Choi, S. Y., Hong, Y. P., Ko, S.-O., Ryoo, K. S., Lee, S. H. & Park, Y. C. (2008). Spectrochim. Acta Part A, 70, 619-625.]), trans-[CrCl2(Me2tn)2]2ZnCl4 [2.3112 (6) Å] (Choi et al., 2011[Choi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194-1198.]) and trans-[CrCl2(Me2tn)2]Cl [2.3253 (7) Å] (Choi et al., 2007[Choi, J.-H., Clegg, W., Nichol, G. S., Lee, S. H., Park, Y. C. & Habibi, M. H. (2007). Spectrochim. Acta Part A, 68, 796-801.]), respectively. The five-membered and six-membered chelate rings of the cyclam ligands adopt gauche and stable chair conformations, respectively. The O1A—Cr1A—O1Ai angle is 83.3 (3)°, while the Cl1B—Cr1B—ClBi angle is 89.11 (9)° [symmetry code: (i) –x + [{1\over 2}], −y + [{3\over 2}], z]. The folded angles of the cyclam in [CrCl2(cyclam)]+ and [Cr(ox)(cyclam)]+ cations are 93.7 (2) and 97.5 (2)°, respectively. The significant distortion of the octa­hedral coordination sphere and the larger folded angle in the [Cr(ox)(cyclam)] + cation seem to arise from the small bite angle of the oxalato ligand. The tetra­hedral ClO4 anion remains outside the coordination sphere of two CrIII ions. It is distorted due to its involvement in hydrogen-bonding inter­actions. Cl—O bond lengths range from 1.426 (5) to 1.443 (5) Å and the O—Cl—O angles from 107.8 (4)–111.0 (3)°.

3. Supra­molecular features

In the asymmetric unit, two N—H⋯O hydrogen bonds link the perchlorate anion to the neighboring [Cr(ox)(cyclam)]+ cation while N—H⋯O and N—H⋯Cl contacts inter­connect two [Cr(ox)(cyclam)]+ and one cis-[CrCl2(cyclam)]+ cation (Table 1[link], Figs. 2[link] and 3[link]). An extensive array of these contacts generate a three-dimensional network of mol­ecules stacked along the a-axis direction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O1Ci 0.99 2.20 3.090 (8) 148
N1A—H1A⋯O2Ci 0.99 2.42 3.266 (8) 143
N2A—H2A⋯Cl1Bii 0.99 2.42 3.314 (5) 150
N1B—H1B⋯O2A 0.99 1.87 2.762 (7) 149
N2B—H2B⋯O4Ciii 0.99 2.39 3.160 (7) 135
Symmetry codes: (i) [-x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z+1; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-1].
[Figure 2]
Figure 2
A perspective view of the two chromium(III) complex cations and two perchlorate anions in compound (I)[link], drawn at the 30% probability level. The primed atoms are related by symmetry code (−x + [{1\over 2}], −y + [{3\over 2}], −z).
[Figure 3]
Figure 3
The crystal packing in compound (I)[link], viewed perpendicular to the bc plane. Dashed lines represent N—H⋯O (pink) and N—H⋯Cl (cyan) hydrogen-bonding inter­actions, respectively.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 16 hits for a cis-[CrL2(C10H24N4)]+ unit. The crystal structure of cis-[CrCl2(cyclam)]ClO4 (House & McKee, 1984[House, D. A. & McKee, V. (1984). Inorg. Chem. 23, 4237-4242.]), cis-[Cr(N3)2(cyclam)]ClO4 (Meyer et al., 1998[Meyer, K., Bendix, J., Bill, E., Weyhermüller, T. & Wieghardt, K. (1998). Inorg. Chem. 37, 5180-5188.]), cis-[Cr(NH3)2(cyclam)](ClO4)Cl2 (Derwahl et al., 1999[Derwahl, A., Wasgestian, F., House, D. A. & Edwards, R. A. (1999). Inorg. Chim. Acta, 285, 313-317.]), cis-[Cr(ONO)2)(cyclam)]NO2 (Choi et al., 2004a[Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238-m240.]), [Cr(ox)(cyclam)]ClO4 (ox = oxalate; Choi et al., 2004b[Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39-44.]), [Cr(acac)(cyclam)](ClO4)2·0.5H2O (acac = acetyl­acetonate; Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]) and cis-[Cr(NCS)2(cyclam)]NCS (Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]) have been reported previously. All of these complexes show the same folded cis-V conformation for cyclam with different hydrogen-bonding and crystal-packing networks. Until now, no structure of the double complex ion [CrCl2(cyclam)][Cr(ox)(cyclam)]2+ with any anion has been deposited.

5. Synthesis and crystallization

The free ligand cyclam was purchased from Fluka and used as provided. All chemicals were reagent grade materials and were used without further purification. The starting materials, cis-[CrCl2(cyclam)]ClO4 and [Cr(ox)(cyclam)]ClO4, were prepared according to literature methods (House & McKee, 1984[House, D. A. & McKee, V. (1984). Inorg. Chem. 23, 4237-4242.]). The double complex, cis-[CrCl2(cyclam)][Cr(ox)(cyclam)](ClO4)2, was prepared by mixing concentrated equimolar aqueous solutions of the two starting compounds. A saturated solution of NaClO4 was added to the resulting solution for crystallization, and allowed to stand at room temperature for two days to give needle-like orange crystals of (I)[link] suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Non-hydrogen atoms were refined anisotropically. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.98 Å and N—H = 0.99 Å, and with Uiso(H) values of 1.2Ueq of the parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula [CrCl2(C10H24N4)][Cr(C2O4)(C10H24N4)](ClO4)2
Mr 862.48
Crystal system, space group Orthorhombic, Fdd2
Temperature (K) 243
a, b, c (Å) 18.599 (4), 26.986 (5), 14.042 (3)
V3) 7048 (2)
Z 8
Radiation type Synchrotron, λ = 0.670 Å
μ (mm−1) 0.84
Crystal size (mm) 0.08 × 0.01 × 0.01
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.939, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 14619, 4764, 4011
Rint 0.118
(sin θ/λ)max−1) 0.689
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.150, 1.04
No. of reflections 4764
No. of parameters 218
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.54, −0.51
Absolute structure Flack x determined using 1586 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.10 (2)
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

cis-Dichlorido(1,4,8,11-tetraazacyclotetradecane-κ4N)chromium(III) (oxalato-κ2O1,O2)(1,4,8,11-tetraazacyclotetradecane-κ4N)chromium(III) bis(perchlorate) top
Crystal data top
[CrCl2(C10H24N4)][Cr(C2O4)(C10H24N4)](ClO4)2Dx = 1.626 Mg m3
Mr = 862.48Synchrotron radiation, λ = 0.670 Å
Orthorhombic, Fdd2Cell parameters from 25281 reflections
a = 18.599 (4) Åθ = 0.4–33.3°
b = 26.986 (5) ŵ = 0.84 mm1
c = 14.042 (3) ÅT = 243 K
V = 7048 (2) Å3Needle, orange
Z = 80.08 × 0.01 × 0.01 mm
F(000) = 3584
Data collection top
ADSC Q210 CCD area detector
diffractometer
4011 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.118
ω scanθmax = 27.5°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm Scalepack; Otwinowski & Minor, 1997)
h = 2525
Tmin = 0.939, Tmax = 0.996k = 3737
14619 measured reflectionsl = 1919
4764 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0928P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150(Δ/σ)max < 0.001
S = 1.04Δρmax = 1.54 e Å3
4764 reflectionsΔρmin = 0.51 e Å3
218 parametersAbsolute structure: Flack x determined using 1586 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
1 restraintAbsolute structure parameter: 0.10 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr1A0.25000.75000.83915 (6)0.0342 (3)
O1A0.2305 (3)0.70375 (18)0.7351 (3)0.0554 (10)
O2A0.2332 (4)0.6997 (3)0.5761 (4)0.092 (2)
N1A0.3572 (3)0.72957 (18)0.8508 (3)0.0457 (10)
H1A0.38130.74270.79320.055*
N2A0.2211 (3)0.69512 (15)0.9376 (3)0.0426 (10)
H2A0.23400.70731.00180.051*
C1A0.3891 (4)0.7568 (2)0.9331 (5)0.0557 (14)
H1A10.44150.75810.92710.067*
H1A20.37710.74000.99290.067*
C2A0.3745 (4)0.6746 (2)0.8539 (4)0.0624 (17)
H2A10.42630.67040.86360.075*
H2A20.36220.65970.79230.075*
C3A0.3344 (4)0.6470 (2)0.9325 (5)0.0603 (15)
H3A10.35200.61280.93380.072*
H3A20.34710.66220.99360.072*
C4A0.2546 (4)0.6455 (2)0.9255 (5)0.0603 (17)
H4A10.24100.63210.86310.072*
H4A20.23570.62310.97440.072*
C5A0.1417 (4)0.6917 (2)0.9327 (5)0.0587 (15)
H5A10.12340.67300.98740.070*
H5A20.12730.67440.87440.070*
C6A0.2399 (3)0.7232 (3)0.6505 (4)0.0637 (18)
Cr1B0.25000.75000.28338 (5)0.0319 (3)
Cl1B0.26881 (11)0.69068 (6)0.16485 (9)0.0602 (4)
N1B0.2679 (3)0.69487 (15)0.3851 (3)0.0430 (10)
H1B0.25630.70940.44800.052*
N2B0.1403 (3)0.73775 (18)0.2995 (3)0.0446 (9)
H2B0.11730.75240.24250.054*
C1B0.3458 (4)0.6843 (2)0.3845 (5)0.0554 (14)
H1B10.35820.66430.32870.066*
H1B20.35910.66570.44180.066*
C2B0.2277 (4)0.64797 (19)0.3775 (4)0.0558 (15)
H2B10.24290.62560.42870.067*
H2B20.23920.63210.31660.067*
C3B0.1470 (4)0.6558 (2)0.3838 (5)0.0629 (17)
H3B10.12350.62330.38550.076*
H3B20.13620.67260.44390.076*
C4B0.1151 (4)0.6856 (3)0.3030 (4)0.0633 (17)
H4B10.12710.66940.24260.076*
H4B20.06260.68540.30930.076*
C5B0.1140 (4)0.7675 (2)0.3819 (5)0.0567 (13)
H5B10.12180.74930.44130.068*
H5B20.06230.77380.37520.068*
Cl1C0.52532 (8)0.74678 (4)1.13543 (9)0.0464 (3)
O1C0.5216 (4)0.7246 (2)1.2288 (3)0.0738 (15)
O2C0.5875 (3)0.7782 (2)1.1306 (5)0.0812 (15)
O3C0.5278 (3)0.70980 (16)1.0630 (3)0.0666 (13)
O4C0.4626 (3)0.7775 (2)1.1228 (4)0.0696 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr1A0.0410 (6)0.0458 (5)0.0159 (4)0.0046 (4)0.0000.000
O1A0.064 (3)0.072 (3)0.0296 (17)0.009 (2)0.0016 (18)0.0161 (18)
O2A0.091 (4)0.153 (5)0.031 (2)0.018 (4)0.004 (2)0.032 (3)
N1A0.043 (2)0.067 (3)0.0267 (16)0.000 (2)0.0034 (16)0.0047 (17)
N2A0.057 (3)0.0408 (18)0.0300 (18)0.0026 (18)0.0062 (18)0.0020 (14)
C1A0.052 (4)0.076 (4)0.039 (3)0.002 (3)0.007 (2)0.004 (2)
C2A0.071 (5)0.075 (4)0.042 (3)0.023 (3)0.004 (3)0.007 (3)
C3A0.077 (4)0.050 (2)0.054 (3)0.014 (3)0.001 (3)0.004 (2)
C4A0.087 (5)0.039 (2)0.055 (3)0.005 (2)0.005 (3)0.001 (2)
C5A0.065 (4)0.064 (3)0.047 (3)0.020 (3)0.010 (3)0.004 (2)
C6A0.047 (3)0.119 (6)0.025 (2)0.006 (3)0.0010 (19)0.004 (3)
Cr1B0.0459 (6)0.0333 (4)0.0164 (4)0.0007 (4)0.0000.000
Cl1B0.0926 (11)0.0583 (7)0.0297 (6)0.0046 (7)0.0025 (6)0.0161 (5)
N1B0.069 (3)0.0350 (17)0.0251 (17)0.0053 (19)0.0005 (19)0.0000 (14)
N2B0.047 (2)0.062 (2)0.0255 (18)0.000 (2)0.0011 (15)0.0011 (17)
C1B0.064 (4)0.053 (3)0.049 (3)0.014 (3)0.003 (3)0.003 (2)
C2B0.098 (5)0.0337 (19)0.036 (2)0.006 (3)0.002 (3)0.0030 (17)
C3B0.090 (5)0.055 (3)0.044 (3)0.020 (3)0.002 (3)0.004 (2)
C4B0.077 (5)0.072 (3)0.041 (3)0.026 (3)0.009 (3)0.000 (3)
C5B0.052 (3)0.076 (3)0.041 (3)0.001 (3)0.011 (3)0.006 (3)
Cl1C0.0524 (8)0.0494 (6)0.0372 (6)0.0003 (5)0.0027 (5)0.0003 (5)
O1C0.109 (5)0.073 (3)0.040 (2)0.002 (3)0.001 (3)0.004 (2)
O2C0.081 (4)0.084 (3)0.079 (3)0.023 (3)0.003 (3)0.003 (3)
O3C0.100 (4)0.053 (2)0.046 (2)0.005 (2)0.009 (2)0.0049 (18)
O4C0.070 (3)0.077 (3)0.062 (3)0.020 (3)0.011 (2)0.012 (2)
Geometric parameters (Å, º) top
Cr1A—O1Ai1.956 (4)Cr1B—N2B2.080 (5)
Cr1A—O1A1.956 (4)Cr1B—N1Bi2.089 (4)
Cr1A—N1Ai2.075 (5)Cr1B—N1B2.089 (4)
Cr1A—N1A2.075 (5)Cr1B—Cl1B2.3358 (14)
Cr1A—N2A2.096 (4)Cr1B—Cl1Bi2.3358 (14)
Cr1A—N2Ai2.096 (4)N1B—C2B1.474 (7)
O1A—C6A1.310 (8)N1B—C1B1.478 (9)
O2A—C6A1.228 (8)N1B—H1B0.9900
N1A—C1A1.493 (8)N2B—C4B1.484 (8)
N1A—C2A1.519 (8)N2B—C5B1.490 (7)
N1A—H1A0.9900N2B—H2B0.9900
N2A—C5A1.482 (9)C1B—C5Bi1.500 (9)
N2A—C4A1.485 (7)C1B—H1B10.9800
N2A—H2A0.9900C1B—H1B20.9800
C1A—C5Ai1.502 (10)C2B—C3B1.518 (11)
C1A—H1A10.9800C2B—H2B10.9800
C1A—H1A20.9800C2B—H2B20.9800
C2A—C3A1.526 (10)C3B—C4B1.512 (9)
C2A—H2A10.9800C3B—H3B10.9800
C2A—H2A20.9800C3B—H3B20.9800
C3A—C4A1.488 (11)C4B—H4B10.9800
C3A—H3A10.9800C4B—H4B20.9800
C3A—H3A20.9800C5B—C1Bi1.500 (9)
C4A—H4A10.9800C5B—H5B10.9800
C4A—H4A20.9800C5B—H5B20.9800
C5A—C1Ai1.503 (10)Cl1C—O3C1.426 (5)
C5A—H5A10.9800Cl1C—O2C1.435 (6)
C5A—H5A20.9800Cl1C—O4C1.442 (5)
C6A—C6Ai1.496 (18)Cl1C—O1C1.443 (5)
Cr1B—N2Bi2.080 (5)
O1Ai—Cr1A—O1A83.3 (3)N2Bi—Cr1B—N1Bi88.2 (2)
O1Ai—Cr1A—N1Ai93.85 (19)N2B—Cr1B—N1Bi83.26 (19)
O1A—Cr1A—N1Ai92.9 (2)N2Bi—Cr1B—N1B83.26 (19)
O1Ai—Cr1A—N1A92.9 (2)N2B—Cr1B—N1B88.2 (2)
O1A—Cr1A—N1A93.85 (19)N1Bi—Cr1B—N1B93.7 (2)
N1Ai—Cr1A—N1A171.0 (2)N2Bi—Cr1B—Cl1B92.27 (13)
O1Ai—Cr1A—N2A172.4 (2)N2B—Cr1B—Cl1B96.65 (14)
O1A—Cr1A—N2A89.67 (18)N1Bi—Cr1B—Cl1B177.69 (13)
N1Ai—Cr1A—N2A83.68 (19)N1B—Cr1B—Cl1B88.58 (12)
N1A—Cr1A—N2A90.38 (19)N2Bi—Cr1B—Cl1Bi96.65 (14)
O1Ai—Cr1A—N2Ai89.67 (18)N2B—Cr1B—Cl1Bi92.27 (13)
O1A—Cr1A—N2Ai172.4 (2)N1Bi—Cr1B—Cl1Bi88.58 (12)
N1Ai—Cr1A—N2Ai90.37 (19)N1B—Cr1B—Cl1Bi177.69 (13)
N1A—Cr1A—N2Ai83.68 (19)Cl1B—Cr1B—Cl1Bi89.11 (9)
N2A—Cr1A—N2Ai97.5 (2)C2B—N1B—C1B109.4 (5)
C6A—O1A—Cr1A113.4 (5)C2B—N1B—Cr1B118.8 (4)
C1A—N1A—C2A112.0 (5)C1B—N1B—Cr1B106.8 (3)
C1A—N1A—Cr1A108.2 (4)C2B—N1B—H1B107.1
C2A—N1A—Cr1A117.7 (4)C1B—N1B—H1B107.1
C1A—N1A—H1A106.1Cr1B—N1B—H1B107.1
C2A—N1A—H1A106.1C4B—N2B—C5B112.5 (5)
Cr1A—N1A—H1A106.1C4B—N2B—Cr1B117.6 (4)
C5A—N2A—C4A110.9 (5)C5B—N2B—Cr1B108.7 (4)
C5A—N2A—Cr1A105.6 (4)C4B—N2B—H2B105.7
C4A—N2A—Cr1A117.0 (4)C5B—N2B—H2B105.7
C5A—N2A—H2A107.7Cr1B—N2B—H2B105.7
C4A—N2A—H2A107.7N1B—C1B—C5Bi108.8 (5)
Cr1A—N2A—H2A107.7N1B—C1B—H1B1109.9
N1A—C1A—C5Ai107.5 (5)C5Bi—C1B—H1B1109.9
N1A—C1A—H1A1110.2N1B—C1B—H1B2109.9
C5Ai—C1A—H1A1110.2C5Bi—C1B—H1B2109.9
N1A—C1A—H1A2110.2H1B1—C1B—H1B2108.3
C5Ai—C1A—H1A2110.2N1B—C2B—C3B112.2 (5)
H1A1—C1A—H1A2108.5N1B—C2B—H2B1109.2
N1A—C2A—C3A113.2 (5)C3B—C2B—H2B1109.2
N1A—C2A—H2A1108.9N1B—C2B—H2B2109.2
C3A—C2A—H2A1108.9C3B—C2B—H2B2109.2
N1A—C2A—H2A2108.9H2B1—C2B—H2B2107.9
C3A—C2A—H2A2108.9C4B—C3B—C2B114.8 (6)
H2A1—C2A—H2A2107.7C4B—C3B—H3B1108.6
C4A—C3A—C2A116.9 (6)C2B—C3B—H3B1108.6
C4A—C3A—H3A1108.1C4B—C3B—H3B2108.6
C2A—C3A—H3A1108.1C2B—C3B—H3B2108.6
C4A—C3A—H3A2108.1H3B1—C3B—H3B2107.6
C2A—C3A—H3A2108.1N2B—C4B—C3B113.9 (5)
H3A1—C3A—H3A2107.3N2B—C4B—H4B1108.8
N2A—C4A—C3A112.7 (5)C3B—C4B—H4B1108.8
N2A—C4A—H4A1109.0N2B—C4B—H4B2108.8
C3A—C4A—H4A1109.0C3B—C4B—H4B2108.8
N2A—C4A—H4A2109.0H4B1—C4B—H4B2107.7
C3A—C4A—H4A2109.0N2B—C5B—C1Bi108.8 (5)
H4A1—C4A—H4A2107.8N2B—C5B—H5B1109.9
N2A—C5A—C1Ai108.8 (5)C1Bi—C5B—H5B1109.9
N2A—C5A—H5A1109.9N2B—C5B—H5B2109.9
C1Ai—C5A—H5A1109.9C1Bi—C5B—H5B2109.9
N2A—C5A—H5A2109.9H5B1—C5B—H5B2108.3
C1Ai—C5A—H5A2109.9O3C—Cl1C—O2C110.7 (4)
H5A1—C5A—H5A2108.3O3C—Cl1C—O4C110.0 (3)
O2A—C6A—O1A123.4 (8)O2C—Cl1C—O4C107.8 (4)
O2A—C6A—C6Ai121.7 (5)O3C—Cl1C—O1C111.0 (3)
O1A—C6A—C6Ai114.9 (4)O2C—Cl1C—O1C109.1 (4)
N2Bi—Cr1B—N2B167.5 (2)O4C—Cl1C—O1C108.1 (3)
C2A—N1A—C1A—C5Ai170.2 (5)Cr1A—O1A—C6A—C6Ai2.7 (9)
Cr1A—N1A—C1A—C5Ai38.9 (6)C2B—N1B—C1B—C5Bi174.1 (5)
C1A—N1A—C2A—C3A71.3 (7)Cr1B—N1B—C1B—C5Bi44.3 (5)
Cr1A—N1A—C2A—C3A55.0 (6)C1B—N1B—C2B—C3B176.5 (5)
N1A—C2A—C3A—C4A63.5 (7)Cr1B—N1B—C2B—C3B60.6 (6)
C5A—N2A—C4A—C3A178.5 (5)N1B—C2B—C3B—C4B64.6 (6)
Cr1A—N2A—C4A—C3A60.4 (7)C5B—N2B—C4B—C3B67.7 (8)
C2A—C3A—C4A—N2A66.6 (7)Cr1B—N2B—C4B—C3B59.8 (7)
C4A—N2A—C5A—C1Ai173.1 (5)C2B—C3B—C4B—N2B64.9 (8)
Cr1A—N2A—C5A—C1Ai45.5 (5)C4B—N2B—C5B—C1Bi167.8 (6)
Cr1A—O1A—C6A—O2A177.1 (6)Cr1B—N2B—C5B—C1Bi35.7 (6)
Symmetry code: (i) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1Cii0.992.203.090 (8)148
N1A—H1A···O2Cii0.992.423.266 (8)143
N2A—H2A···Cl1Biii0.992.423.314 (5)150
N1B—H1B···O2A0.991.872.762 (7)149
N2B—H2B···O4Civ0.992.393.160 (7)135
Symmetry codes: (ii) x+1, y+3/2, z1/2; (iii) x, y, z+1; (iv) x+1/2, y+3/2, z1.
 

Acknowledgements

This work was supported by a grant from 2016 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

First citationChoi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Choi, S. Y., Hong, Y. P., Ko, S.-O., Ryoo, K. S., Lee, S. H. & Park, Y. C. (2008). Spectrochim. Acta Part A, 70, 619–625.  Web of Science CSD CrossRef Google Scholar
First citationChoi, J.-H., Clegg, W., Nichol, G. S., Lee, S. H., Park, Y. C. & Habibi, M. H. (2007). Spectrochim. Acta Part A, 68, 796–801.  Web of Science CSD CrossRef Google Scholar
First citationChoi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194–1198.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325–331.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238–m240.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationDe Clercq, E. (2010). J. Med. Chem. 53, 1438–1450.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDe Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300–302, 944–950.  Web of Science CSD CrossRef CAS Google Scholar
First citationDerwahl, A., Wasgestian, F., House, D. A. & Edwards, R. A. (1999). Inorg. Chim. Acta, 285, 313–317.  Web of Science CSD CrossRef CAS Google Scholar
First citationFriesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687–691.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHouse, D. A. & McKee, V. (1984). Inorg. Chem. 23, 4237–4242.  CSD CrossRef CAS Web of Science Google Scholar
First citationMeyer, K., Bendix, J., Bill, E., Weyhermüller, T. & Wieghardt, K. (1998). Inorg. Chem. 37, 5180–5188.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2015). Spectrochim. Acta Part A, 138, 774–779.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 456–459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377.  CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPoon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568–569.  CrossRef CAS Web of Science Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRonconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.  Web of Science CrossRef CAS Google Scholar
First citationRoss, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds