research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-[2-(2,5-di­chloro­benz­yl­oxy)-2-(furan-2-yl)eth­yl]-2H-indazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Bülent Ecevit University, 67100 Zonguldak, Turkey, bDepartment of Chemistry, Southampton University, SO17 1BJ Southampton, England, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 15 August 2016; accepted 29 August 2016; online 5 September 2016)

In the title compound, C20H16Cl2N2O2, the indazole ring system is approximately planar [maximum deviation = 0.033 (1) Å], its mean plane is oriented at dihedral angles of 25.04 (4) and 5.10 (4)° to the furan and benzene rings, respectively. In the crystal, pairs of C—Hind⋯Obo (ind = indazole and bo = benz­yloxy) hydrogen bonds link the mol­ecules into centrosymmetric dimers with graph-set motif R22(12). Weak C—H⋯π inter­actions is also observed. Aromatic ππ stacking between the benzene and the pyrazole rings from neighbouring mol­ecules [centroid–centroid distance = 3.8894 (7) Å] further consolidates the crystal packing.

1. Chemical context

Ethers such as miconazole and econazole possessing an imidazole ring have been developed for clinical uses as azole anti­fungals (Godefroi et al., 1969[Godefroi, E. F., Heeres, J., Van Cutsem, J. & Janssen, P. A. (1969). J. Med. Chem. 12, 784-791.]). The crystal structures of miconazole (Peeters et al., 1979[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461-2464.]) and econazole (Freer et al., 1986[Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350-1352.]) have previously been reported. Another azole ring system, indazole, is an important structural unit of many biologically active compounds. Some indazole derivatives have been shown to exhibit anti­fungal (Lebouvier et al., 2007[Lebouvier, N., Pagniez, F., Duflos, M., Le Pape, P., Na, Y. M., Le Baut, G. & Le Borgne, M. (2007). Bioorg. Med. Chem. Lett. 17, 3686-3689.]; Park et al., 2007[Park, J. S., Yu, K. A., Kang, T. H., Kim, S. & Suh, Y. G. (2007). Bioorg. Med. Chem. Lett. 17, 3486-3490.]), anti­bacterial (Wang et al., 2015[Wang, Y., Yan, M., Ma, R. & Ma, S. (2015). Arch. Pharm. Chem. Life Sci. 348, 266-274.]), anti­proliferative (Büchel et al., 2012[Büchel, G. E., Stepanenko, I. N., Hejl, M., Jakupec, M. A., Keppler, B. K., Heffeter, P., Berger, W. & Arion, V. B. (2012). J. Inorg. Biochem. 113, 47-54.]), anti­tumor (Abbassi et al., 2014[Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423-431.]) activity and act as inhibitors of nitric oxide synthase with anti­oxidant properties (Salerno et al., 2012[Salerno, L., Modica, M. N., Romeo, G., Pittalà, V., Siracusa, M. A., Amato, M. E., Acquaviva, R., Di Giacomo, C. & Sorrenti, V. (2012). Eur. J. Med. Chem. 49, 118-126.]). The crystal structures of some indazole derivatives have been reported (Gerpe et al., 2007[Gerpe, A., Piro, O. E., Cerecetto, H. & González, M. (2007). J. Mol. Struct. 871, 98-107.]; Raffa et al., 2009[Raffa, D., Maggio, B., Cascioferro, S., Raimondi, M. V., Schillaci, D., Gallo, G., Daidone, G., Plescia, S., Meneghetti, F., Bombieri, G., Di Cristina, A., Pipitone, R. M., Grimaudo, S. & Tolomeo, M. (2009). Eur. J. Med. Chem. 44, 165-178.]; Boulhaoua et al., 2015[Boulhaoua, M., Benchidmi, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o780-o781.]). In addition, the crystal structures of ketones containing an indazole group (Özel Güven et al., 2013[Özel Güven, Ö., Türk, G., Adler, P. D. F., Coles, S. J. & Hökelek, T. (2013). Acta Cryst. E69, o184.], 2014a[Özel Güven, Ö., Türk, G., Adler, P. D. F., Coles, S. J. & Hökelek, T. (2014a). Acta Cryst. E70, o505.]) and ether (Özel Güven et al., 2014b[Özel Güven, Ö., Türk, G., Adler, P. D. F., Coles, S. J. & Hökelek, T. (2014b). Acta Cryst. E70, o410.]) have been described. As a continuation of our studies in this area, we synthesized the title compound and report herein its crystal structure.

[Scheme 1]

2. Structural commentary

In the mol­ecule of the title compound, (Fig. 1[link]), the bond lengths and angles are within normal ranges. The indazole (B; N1/N2/C7–C13) ring system is approximately planar with a maximum deviation of −0.033 (1) Å for atom C10. Its mean plane is oriented with respect to the furan (A; O2/C2–C5) and benzene (C; C15–C20) rings at dihedral angles of A/B = 25.04 (4) and B/C = 5.10 (4)°. The dihedral angle between the furan and benzene rings is 20.21 (5)°. Atom C6 is −0.054 (1) Å from the indazole ring plane, while atom C1 is 0.038 (1) Å from the furan ring plane. Atoms Cl1, Cl2 and C14 are displaced by −0.0430 (3), 0.0233 (4) and −0.016 (1) Å, respectively, to the benzene ring plane.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, pairs of C—Hind⋯ Obo (ind = indazole and bo = benz­yloxy) hydrogen bonds (Table 1[link]), enclosing R22(12) ring motifs link the mol­ecules into centrosymmetric dimers (Fig. 2[link]), which are stacked along the a axis and oriented along the b-axis direction (Fig. 3[link]). Weak C—H⋯π inter­actions (Table 1[link]) occur. ππ inter­actions between the pyrazole and the benzene rings, Cg4⋯Cg3i, of neighbouring mol­ecules further consolidate the crystal packing [centroid–centroid distance = 3.8894 (7) Å; symmetry code: (i) 2 − x, 2 − y, − z; Cg3 and Cg4 are the centroids of rings C (C15–C20) and D (N1/N2/C7/C8/C13)].

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the N1/N2/C7/C8/C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.51 3.3062 (15) 144
C6—H6BCg4ii 0.97 2.84 3.4583 (13) 122
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+2, -y+2, -z.
[Figure 2]
Figure 2
Part of the crystal structure. Inter­molecular [C—Hind ⋯ Obo] hydrogen bonds, enclosing R22(12) ring motifs, are shown as dashed lines (see Table 1[link]). H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
The crystal packing of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

4. Synthesis and crystallization

The title compound was synthesized by the reaction of 1-(furan-2-yl)-2-(2H-indazol-2-yl)ethanol with NaH and 2,5-dichlorobenzyl bromide. NaH (16 mg, 0.394 mmol) was added in small fractions to a solution of alcohol (90 mg, 0.394 mmol) in DMF (3–4 ml). Then, 2,5-dichlorobenzyl bromide (95 mg, 0.394 mmol) was added portionwise. The mixture was stirred at room temperature for 3 h, and the excess hydride was decomposed with a small amount of methyl alcohol. After evaporation to dryness under reduced pressure, a small amount of water was added and extracted with methyl­ene chloride. The organic layer was separated, dried over anhydrous sodium sulfate, and then evaporated to dryness. The crude residue was purified by chromatography on a silica-gel column using a hexa­ne–ethyl acetate mixture (10:1) as eluent. The ether was recrystallized from 2-propanol solution to obtain colourless crystals suitable for X-ray analysis (yield; 70 mg, 46%).

5. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 2[link]. The C-bound H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.98 Å, for aromatic, methyl­ene and methine H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C20H16Cl2N2O2
Mr 387.27
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 294
a, b, c (Å) 7.7318 (3), 9.6675 (4), 12.8299 (5)
α, β, γ (°) 76.511 (4), 76.157 (4), 73.928 (3)
V3) 880.30 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.09 × 0.07 × 0.04
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Multi-scan (CrystalClear-SM Expert, Rigaku, 2011[Rigaku (2011). CrystalClear, Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.968, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 8400, 4278, 3813
Rint 0.025
(sin θ/λ)max−1) 0.674
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.05
No. of reflections 4278
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.23
Computer programs: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear, Rigaku Corporation, Tokyo, Japan.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

2-[2-(2,5-Dichlorobenzyloxy)-2-(furan-2-yl)ethyl]-2H-indazole top
Crystal data top
C20H16Cl2N2O2Z = 2
Mr = 387.27F(000) = 400
Triclinic, P1Dx = 1.461 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7318 (3) ÅCell parameters from 7516 reflections
b = 9.6675 (4) Åθ = 3.0–28.6°
c = 12.8299 (5) ŵ = 0.39 mm1
α = 76.511 (4)°T = 294 K
β = 76.157 (4)°Block, colorless
γ = 73.928 (3)°0.09 × 0.07 × 0.04 mm
V = 880.30 (6) Å3
Data collection top
Rigaku Saturn724+
diffractometer
3813 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 28.6°, θmin = 3.0°
ω scansh = 610
Absorption correction: multi-scan
(CrystalClear-SM Expert, Rigaku, 2011)
k = 1313
Tmin = 0.968, Tmax = 0.985l = 1717
8400 measured reflections3 standard reflections every 120 min
4278 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.3381P]
where P = (Fo2 + 2Fc2)/3
4278 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24682 (4)0.62858 (3)0.88313 (3)0.02337 (9)
Cl20.49082 (5)0.22144 (3)0.53654 (2)0.02445 (9)
O10.44963 (11)0.19772 (8)0.97438 (7)0.01525 (17)
O20.31136 (12)0.14245 (9)1.21688 (7)0.02059 (19)
N10.15767 (13)0.10240 (10)0.92745 (8)0.01489 (19)
N20.03507 (13)0.21036 (11)0.87622 (8)0.0175 (2)
C10.26260 (15)0.23752 (12)1.03067 (9)0.0143 (2)
H10.19700.32620.98840.017*
C20.25595 (15)0.26448 (13)1.14153 (9)0.0161 (2)
C30.21044 (18)0.38619 (14)1.18630 (10)0.0211 (2)
H30.16870.48201.15240.025*
C40.23944 (19)0.33774 (15)1.29692 (11)0.0254 (3)
H40.22040.39621.34870.031*
C50.29944 (18)0.19136 (15)1.31093 (10)0.0236 (3)
H50.32880.13161.37550.028*
C60.17821 (16)0.11038 (12)1.03596 (9)0.0160 (2)
H6A0.25590.01951.06590.019*
H6B0.05920.12331.08390.019*
C70.25036 (15)0.00406 (12)0.87016 (10)0.0156 (2)
H70.34020.08560.89130.019*
C80.18475 (15)0.03232 (12)0.77239 (10)0.0156 (2)
C90.21674 (17)0.03471 (13)0.68025 (10)0.0188 (2)
H90.30220.12320.67500.023*
C100.11867 (17)0.03397 (14)0.59908 (10)0.0214 (2)
H100.13620.00950.53870.026*
C110.00995 (17)0.17116 (14)0.60570 (10)0.0222 (3)
H110.07240.21610.54850.027*
C120.04425 (17)0.23857 (13)0.69382 (10)0.0203 (2)
H120.12830.32810.69700.024*
C130.05251 (15)0.16753 (12)0.78018 (9)0.0158 (2)
C140.51911 (16)0.32122 (12)0.91196 (9)0.0157 (2)
H14A0.65180.29280.89400.019*
H14B0.48560.39810.95500.019*
C150.44190 (15)0.37805 (12)0.80800 (9)0.0149 (2)
C160.32003 (16)0.51321 (12)0.78692 (10)0.0169 (2)
C170.24998 (17)0.55987 (13)0.69043 (10)0.0204 (2)
H170.16870.65050.67830.024*
C180.30253 (17)0.47018 (14)0.61306 (10)0.0210 (2)
H180.25810.50020.54820.025*
C190.42271 (16)0.33464 (13)0.63373 (10)0.0180 (2)
C200.49107 (16)0.28785 (13)0.72976 (9)0.0166 (2)
H200.56990.19610.74220.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02851 (16)0.01783 (14)0.02403 (16)0.00089 (11)0.00838 (12)0.00825 (11)
Cl20.03293 (17)0.02802 (16)0.01613 (15)0.01132 (13)0.00224 (12)0.00855 (11)
O10.0145 (4)0.0151 (4)0.0142 (4)0.0024 (3)0.0014 (3)0.0015 (3)
O20.0261 (4)0.0211 (4)0.0132 (4)0.0024 (3)0.0051 (3)0.0027 (3)
N10.0148 (4)0.0151 (4)0.0151 (5)0.0031 (3)0.0037 (4)0.0026 (3)
N20.0166 (5)0.0168 (5)0.0189 (5)0.0014 (4)0.0057 (4)0.0032 (4)
C10.0144 (5)0.0148 (5)0.0129 (5)0.0022 (4)0.0021 (4)0.0026 (4)
C20.0151 (5)0.0191 (5)0.0135 (5)0.0041 (4)0.0026 (4)0.0016 (4)
C30.0253 (6)0.0211 (6)0.0184 (6)0.0050 (5)0.0049 (5)0.0060 (4)
C40.0312 (7)0.0310 (7)0.0177 (6)0.0082 (5)0.0044 (5)0.0105 (5)
C50.0263 (6)0.0324 (7)0.0125 (5)0.0060 (5)0.0049 (5)0.0045 (5)
C60.0182 (5)0.0168 (5)0.0134 (5)0.0049 (4)0.0028 (4)0.0027 (4)
C70.0152 (5)0.0146 (5)0.0172 (5)0.0032 (4)0.0032 (4)0.0033 (4)
C80.0143 (5)0.0159 (5)0.0169 (5)0.0053 (4)0.0020 (4)0.0023 (4)
C90.0196 (5)0.0195 (5)0.0187 (6)0.0059 (4)0.0021 (4)0.0058 (4)
C100.0222 (6)0.0268 (6)0.0183 (6)0.0083 (5)0.0034 (5)0.0071 (5)
C110.0225 (6)0.0273 (6)0.0187 (6)0.0061 (5)0.0093 (5)0.0018 (5)
C120.0186 (5)0.0201 (6)0.0219 (6)0.0027 (4)0.0067 (5)0.0026 (5)
C130.0150 (5)0.0168 (5)0.0163 (5)0.0050 (4)0.0025 (4)0.0030 (4)
C140.0158 (5)0.0163 (5)0.0154 (5)0.0047 (4)0.0030 (4)0.0024 (4)
C150.0143 (5)0.0164 (5)0.0148 (5)0.0058 (4)0.0021 (4)0.0022 (4)
C160.0186 (5)0.0158 (5)0.0167 (5)0.0046 (4)0.0032 (4)0.0034 (4)
C170.0225 (6)0.0180 (5)0.0201 (6)0.0039 (4)0.0075 (5)0.0000 (4)
C180.0251 (6)0.0246 (6)0.0149 (5)0.0093 (5)0.0069 (5)0.0009 (4)
C190.0201 (5)0.0216 (6)0.0140 (5)0.0094 (5)0.0004 (4)0.0042 (4)
C200.0169 (5)0.0169 (5)0.0161 (5)0.0053 (4)0.0020 (4)0.0026 (4)
Geometric parameters (Å, º) top
Cl1—C161.7453 (12)C8—C131.4269 (16)
Cl2—C191.7416 (12)C9—C81.4169 (17)
O1—C11.4431 (13)C9—C101.3699 (17)
O1—C141.4348 (13)C9—H90.9300
O2—C21.3770 (14)C10—C111.4272 (18)
O2—C51.3701 (15)C10—H100.9300
N1—C61.4601 (14)C11—H110.9300
N1—C71.3437 (15)C12—C111.3703 (18)
N2—N11.3603 (13)C12—C131.4199 (16)
N2—C131.3548 (15)C12—H120.9300
C1—C61.5248 (15)C14—H14A0.9700
C1—H10.9800C14—H14B0.9700
C2—C11.4913 (16)C15—C141.5149 (15)
C2—C31.3519 (17)C15—C161.3942 (16)
C3—C41.4380 (17)C15—C201.3981 (16)
C3—H30.9300C16—C171.3980 (16)
C4—H40.9300C17—H170.9300
C5—C41.3445 (19)C18—C171.3841 (18)
C5—H50.9300C18—C191.3901 (18)
C6—H6A0.9700C18—H180.9300
C6—H6B0.9700C19—C201.3861 (16)
C7—H70.9300C20—H200.9300
C8—C71.3980 (16)
C14—O1—C1113.25 (8)C10—C9—H9120.8
C5—O2—C2106.39 (10)C9—C10—C11121.05 (12)
N2—N1—C6119.34 (9)C9—C10—H10119.5
C7—N1—N2114.58 (10)C11—C10—H10119.5
C7—N1—C6126.08 (10)C10—C11—H11119.0
C13—N2—N1103.16 (9)C12—C11—C10121.96 (11)
O1—C1—C2110.75 (9)C12—C11—H11119.0
O1—C1—C6105.96 (9)C11—C12—C13117.94 (11)
O1—C1—H1109.4C11—C12—H12121.0
C2—C1—C6111.85 (9)C13—C12—H12121.0
C2—C1—H1109.4N2—C13—C8111.76 (10)
C6—C1—H1109.4N2—C13—C12128.06 (11)
O2—C2—C1115.82 (10)C12—C13—C8120.17 (11)
C3—C2—O2110.25 (10)O1—C14—C15110.37 (9)
C3—C2—C1133.91 (11)O1—C14—H14A109.6
C2—C3—C4106.19 (11)O1—C14—H14B109.6
C2—C3—H3126.9C15—C14—H14A109.6
C4—C3—H3126.9C15—C14—H14B109.6
C3—C4—H4126.7H14A—C14—H14B108.1
C5—C4—C3106.63 (11)C16—C15—C14123.97 (10)
C5—C4—H4126.7C16—C15—C20117.85 (11)
O2—C5—H5124.7C20—C15—C14118.16 (10)
C4—C5—O2110.55 (11)C15—C16—Cl1120.24 (9)
C4—C5—H5124.7C15—C16—C17121.87 (11)
N1—C6—C1110.63 (9)C17—C16—Cl1117.87 (9)
N1—C6—H6A109.5C16—C17—H17120.3
N1—C6—H6B109.5C18—C17—C16119.50 (11)
C1—C6—H6A109.5C18—C17—H17120.3
C1—C6—H6B109.5C17—C18—C19119.07 (11)
H6A—C6—H6B108.1C17—C18—H18120.5
N1—C7—C8106.25 (10)C19—C18—H18120.5
N1—C7—H7126.9C18—C19—Cl2119.43 (9)
C8—C7—H7126.9C20—C19—Cl2119.11 (9)
C7—C8—C9135.24 (11)C20—C19—C18121.45 (11)
C7—C8—C13104.23 (10)C15—C20—H20119.9
C9—C8—C13120.48 (11)C19—C20—C15120.25 (11)
C8—C9—H9120.8C19—C20—H20119.9
C10—C9—C8118.36 (11)
C14—O1—C1—C289.83 (11)C7—C8—C13—N21.03 (13)
C14—O1—C1—C6148.69 (9)C7—C8—C13—C12179.97 (10)
C1—O1—C14—C1575.87 (11)C9—C8—C13—N2176.94 (10)
C5—O2—C2—C1178.44 (10)C9—C8—C13—C122.01 (17)
C5—O2—C2—C30.06 (13)C10—C9—C8—C7177.63 (13)
C2—O2—C5—C40.05 (14)C10—C9—C8—C130.43 (17)
N2—N1—C6—C167.74 (13)C8—C9—C10—C111.28 (18)
C7—N1—C6—C1112.18 (12)C9—C10—C11—C121.5 (2)
N2—N1—C7—C80.85 (13)C13—C12—C11—C100.12 (19)
C6—N1—C7—C8179.22 (10)C11—C12—C13—N2176.94 (12)
C13—N2—N1—C6179.86 (10)C11—C12—C13—C81.81 (17)
C13—N2—N1—C70.21 (13)C16—C15—C14—O1112.32 (12)
N1—N2—C13—C80.53 (12)C20—C15—C14—O165.60 (13)
N1—N2—C13—C12179.37 (11)C14—C15—C16—Cl10.09 (16)
O1—C1—C6—N169.01 (11)C14—C15—C16—C17178.88 (11)
C2—C1—C6—N1170.22 (9)C20—C15—C16—Cl1177.83 (9)
O2—C2—C1—O171.29 (12)C20—C15—C16—C170.95 (17)
O2—C2—C1—C646.66 (13)C14—C15—C20—C19179.49 (10)
C3—C2—C1—O1106.75 (15)C16—C15—C20—C191.44 (17)
C3—C2—C1—C6135.30 (14)Cl1—C16—C17—C18178.91 (9)
O2—C2—C3—C40.13 (14)C15—C16—C17—C180.10 (19)
C1—C2—C3—C4177.99 (13)C19—C18—C17—C160.66 (18)
C2—C3—C4—C50.16 (15)C17—C18—C19—Cl2179.60 (9)
O2—C5—C4—C30.13 (16)C17—C18—C19—C200.16 (18)
C9—C8—C7—N1176.43 (13)Cl2—C19—C20—C15178.52 (9)
C13—C8—C7—N11.08 (12)C18—C19—C20—C150.92 (18)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the N1/N2/C7/C8/C13 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.513.3062 (15)144
C6—H6B···Cg4ii0.972.843.4583 (13)122
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y+2, z.
 

Acknowledgements

The authors acknowledge the Zonguldak Karaelmas University Research Fund (project No. 2012-10-03-12) for support.

References

First citationAbbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431.  Web of Science CrossRef CAS Google Scholar
First citationBoulhaoua, M., Benchidmi, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o780–o781.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBüchel, G. E., Stepanenko, I. N., Hejl, M., Jakupec, M. A., Keppler, B. K., Heffeter, P., Berger, W. & Arion, V. B. (2012). J. Inorg. Biochem. 113, 47–54.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGerpe, A., Piro, O. E., Cerecetto, H. & González, M. (2007). J. Mol. Struct. 871, 98–107.  Web of Science CSD CrossRef CAS Google Scholar
First citationGodefroi, E. F., Heeres, J., Van Cutsem, J. & Janssen, P. A. (1969). J. Med. Chem. 12, 784–791.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLebouvier, N., Pagniez, F., Duflos, M., Le Pape, P., Na, Y. M., Le Baut, G. & Le Borgne, M. (2007). Bioorg. Med. Chem. Lett. 17, 3686–3689.  Web of Science CrossRef PubMed CAS Google Scholar
First citationÖzel Güven, Ö., Türk, G., Adler, P. D. F., Coles, S. J. & Hökelek, T. (2013). Acta Cryst. E69, o184.  CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Türk, G., Adler, P. D. F., Coles, S. J. & Hökelek, T. (2014a). Acta Cryst. E70, o505.  CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Türk, G., Adler, P. D. F., Coles, S. J. & Hökelek, T. (2014b). Acta Cryst. E70, o410.  CSD CrossRef IUCr Journals Google Scholar
First citationPark, J. S., Yu, K. A., Kang, T. H., Kim, S. & Suh, Y. G. (2007). Bioorg. Med. Chem. Lett. 17, 3486–3490.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2461–2464.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRaffa, D., Maggio, B., Cascioferro, S., Raimondi, M. V., Schillaci, D., Gallo, G., Daidone, G., Plescia, S., Meneghetti, F., Bombieri, G., Di Cristina, A., Pipitone, R. M., Grimaudo, S. & Tolomeo, M. (2009). Eur. J. Med. Chem. 44, 165–178.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2011). CrystalClear, Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSalerno, L., Modica, M. N., Romeo, G., Pittalà, V., Siracusa, M. A., Amato, M. E., Acquaviva, R., Di Giacomo, C. & Sorrenti, V. (2012). Eur. J. Med. Chem. 49, 118–126.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Yan, M., Ma, R. & Ma, S. (2015). Arch. Pharm. Chem. Life Sci. 348, 266–274.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds