research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­chlorido­{2-methyl-2-[(pyridin-2-ylmeth­yl)amino]­propan-1-ol-κ3N,N′,O}copper(II) from synchrotron data

CROSSMARK_Color_square_no_text.svg

aDaegu-Gyeongbuk Branch, Korea Institute of Science and Technology Information, 90 Yutongdanji-ro, Buk-gu, Daegu 41515, Republic of Korea, and bBeamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Nam-Gu Pohang, Gyeongbuk 790-784, Republic of Korea
*Correspondence e-mail: dmoon@postech.ac.kr

Edited by M. Zeller, Purdue University, USA (Received 8 August 2016; accepted 29 August 2016; online 5 September 2016)

The title compound, [CuCl2(C10H16N2O)], has been synthesized and characterized by synchrotron single-crystal X-ray diffraction and FT–IR spectroscopy. The 2-methyl-2-[(pyridin-2-ylmeth­yl)amino]­propan-1-ol (mpmapOH) ligand, including pyridine, amine and hy­droxy groups, was synthesized by the reaction of 2-amino-2-methyl­propan-1-ol with pyridine-2-carbaldehyde and was characterized by NMR spectroscopy. In its CuII complex, the metal ion has a distorted square-pyramidal coordination geometry with two N and one O atom of the mpmapOH ligand and one chloride anion in the equatorial plane, and the second chloride in an axial position. The bond lengths involving the CuII ion range from 1.9881 (10) to 2.0409 (9) for the Cu—N and Cu—O bonds, and from 2.2448 (5) to 2.5014 (6) Å for the equatorial and axial Cu—Cl bonds, respectively. Inter­molecular hydrogen bonds (N—H⋯Cl and O—H⋯Cl) and face-to-face ππ inter­actions stabilize the mol­ecular structure and give rise to a two-dimensional supra­molecular structure extending parallel to (101).

1. Chemical context

Polyamine ligands have attracted much inter­est in the development of coordination and bio-inorganic chemistry because they can easily bind or inter­act with transition metal ions and form stable multifunctional metal complexes with significant potential applications in catalysis (Ahn et al., 2016[Ahn, S. H., Choi, S.-I., Jung, M. J., Nayab, S. & Lee, H. (2016). J. Mol. Struct. 1113, 24-31.]), magnetic materials (Benelli et al., 2013[Benelli, C., Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 5848-5859.]) as well as pharmacology (Stringer et al., 2015[Stringer, T., Taylor, D., Guzgay, H., Shokar, A., Au, A., Smith, P. J., Hendricks, D. T., Land, K. M., Egan, T. J. & Smith, G. S. (2015). Dalton Trans. 44, 14906-14917.]). For example, various platinum complexes including polyamine ligands or their derivatives have been synthesized and investigated as potential anti­cancer agents, e. g. nedaplatin, hepta­platin, and lobaplatin (Kapdi & Fairlamb, 2014[Kapdi, A. R. & Fairlamb, J. S. (2014). Chem. Soc. Rev. 43, 4751-4777.]). In particular, polyamine derivatives containing hydroxyl groups can easily form various multinuclear metal complexes and supra­molecular compounds because the hydroxyl groups can be fully or partially deprotonated and act as hydrogen-bonding donors and/or acceptors. For example, bpaeOH [bpaeOH = N,N-bis­(2-pyridinmeth­yl)-2-amino­ethanol] and H2pmide [H2pmide = N-(2-pyridyl­meth­yl)iminodi­ethanol] ligands containing pyridine, amine and hydroxyl groups have been used to form multinuclear iron(III) complexes (Shin et al., 2014[Shin, J. W., Bae, J. M., Kim, C. & Min, K. S. (2014). Dalton Trans. 43, 3999-4008.]) and mixed-valence cobalt(II/III) complexes and have shown significant magnetic inter­actions and catalytic activities toward various olefins and alcohols (Shin et al., 2011[Shin, J. W., Rowthu, S. R., Hyun, M. Y., Song, Y. J., Kim, C., Kim, B. G. & Min, K. S. (2011). Dalton Trans. 40, 5762-5773.]). Chloride ions in such complexes can easily bridge two metal ions, allowing the assembly of supra­molecular compounds (Sabounchei et al., 2015[Sabounchei, S. J., Pourshahbaz, M., Salehzadeh, S., Bayat, M., Karamian, R., Asadbegy, M. & Khavasi, H. R. (2015). Polyhedron, 85, 652-664.]).

Here, we report the synthesis and crystal structure of a copper(II) complex constructed from a versatile tridentate ligand, 2-methyl-2-[(2-pyridinylmeth­yl)amino]-1-propanol (mpmapOH; C10H16N2O), [Cu(mpmapOH)Cl2], (I).

[Scheme 1]

2. Structural commentary

In the title compound (I) (Fig. 1[link]), the copper(II) ion is five-coordinated by two nitro­gen and one oxygen atoms from the mpmapOH ligand and by two chloride anions. The coordination geometry around the copper ion can be described as distorted square-pyramidal. The equatorial plane consists of the two nitro­gen (N1 and N2) atoms and the hydroxyl group (O1) of the mpmapOH ligand and one chloride anion (Cl1). The coordination geometry is completed by an axial coordination of the second chloride anion (Cl2). The chloride anions coordinate in a cis position to each other. The Cu—LmpmapOH bond lengths are in the range 1.9881 (10) to 2.0409 (9) Å. The Cu—Cl bond lengths are 2.2448 (5), and 2.5014 (6) Å, respectively, with the larger value corresponding to the axial chloride ligand. The equatorial atom Cl1 lies 0.332 (1) Å above the equatorial plane, away from the axial chloride anion Cl2. The bite angles of the five-membered chelate rings involving C5, C6 and C7, C10 atoms are 82.92 (4) and 82.97 (4)°, respectively. The bond angles around the copper ion range from 82.92 (4) to 161.51 (4)°.

[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability.

3. Supra­molecular features

The two chloride anions form strong inter­molecular hydrogen bonds with secondary amine and hydroxyl groups of adjacent mpmapOH ligands, giving rise to a polymeric chain along the b axis (Fig. 2[link] and Table 1[link]) (Steed & Atwood, 2009[Steed, J. W. & Atwood, J. L. (2009). In Supramolecular Chemistry, 2nd ed. Chichester: John Wiley & Sons Ltd.]). The hydrogen-bonded polymeric chains are linked by face-to-face ππ inter­actions between the pyridine groups of the mpmapOH ligand with a centroid-to-centroid distance of 3.764 (1) Å and an inter­planar separation of 3.745 (1) Å. These inter­actions give rise to a two-dimensional supra­molecular network with layers parallel to (101) (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯Cl2i 0.84 (1) 2.19 (1) 3.0151 (10) 170 (2)
N2—H2N2⋯Cl1ii 1.00 2.40 3.3568 (11) 161
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
View of the crystal packing of the title compound, showing the N—H⋯Cl and O—H⋯Cl hydrogen bonds (pink dashed lines) and ππ inter­actions (purple dashed lines).

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) did not show any related metal complexes with an mpmapOH ligand. The mpmapOH ligand was newly synthesized and the title compound is the first metal complex using mpampOH ligand for this research.

5. Synthesis and crystallization

The title compound (I) was prepared as follows. 2-Amino-2-methyl-1-propanol (4.90 g, 0.050 mol) was dissolved in MeOH (30 mL) followed by the addition of 2-pyridine­carboxaldehyde (5.41 g, 0.050 mol) under a nitro­gen atmosphere. The resulting mixture was strirred at room temperature for three hours, and then NaBH4 (6.05 g, 0.16 mol) was added slowly. The mixture was again stirred at room temperature overnight. The yellow solution was evaporated to dryness under reduced pressure. The residue was dissolved in CH2Cl2 and the undissolved solids were filtered off. The solution was washed with H2O and dried over MgSO4. After removal of the drying agent and solvent, the mpmapOH ligand was obtained as a yellow oil. Yield: 6.67 g (74%). 1H NMR (500 MHz, DMSO): δ = 0.98 (s, 6H, NH–C(CH3)2–CH2), 3.22 (s, 2H, NH–C(CH3)2CH2–OH), 3.75 (s, 2H, Py–CH2–NH), 7.21 (t, 1H, 5.9 Hz, Py–H), 7.42 (d, 1H, 7.8 Hz, Py–H), 7.71 (t, 1H, 7.65 Hz, Py–H), 8.45 (d, 1H, 4.75 Hz, Py–H). To an MeOH solution (10 mL) of CuCl2·H2O (200 mg, 1.173 mmol) was added dropwise an MeOH solution (10 mL) of mpmapOH (211 mg, 1.173 mmol); the color became dark blue, and the solution was stirred for 30 min at room temperature. Blue crystals of (I) were obtained by diffusion of diethyl ether into the dark-blue solution for several days, and were collected by filtration and washed with diethyl ether and dried in air. Yield: 247 mg (67%). FT–IR (ATR, cm−1): 3217, 3172, 3072, 2968, 1609, 1569, 1444, 1382, 1280, 1165, 1044, 984.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95–0.99 Å and an N—H distance of 1.0 Å. The position of the hydroxyl H atom was freely refined. All displacement parameters of H atoms Uiso(H) were set to 1.2 or 1.5Ueq of their respective parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula [CuCl2(C10H16N2O)]
Mr 314.69
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.4470 (17), 9.895 (2), 15.254 (3)
β (°) 97.13 (3)
V3) 1265.1 (5)
Z 4
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 1.40
Crystal size (mm) 0.12 × 0.10 × 0.09
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL-3000 SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. Academic Press, New York.])
Tmin, Tmax 0.809, 0.887
No. of measured, independent and observed [I > 2σ(I)] reflections 11018, 3674, 3556
Rint 0.031
(sin θ/λ)max−1) 0.706
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.061, 1.06
No. of reflections 3674
No. of parameters 148
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.51, −0.90
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. Academic Press, New York.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Dichlorido{2-methyl-2-[(pyridin-2-ylmethyl)amino]propan-1-ol-κ3N,N',O}copper(II) top
Crystal data top
[CuCl2(C10H16N2O)]F(000) = 644
Mr = 314.69Dx = 1.652 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.610 Å
a = 8.4470 (17) ÅCell parameters from 24265 reflections
b = 9.895 (2) Åθ = 0.4–33.7°
c = 15.254 (3) ŵ = 1.40 mm1
β = 97.13 (3)°T = 100 K
V = 1265.1 (5) Å3Block, blue
Z = 40.12 × 0.10 × 0.09 mm
Data collection top
ADSC Q210 CCD area detector
diffractometer
3556 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.031
ω scanθmax = 25.5°, θmin = 2.9°
Absorption correction: empirical (using intensity measurements)
(HKL3000 Scalepack; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.809, Tmax = 0.887k = 1313
11018 measured reflectionsl = 2121
3674 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.6535P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.004
3674 reflectionsΔρmax = 0.51 e Å3
148 parametersΔρmin = 0.90 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.28124 (2)0.60310 (2)0.68527 (2)0.00421 (5)
Cl10.19986 (4)0.77197 (3)0.59216 (2)0.01365 (7)
Cl20.02903 (3)0.50366 (3)0.72731 (2)0.01123 (7)
O10.31493 (9)0.73256 (8)0.79008 (5)0.00605 (14)
H1O10.3621 (18)0.8042 (12)0.7791 (11)0.007*
N10.32349 (11)0.46940 (9)0.59369 (6)0.00555 (16)
N20.43588 (10)0.48634 (9)0.76378 (6)0.00424 (15)
H2N20.37060.42920.79980.005*
C10.24193 (13)0.46123 (12)0.51215 (7)0.00921 (19)
H10.15990.52520.49520.011*
C20.27367 (14)0.36289 (13)0.45236 (7)0.0113 (2)
H20.21340.35800.39560.014*
C30.39622 (14)0.27116 (13)0.47736 (8)0.0121 (2)
H30.42340.20460.43690.015*
C40.47810 (13)0.27800 (12)0.56195 (8)0.0103 (2)
H40.56020.21490.58060.012*
C50.43811 (12)0.37864 (11)0.61898 (7)0.00587 (18)
C60.52329 (13)0.39249 (11)0.71132 (7)0.00744 (19)
H6A0.53170.30280.74020.009*
H6B0.63260.42700.70880.009*
C70.53496 (12)0.57791 (11)0.82728 (7)0.00457 (17)
C80.64485 (12)0.66575 (11)0.77880 (7)0.00812 (18)
H8A0.73550.61160.76470.012*
H8B0.68400.74180.81660.012*
H8C0.58560.70020.72410.012*
C90.63253 (14)0.49822 (12)0.90080 (7)0.00968 (19)
H9A0.56130.44020.93030.015*
H9B0.68780.56110.94380.015*
H9C0.71110.44220.87550.015*
C100.40927 (12)0.66639 (11)0.86317 (7)0.00648 (18)
H10A0.33970.61000.89600.008*
H10B0.46200.73480.90420.008*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00445 (7)0.00330 (8)0.00458 (7)0.00238 (4)0.00066 (5)0.00020 (4)
Cl10.02298 (14)0.00915 (13)0.00860 (12)0.00964 (10)0.00104 (10)0.00304 (9)
Cl20.00569 (11)0.00647 (12)0.02190 (14)0.00083 (8)0.00314 (9)0.00072 (9)
O10.0060 (3)0.0038 (3)0.0080 (3)0.0009 (2)0.0002 (3)0.0005 (3)
N10.0066 (4)0.0049 (4)0.0051 (4)0.0009 (3)0.0002 (3)0.0002 (3)
N20.0039 (3)0.0036 (4)0.0049 (4)0.0009 (3)0.0006 (3)0.0007 (3)
C10.0101 (4)0.0106 (5)0.0063 (4)0.0002 (4)0.0013 (3)0.0003 (4)
C20.0132 (5)0.0143 (5)0.0063 (4)0.0032 (4)0.0002 (4)0.0024 (4)
C30.0117 (5)0.0143 (5)0.0107 (5)0.0017 (4)0.0025 (4)0.0074 (4)
C40.0077 (4)0.0095 (5)0.0133 (5)0.0017 (4)0.0002 (4)0.0067 (4)
C50.0048 (4)0.0057 (4)0.0070 (4)0.0004 (3)0.0005 (3)0.0020 (3)
C60.0073 (4)0.0061 (5)0.0082 (4)0.0040 (3)0.0017 (4)0.0034 (3)
C70.0044 (4)0.0045 (4)0.0044 (4)0.0000 (3)0.0009 (3)0.0010 (3)
C80.0057 (4)0.0071 (4)0.0118 (5)0.0012 (3)0.0024 (3)0.0006 (4)
C90.0106 (5)0.0094 (5)0.0076 (4)0.0016 (4)0.0044 (4)0.0005 (4)
C100.0068 (4)0.0074 (4)0.0053 (4)0.0018 (3)0.0007 (3)0.0011 (3)
Geometric parameters (Å, º) top
Cu1—N11.9881 (10)C3—H30.9500
Cu1—N22.0217 (10)C4—C51.3913 (15)
Cu1—O12.0409 (9)C4—H40.9500
Cu1—Cl12.2448 (5)C5—C61.5063 (16)
Cu1—Cl22.5014 (6)C6—H6A0.9900
O1—C101.4444 (13)C6—H6B0.9900
O1—H1O10.840 (9)C7—C91.5262 (15)
N1—C51.3417 (14)C7—C81.5278 (15)
N1—C11.3474 (14)C7—C101.5289 (14)
N2—C61.4814 (13)C8—H8A0.9800
N2—C71.5028 (14)C8—H8B0.9800
N2—H2N21.0000C8—H8C0.9800
C1—C21.3825 (16)C9—H9A0.9800
C1—H10.9500C9—H9B0.9800
C2—C31.3938 (17)C9—H9C0.9800
C2—H20.9500C10—H10A0.9900
C3—C41.3880 (16)C10—H10B0.9900
N1—Cu1—N282.92 (4)N1—C5—C4121.46 (10)
N1—Cu1—O1161.51 (4)N1—C5—C6116.87 (9)
N2—Cu1—O182.97 (4)C4—C5—C6121.67 (10)
N1—Cu1—Cl196.80 (3)N2—C6—C5110.48 (9)
N2—Cu1—Cl1157.64 (3)N2—C6—H6A109.6
O1—Cu1—Cl191.74 (3)C5—C6—H6A109.6
N1—Cu1—Cl298.69 (3)N2—C6—H6B109.6
N2—Cu1—Cl297.56 (3)C5—C6—H6B109.6
O1—Cu1—Cl294.96 (3)H6A—C6—H6B108.1
Cl1—Cu1—Cl2104.55 (2)N2—C7—C9111.65 (9)
C10—O1—Cu1109.28 (6)N2—C7—C8110.75 (8)
C10—O1—H1O1107.8 (12)C9—C7—C8110.15 (9)
Cu1—O1—H1O1113.4 (12)N2—C7—C10102.72 (8)
C5—N1—C1119.56 (10)C9—C7—C10111.62 (9)
C5—N1—Cu1115.43 (7)C8—C7—C10109.76 (9)
C1—N1—Cu1124.94 (8)C7—C8—H8A109.5
C6—N2—C7116.81 (8)C7—C8—H8B109.5
C6—N2—Cu1111.52 (7)H8A—C8—H8B109.5
C7—N2—Cu1107.72 (7)C7—C8—H8C109.5
C6—N2—H2N2106.7H8A—C8—H8C109.5
C7—N2—H2N2106.7H8B—C8—H8C109.5
Cu1—N2—H2N2106.7C7—C9—H9A109.5
N1—C1—C2122.17 (11)C7—C9—H9B109.5
N1—C1—H1118.9H9A—C9—H9B109.5
C2—C1—H1118.9C7—C9—H9C109.5
C1—C2—C3118.43 (11)H9A—C9—H9C109.5
C1—C2—H2120.8H9B—C9—H9C109.5
C3—C2—H2120.8O1—C10—C7108.92 (8)
C4—C3—C2119.35 (11)O1—C10—H10A109.9
C4—C3—H3120.3C7—C10—H10A109.9
C2—C3—H3120.3O1—C10—H10B109.9
C3—C4—C5118.99 (11)C7—C10—H10B109.9
C3—C4—H4120.5H10A—C10—H10B108.3
C5—C4—H4120.5
C5—N1—C1—C20.93 (17)N1—C5—C6—N213.48 (13)
Cu1—N1—C1—C2177.79 (9)C4—C5—C6—N2167.61 (10)
N1—C1—C2—C31.17 (18)C6—N2—C7—C964.80 (12)
C1—C2—C3—C42.37 (18)Cu1—N2—C7—C9168.82 (7)
C2—C3—C4—C51.55 (18)C6—N2—C7—C858.33 (12)
C1—N1—C5—C41.81 (16)Cu1—N2—C7—C868.04 (9)
Cu1—N1—C5—C4178.96 (9)C6—N2—C7—C10175.47 (8)
C1—N1—C5—C6179.28 (10)Cu1—N2—C7—C1049.09 (8)
Cu1—N1—C5—C62.13 (12)Cu1—O1—C10—C737.17 (9)
C3—C4—C5—N10.56 (17)N2—C7—C10—O156.79 (10)
C3—C4—C5—C6179.42 (11)C9—C7—C10—O1176.54 (8)
C7—N2—C6—C5142.45 (9)C8—C7—C10—O161.04 (11)
Cu1—N2—C6—C517.98 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···Cl2i0.84 (1)2.19 (1)3.0151 (10)170 (2)
N2—H2N2···Cl1ii1.002.403.3568 (11)161
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2014R1A1A2058815). The X-ray crystallography BL2D-SMC beamline at PLS-II is supported in part by MSIP and POSTECH.

References

First citationAhn, S. H., Choi, S.-I., Jung, M. J., Nayab, S. & Lee, H. (2016). J. Mol. Struct. 1113, 24–31.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenelli, C., Borgogelli, E., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P. & Rossi, P. (2013). Dalton Trans. 42, 5848–5859.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKapdi, A. R. & Fairlamb, J. S. (2014). Chem. Soc. Rev. 43, 4751–4777.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. Academic Press, New York.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSabounchei, S. J., Pourshahbaz, M., Salehzadeh, S., Bayat, M., Karamian, R., Asadbegy, M. & Khavasi, H. R. (2015). Polyhedron, 85, 652–664.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Bae, J. M., Kim, C. & Min, K. S. (2014). Dalton Trans. 43, 3999–4008.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Rowthu, S. R., Hyun, M. Y., Song, Y. J., Kim, C., Kim, B. G. & Min, K. S. (2011). Dalton Trans. 40, 5762–5773.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSteed, J. W. & Atwood, J. L. (2009). In Supramolecular Chemistry, 2nd ed. Chichester: John Wiley & Sons Ltd.  Google Scholar
First citationStringer, T., Taylor, D., Guzgay, H., Shokar, A., Au, A., Smith, P. J., Hendricks, D. T., Land, K. M., Egan, T. J. & Smith, G. S. (2015). Dalton Trans. 44, 14906–14917.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds