research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trans-di­aqua­bis­­(4-cyano­benzoato-κO)bis­­(N,N-di­ethyl­nicotinamide-κN)zinc(II)

CROSSMARK_Color_square_no_text.svg

aSANAEM, Saray Mahallesi, Atom Caddesi, No:27, 06980 Saray-Kazan, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, cInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 10 August 2016; accepted 29 August 2016; online 5 September 2016)

In the title complex, [Zn(C8H4NO2)2(C10H14N2O)2(H2O)2], the ZnII cation, located on an inversion centre, is coordinated by two water mol­ecules, two 4-cyano­benzoate (CB) anions and two di­ethyl­nicotinamide (DENA) ligands in a distorted N2O4 octa­hedral geometry. In the mol­ecule, the dihedral angle between the planar carboxyl­ate group and the adjacent benzene ring is 9.50 (14)°, while the benzene and pyridine rings are oriented at a dihedral angle of 56.99 (5)°. The water mol­ecules exhibit both an intra­molecular hydrogen bond [to the non-coordinating carboxyl­ate O atom, enclosing an S(6) hydrogen-bonding motif, where O⋯O = 2.6419 (19) Å] and an inter­molecular hydrogen bond [to the amide carbonyl O atom, enclosing an R22(16) ring motif, where O⋯O = 2.827 (2) Å]; the latter lead to the formation of supra­molecular chains propagating along the [110] direction.

1. Chemical context

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). The nicotinic acid derivative N,N-di­ethyl­nicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). The structures of some complexes obtained from the reactions of transition metal(II) ions with NA and DENA as ligands, e.g. [Ni(NA)2(C7H4ClO2)2(H2O)2] (Hökelek et al., 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.]) and [Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2] (Hökelek et al., 2009b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m545-m546.]), have been the subject of much inter­est in our laboratory.

[Scheme 1]

The structure-function–coordination relationships of the aryl­carboxyl­ate ion in ZnII complexes of benzoic acid deriv­atives may change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]; Nadzhafov et al., 1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]; Antsyshkina et al., 1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]; Adiwidjaja et al., 1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]). When pyridine and its derivatives are used instead of water mol­ecules, the structure is completely different (Catterick et al., 1974[Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]). In this context, we synthesized a ZnII-containing compound with 4-cyano­benzoate (CB) and DENA ligands, namely trans-di­aqua­bis­(4-cyano­benzoato-κO)bis­(N,N-di­ethyl­nicotinamide-κN)zinc(II), [Zn(DENA)2(CB)2(H2O)2], and report herein its crystal structure.

2. Structural commentary

The asymmetric unit of the crystal structure of the title complex contains one ZnII atom located on an inversion centre, one 4-cyano­benzoate (CB) ligand, one N,N-di­ethyl­nicotinamide (DENA) ligand and one water mol­ecule, all ligands coordinating to the ZnII atom in a monodentate manner (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title complex, showing the atom-numbering scheme for the asymmetric unit. Unlabelled atoms are generated by the symmetry operation −x, −y, −z. Displacement ellipsoids are drawn at the 40% probability level. Intra­molecular O—Hw⋯Oc (w = water and c = non-coordinating carboxyl­ate O atom) hydrogen bonds, enclosing S(6) hydrogen-bonding motifs, are shown as dashed lines.

The two carboxyl­ate O atoms (O2 and O2i) of the two symmetry-related monodentate CB anions and the two symmetry-related water O atoms (O4 and O4i) around the Zn1 atom form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination sphere is completed by the two pyridine N atoms (N2 and N2i) of the two symmetry-related monodentate DENA ligands in the axial positions [symmetry code: (i) −x, −y, −z] (Fig. 1[link]).

In the carboxyl­ate groups, the C—O bonds for coordinating O atoms are 0.0148 (19) Å longer than those of the non-coordinating ones [C1—O1 = 1.2436 (19) Å and C1—O2 = 1.2584 (18) Å], indicating delocalized bonding arrangements rather than localized single and double bonds. The Zn—O bond lengths are 2.1503 (11) Å (for water O atoms) and 2.0842 (10) Å (for benzoate O atoms) and the Zn—N bond length is 2.1501 (11) Å, the Zn—O bond lengths for water oxygen atoms are ca 0.07 Å longer than those involving the benzoate oxygen atoms. The Zn1 atom lies 0.7093 (1) Å below the planar (O1/O2/C1) carboxyl­ate group. The O—Zn—O and O–Zn—N bond angles range from 87.64 (5) to 92.36 (5)°.

The dihedral angle between the planar carboxyl­ate group (O1/O2/C1) and the adjacent benzene ring (C2–C7) is 9.50 (14)°, while the benzene and pyridine (N2/C9–C14) rings are oriented at a dihedral angle of 56.99 (5)°.

3. Supra­molecular features

Intra­molecular O—Hw⋯Oc (w = water, c = non-coordinating carboxyl­ate O atom) hydrogen bonds (Table 1[link]) link two of the water ligands to the CB anions, enclosing S(6) hydrogen-bonding motifs (Fig. 1[link]). The other water H atom is involved in inter­molecular O—Hw⋯ODENA (ODENA = carbonyl O atom of N,N-di­ethyl­nicotinamide) hydrogen bonds (Table 1[link]), enclosing R22(16) ring motifs and leading to the formation of infinite chains (Fig. 2[link]) propagating along the [110] direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O1i 0.83 (2) 1.84 (2) 2.6419 (19) 161 (2)
O4—H42⋯O3ii 0.82 (2) 2.03 (2) 2.827 (2) 163 (2)
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y-1, -z.
[Figure 2]
Figure 2
Part of the supra­molecular chain of the title compound. Inter­molecular O—Hw⋯ODENA (ODENA = carbonyl O atom of N,N-di­ethyl­nicotin­amide) hydrogen bonds, enclosing R22(16) ring motifs, are shown as dashed lines. The non-bonding H atoms have been omitted for clarity.
[Figure 3]
Figure 3
Part of the crystal structure. Intra- and inter­molecular (O—Hw⋯Oc and O—Hw⋯ODENA, respectively) hydrogen bonds are shown as dashed lines (see Table 1[link]). The non-bonding H atoms have been omitted for clarity.

4. Synthesis and crystallization

The title compound was prepared by the reaction of ZnSO4·7H2O (1.44 g, 5 mmol) in H2O (50 ml) and di­ethyl­nicotinamide (1.78 g, 10 mmol) in H2O (10 ml) with sodium 4-cyano­benzoate (1.69 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving translucent intense colourless single crystals.

5. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 2[link]. Atoms H41 and H42 (for H2O) were located in a difference Fourier map and were refined freely. The C-bound H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methyl­ene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and k = 1.2 for aromatic and methyl­ene H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C8H4NO2)2(C10H14N2O)2(H2O)2]
Mr 750.13
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.4916 (3), 8.5915 (3), 15.0343 (6)
α, β, γ (°) 86.363 (3), 75.894 (2), 74.390 (2)
V3) 903.87 (6)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.74
Crystal size (mm) 0.45 × 0.30 × 0.24
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.74, 0.84
No. of measured, independent and observed [I > 2σ(I)] reflections 19149, 4366, 4029
Rint 0.020
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.06
No. of reflections 4366
No. of parameters 242
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

trans-Diaquabis(4-cyanobenzoato-κO)bis(N,N-diethylnicotinamide-κN)zinc(II) top
Crystal data top
[Zn(C8H4NO2)2(C10H14N2O)2(H2O)2]Z = 1
Mr = 750.13F(000) = 392
Triclinic, P1Dx = 1.378 Mg m3
a = 7.4916 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5915 (3) ÅCell parameters from 9994 reflections
c = 15.0343 (6) Åθ = 2.8–28.2°
α = 86.363 (3)°µ = 0.74 mm1
β = 75.894 (2)°T = 296 K
γ = 74.390 (2)°Prism, translucent intense colourless
V = 903.87 (6) Å30.45 × 0.30 × 0.24 mm
Data collection top
Bruker SMART BREEZE CCD
diffractometer
4366 independent reflections
Radiation source: fine-focus sealed tube4029 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 99
Tmin = 0.74, Tmax = 0.84k = 1111
19149 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.2769P]
where P = (Fo2 + 2Fc2)/3
4366 reflections(Δ/σ)max < 0.001
242 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.00000.00000.02730 (8)
O10.10666 (18)0.0679 (2)0.22778 (9)0.0585 (4)
O20.23197 (15)0.01976 (13)0.10544 (7)0.0340 (2)
O30.51295 (19)0.62718 (18)0.11834 (9)0.0571 (4)
O40.19075 (17)0.10842 (16)0.08623 (9)0.0414 (3)
H410.115 (3)0.110 (3)0.1366 (17)0.056 (7)*
H420.277 (3)0.191 (3)0.0848 (16)0.059 (7)*
N11.1465 (3)0.2028 (3)0.46622 (14)0.0755 (6)
N20.02013 (16)0.22996 (14)0.05596 (8)0.0288 (2)
N30.4843 (2)0.58488 (17)0.26504 (9)0.0402 (3)
C10.2428 (2)0.02304 (18)0.19037 (10)0.0324 (3)
C20.4408 (2)0.03327 (17)0.25173 (10)0.0304 (3)
C30.4653 (2)0.0552 (2)0.34513 (11)0.0423 (4)
H30.35930.03880.36980.051*
C40.6461 (3)0.1012 (2)0.40159 (11)0.0466 (4)
H40.66210.11570.46410.056*
C50.8044 (2)0.12572 (19)0.36423 (11)0.0383 (3)
C60.7815 (2)0.1071 (2)0.27117 (12)0.0415 (4)
H60.88760.12520.24630.050*
C70.5995 (2)0.0614 (2)0.21525 (11)0.0368 (3)
H70.58360.04930.15250.044*
C80.9951 (3)0.1689 (2)0.42235 (13)0.0507 (4)
C90.1333 (2)0.28196 (18)0.05414 (10)0.0323 (3)
H90.25280.21830.02530.039*
C100.1218 (2)0.4269 (2)0.09346 (12)0.0379 (3)
H100.23140.46000.09090.045*
C110.0555 (2)0.52178 (18)0.13656 (11)0.0386 (3)
H110.06690.61870.16440.046*
C120.2158 (2)0.47000 (17)0.13758 (10)0.0317 (3)
C130.1916 (2)0.32445 (17)0.09573 (10)0.0302 (3)
H130.29940.29070.09520.036*
C140.4178 (2)0.56899 (17)0.17441 (11)0.0354 (3)
C150.3800 (3)0.5002 (2)0.33283 (12)0.0488 (4)
H15A0.45140.42990.36930.059*
H15B0.25770.43290.30080.059*
C160.3474 (3)0.6144 (3)0.39581 (16)0.0663 (6)
H16A0.27200.55370.43590.099*
H16B0.28150.68740.36000.099*
H16C0.46800.67480.43170.099*
C170.6830 (3)0.6752 (2)0.30132 (13)0.0481 (4)
H17A0.68930.74100.35270.058*
H17B0.72670.74730.25420.058*
C180.8137 (4)0.5660 (4)0.3324 (2)0.0831 (8)
H18A0.94260.63040.35270.125*
H18B0.80530.49840.28230.125*
H18C0.77660.49970.38210.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02409 (12)0.02632 (12)0.02797 (13)0.00158 (8)0.00370 (8)0.00585 (8)
O10.0317 (6)0.0954 (11)0.0390 (7)0.0015 (6)0.0080 (5)0.0024 (7)
O20.0289 (5)0.0415 (6)0.0297 (5)0.0098 (4)0.0014 (4)0.0061 (4)
O30.0501 (7)0.0621 (8)0.0419 (7)0.0212 (6)0.0165 (6)0.0093 (6)
O40.0310 (6)0.0488 (7)0.0375 (6)0.0048 (5)0.0113 (5)0.0020 (5)
N10.0492 (10)0.0958 (16)0.0549 (11)0.0045 (10)0.0111 (9)0.0003 (10)
N20.0268 (6)0.0263 (5)0.0297 (6)0.0019 (4)0.0049 (5)0.0032 (4)
N30.0392 (7)0.0349 (7)0.0353 (7)0.0061 (5)0.0050 (6)0.0021 (5)
C10.0295 (7)0.0314 (7)0.0343 (7)0.0074 (5)0.0040 (6)0.0017 (6)
C20.0314 (7)0.0303 (7)0.0284 (7)0.0094 (5)0.0033 (6)0.0001 (5)
C30.0372 (8)0.0564 (10)0.0321 (8)0.0091 (7)0.0094 (6)0.0015 (7)
C40.0471 (10)0.0597 (11)0.0266 (7)0.0070 (8)0.0034 (7)0.0035 (7)
C50.0343 (8)0.0374 (8)0.0349 (8)0.0048 (6)0.0025 (6)0.0014 (6)
C60.0318 (8)0.0527 (10)0.0379 (8)0.0086 (7)0.0059 (6)0.0035 (7)
C70.0334 (8)0.0469 (9)0.0287 (7)0.0099 (6)0.0040 (6)0.0046 (6)
C80.0421 (10)0.0553 (11)0.0406 (9)0.0013 (8)0.0036 (8)0.0016 (8)
C90.0281 (7)0.0340 (7)0.0323 (7)0.0042 (5)0.0067 (6)0.0002 (6)
C100.0364 (8)0.0381 (8)0.0436 (9)0.0124 (6)0.0148 (7)0.0002 (7)
C110.0466 (9)0.0285 (7)0.0422 (8)0.0065 (6)0.0158 (7)0.0061 (6)
C120.0349 (7)0.0258 (6)0.0296 (7)0.0007 (5)0.0077 (6)0.0015 (5)
C130.0276 (7)0.0275 (6)0.0323 (7)0.0032 (5)0.0052 (5)0.0024 (5)
C140.0373 (8)0.0257 (6)0.0367 (8)0.0032 (6)0.0080 (6)0.0054 (6)
C150.0511 (10)0.0477 (10)0.0367 (9)0.0030 (8)0.0089 (8)0.0050 (7)
C160.0596 (13)0.0810 (16)0.0555 (12)0.0073 (11)0.0190 (10)0.0058 (11)
C170.0395 (9)0.0476 (9)0.0434 (9)0.0054 (7)0.0015 (7)0.0057 (8)
C180.0576 (14)0.099 (2)0.093 (2)0.0287 (14)0.0102 (13)0.0008 (16)
Geometric parameters (Å, º) top
Zn1—O22.0842 (10)C6—H60.9300
Zn1—O2i2.0842 (10)C7—C61.384 (2)
Zn1—O42.1503 (11)C7—H70.9300
Zn1—O4i2.1503 (11)C8—N11.135 (3)
Zn1—N22.1501 (11)C9—C101.385 (2)
Zn1—N2i2.1501 (11)C9—H90.9300
O1—C11.2436 (19)C10—H100.9300
O2—C11.2584 (18)C11—C101.383 (2)
O3—C141.231 (2)C11—H110.9300
O4—H410.83 (2)C12—C111.385 (2)
O4—H420.82 (2)C12—C141.509 (2)
N2—C91.3348 (19)C13—C121.384 (2)
N2—C131.3389 (17)C13—H130.9300
N3—C141.334 (2)C15—C161.510 (3)
N3—C151.472 (2)C15—H15A0.9700
N3—C171.467 (2)C15—H15B0.9700
C1—C21.513 (2)C16—H16A0.9600
C2—C31.389 (2)C16—H16B0.9600
C2—C71.386 (2)C16—H16C0.9600
C3—C41.380 (2)C17—C181.508 (3)
C3—H30.9300C17—H17A0.9700
C4—H40.9300C17—H17B0.9700
C5—C41.393 (2)C18—H18A0.9600
C5—C61.382 (2)C18—H18B0.9600
C5—C81.446 (2)C18—H18C0.9600
O2—Zn1—O2i180.00 (7)C6—C7—H7119.7
O2—Zn1—O489.94 (5)N1—C8—C5178.4 (2)
O2i—Zn1—O490.06 (5)N2—C9—C10122.61 (14)
O2—Zn1—O4i90.06 (5)N2—C9—H9118.7
O2i—Zn1—O4i89.94 (5)C10—C9—H9118.7
O2—Zn1—N288.48 (4)C9—C10—H10120.6
O2i—Zn1—N291.52 (4)C11—C10—C9118.88 (14)
O2—Zn1—N2i91.52 (4)C11—C10—H10120.6
O2i—Zn1—N2i88.48 (4)C10—C11—C12118.92 (14)
O4i—Zn1—O4180.00 (10)C10—C11—H11120.5
N2—Zn1—O492.36 (5)C12—C11—H11120.5
N2i—Zn1—O487.64 (5)C11—C12—C14124.06 (13)
N2—Zn1—O4i87.64 (5)C13—C12—C11118.44 (13)
N2i—Zn1—O4i92.36 (5)C13—C12—C14117.28 (13)
N2i—Zn1—N2180.00 (6)N2—C13—C12122.99 (13)
C1—O2—Zn1127.55 (9)N2—C13—H13118.5
Zn1—O4—H41101.6 (16)C12—C13—H13118.5
Zn1—O4—H42135.9 (16)O3—C14—N3123.94 (14)
H41—O4—H42106 (2)O3—C14—C12117.46 (14)
C9—N2—Zn1122.37 (9)N3—C14—C12118.58 (13)
C9—N2—C13118.12 (12)N3—C15—C16112.80 (17)
C13—N2—Zn1119.50 (9)N3—C15—H15A109.0
C14—N3—C15124.36 (14)N3—C15—H15B109.0
C14—N3—C17118.81 (14)C16—C15—H15A109.0
C17—N3—C15116.34 (14)C16—C15—H15B109.0
O1—C1—O2126.05 (14)H15A—C15—H15B107.8
O1—C1—C2117.65 (14)C15—C16—H16A109.5
O2—C1—C2116.30 (13)C15—C16—H16B109.5
C3—C2—C1120.47 (14)C15—C16—H16C109.5
C7—C2—C3119.42 (14)H16A—C16—H16B109.5
C7—C2—C1120.10 (13)H16A—C16—H16C109.5
C2—C3—H3119.8H16B—C16—H16C109.5
C4—C3—C2120.43 (15)N3—C17—C18112.50 (18)
C4—C3—H3119.8N3—C17—H17A109.1
C3—C4—C5119.49 (15)N3—C17—H17B109.1
C3—C4—H4120.3C18—C17—H17A109.1
C5—C4—H4120.3C18—C17—H17B109.1
C4—C5—C8120.56 (16)H17A—C17—H17B107.8
C6—C5—C4120.54 (15)C17—C18—H18A109.5
C6—C5—C8118.90 (16)C17—C18—H18B109.5
C5—C6—C7119.41 (15)C17—C18—H18C109.5
C5—C6—H6120.3H18A—C18—H18B109.5
C7—C6—H6120.3H18A—C18—H18C109.5
C2—C7—H7119.7H18B—C18—H18C109.5
C6—C7—C2120.68 (15)
O4—Zn1—O2—C1153.35 (13)C15—N3—C17—C1873.3 (2)
O4i—Zn1—O2—C126.65 (13)O1—C1—C2—C38.8 (2)
N2—Zn1—O2—C160.99 (12)O1—C1—C2—C7170.29 (16)
N2i—Zn1—O2—C1119.01 (12)O2—C1—C2—C3171.11 (15)
O2—Zn1—N2—C9144.71 (12)O2—C1—C2—C79.8 (2)
O2i—Zn1—N2—C935.29 (12)C1—C2—C3—C4177.77 (16)
O2—Zn1—N2—C1334.08 (11)C7—C2—C3—C41.4 (3)
O2i—Zn1—N2—C13145.92 (11)C1—C2—C7—C6177.60 (15)
O4—Zn1—N2—C9125.41 (12)C3—C2—C7—C61.5 (2)
O4i—Zn1—N2—C954.59 (12)C2—C3—C4—C50.0 (3)
O4—Zn1—N2—C1355.80 (11)C6—C5—C4—C31.2 (3)
O4i—Zn1—N2—C13124.20 (11)C8—C5—C4—C3178.01 (18)
Zn1—O2—C1—O125.4 (2)C4—C5—C6—C71.0 (3)
Zn1—O2—C1—C2154.52 (10)C8—C5—C6—C7178.20 (17)
Zn1—N2—C9—C10177.24 (12)C2—C7—C6—C50.4 (3)
C13—N2—C9—C101.6 (2)N2—C9—C10—C110.1 (2)
Zn1—N2—C13—C12176.49 (11)C12—C11—C10—C91.1 (2)
C9—N2—C13—C122.3 (2)C13—C12—C11—C100.4 (2)
C15—N3—C14—O3172.38 (18)C14—C12—C11—C10174.11 (15)
C15—N3—C14—C125.8 (2)C11—C12—C14—O3107.28 (19)
C17—N3—C14—O30.7 (3)C11—C12—C14—N374.5 (2)
C17—N3—C14—C12177.46 (14)C13—C12—C14—O367.3 (2)
C14—N3—C15—C16121.41 (19)C13—C12—C14—N3111.00 (17)
C17—N3—C15—C1666.7 (2)N2—C13—C12—C111.4 (2)
C14—N3—C17—C1899.1 (2)N2—C13—C12—C14176.26 (13)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O1i0.83 (2)1.84 (2)2.6419 (19)161 (2)
O4—H42···O3ii0.82 (2)2.03 (2)2.827 (2)163 (2)
Symmetry codes: (i) x, y, z; (ii) x+1, y1, z.
 

Acknowledgements

The authors acknowledge the Aksaray University Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization). This work was supported financially by the Kafkas University, Scientific Research Projects Coordinator (project No. 2016-FM-49).

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCatterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m545–m546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds