research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of an aryl cyclo­hexyl nona­noid, an anti­proliferative mol­ecule isolated from the spice Myristica malabarica

CROSSMARK_Color_square_no_text.svg

aBio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and cAccident and Emergency Department, Franco Vietnamese Hospital, 7 Nguyen Luong Bang Street, Ho Chi Minh City, Vietnam
*Correspondence e-mail: nguyendonhuquynh@yahoo.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 10 August 2016; accepted 29 August 2016; online 5 September 2016)

The title compound, C21H26O5, an aryl cyclo­hexyl nona­noid {systematic name: 3,5-dihy­droxy-2-[9-(4-hy­droxy­phen­yl)nona­noyl]cyclo­hexa-2,4-dien-1-one}, extracted from the spice plant Myristica malabarica comprises two ring components, a 4-hy­droxy­phenyl moiety and a 3,5-di­hydroxy­cyclo­hexa-2,4-dienone moiety linked by a nona­noyl chain. The mol­ecule has an extended essentially planar conformation stabilized by an intra­molecular hy­droxy O—H⋯Ocarbon­yl hydrogen bond, giving a dihedral angle between the two ring systems of 6.37 (15)°. The C, O and H atoms associated with one of the hy­droxy groups of the cyclo­hexa­dienone component are disordered over two sets of sites with site occupancies of 0.6972 and 0.3028. In the crystal, hy­droxy O—H⋯O hydrogen bonds to carbonyl O-atom acceptors form large centrosymmetric R22(36) cyclic dimers, which are further extended into supra­molecular one-dimensional ribbon structures along [1-11].

1. Chemical context

The fruit rind of M. malabarica (family: Myristicaceae) is popularly known as Rampatri in Mumbai, India. It is used as an exotic spice in various Indian cuisines and also as a phytomedicine for the treatment of various kinds of ailments (Forrest & Heacock, 1972[Forrest, J. E. & Heacock, R. A. (1972). Lloydia, 35, 440-449.], and references therein). Its major pharmacological activities are credited with hepatoprotective (Morita et al., 2003[Morita, T., Jinno, K., Kawagishi, H., Arimoto, Y., Suganuma, H., Inakuma, T. & Sugiyama, K. (2003). J. Agric. Food Chem. 51, 1560-1565.]), anti-carcinogenic (Patro et al., 2010[Patro, B. S., Tyagi, M., Saha, J. & Chattopadhyay, S. (2010). Bioorg. Med. Chem. 18, 7043-7051.]; Maity et al., 2012[Maity, B., Yadav, S. K., Patro, B. S., Tyagi, M., Bandyopadhyay, S. K. & Chattopadhyay, S. (2012). Free Radic. Biol. Med. 52, 1680-1691.]), anti-leishmanial (Sen et al., 2007[Sen, R., Bauri, A. K., Chattopadhyay, S. & Chatterjee, M. (2007). Phytother. Res. 21, 592-595.]), anti-ulceral (Banerjee et al., 2007[Banerjee, D., Maity, B., Bauri, A. K., Bandyopadhyay, S. K. & Chattopadhyay, S. (2007). J. Pharma. Pharmacol. 59, 1555-1565.]; Banerjee et al., 2008[Banerjee, D., Bauri, A. K., Guha, R. K., Bandyopadhyay, S. K. & Chattopadhyay, S. (2008). Eur. J. Pharmacol. 578, 300-312.]), anti­proliferative (Manna et al., 2012[Manna, A., Saha, P., Sarkar, A., Mukhopadhyay, D., Bauri, A. K., Kumar, D., Das, P., Chattopadhyay, S. & Chatterjee, M. (2012). PLoS One, 45, 518-526.], 2015[Manna, A., De Sarkar, S., De, S., Bauri, A. K., Chattopadhyay, S. & Chatterjee, M. (2015). Phytomedicine, 22, 713-723.], 2016[Manna, A., De Sarkar, S., De, S., Bauri, A. K., Chattopadhyay, S. & Chatterjee, M. (2016). Int. Immunopharmacol. 39, 34-40.]; Tyagi et al., 2014[Tyagi, M., Bhattacharyya, R., Bauri, A. K., Patro, B. S. & Chattopadhyay, S. (2014). Biochim. Biophys. Acta, 1840, 1014-1027.]), anti-inflammatory (Maity et al., 2012[Maity, B., Yadav, S. K., Patro, B. S., Tyagi, M., Bandyopadhyay, S. K. & Chattopadhyay, S. (2012). Free Radic. Biol. Med. 52, 1680-1691.]), anti-quorum sensing (Chong et al., 2011[Chong, Y. M., Yin, W. F., Ho, C. Y., Mustafa, M. S., Hadi, A. H. A., Awang, K., Narrima, P., Koh, C.-L., Appleton, D. R. & Chan, K.-G. (2011). J. Nat. Prod. 74, 2261-2264.]) and anti-thrombotic (Olajide et al., 1999[Olajide, O. A., Ajayi, F. F., Ekhelar, A. L., Awe, O. S., Makinde, J. M. & Alada, A. R. (1999). Phytother. Res. 13, 344-345.]; Patro et al., 2005[Patro, B. S., Bauri, A. K., Mishra, S. & Chattopadhyay, S. (2005). J. Agric. Food Chem. 53, 6912-6918.], 2010[Patro, B. S., Tyagi, M., Saha, J. & Chattopadhyay, S. (2010). Bioorg. Med. Chem. 18, 7043-7051.]) properties and it is found as a constituent in many ayurvedic preparations such as Pasupasi. Previous phytochemical investigations of the fruit rind of M. malabarica revealed the presence of four novel diaryl nona­noids named as malabaricones A–D (Purushothaman et al., 1977[Purushothaman, K. K., Sarada, A. & Connolly, J. D. (1977). J. Chem. Soc. Perkin Trans. 1, pp. 587-588.]) and aryl tetra­deca­noid (Bauri et al., 2016[Bauri, A. K., Foro, S. & Nhu Do, Q. N. (2016). IUCrData, 1, x160577.]). In addition, a lignan malabaricanol A and an isoflavone have been isolated from the heart wood of this plant (Purushothaman et al., 1974[Purushothaman, K. K., Sarada, A. & Connolly, J. D. (1974). Indian J. Chem. Sect. B, 23, 46-48.]; Talukdar et al., 2000[Talukdar, A. C., Jain, N., De, S. & Krishnamurty, H. G. (2000). Phytochemistry, 53, 155-157.]). A detailed phytochemical investigation of a methanol extract of the fruit rind of M. malabarica has been carried out. We have isolated a new type of mol­ecule named as an aryl cyclo­hexyl nona­noid, the title compound C21H26O5, as a very minor constituent in addition to the reported compounds malabaricones A–D and aryl tetra­deca­noid. This mol­ecule has exhibited anti-proliferative activity against various cancer cell lines such as A431, U937, MOLT-3, A549 and A2780 by using MTT and western blotting assay (unpublished result). Therefore, based on experimental results, it may be inferred that this fruit rind of M. malabarica may be used as a health promoter, a natural remedy which can be prescribed as a botanical dietary supplement to patients who are suffering from these kinds of health problems. The structure of the title compound is reported herein.

[Scheme 1]

2. Structural commentary

The title compound comprises three mol­ecular components, a 4-hy­droxy­phenyl ring, a 3,5-di­hydroxcyclo­hexa-2,5-dienone ring and a bridging nona­noyl moiety (Fig. 1[link]). The cyclo­hexa­dienone ring has a puckered conformation. There is an intra­molecular O3—H⋯O4carbon­yl bond enclosing an S(6) ring motif, which aids in stabilizing the essentially planar overall mol­ecular conformation [inter-ring dihedral angle = 6.37 (15)° and r.m.s. deviation of fitted atoms = 0.2549 Å]. The C, O and H atoms associated with the second hy­droxy group of the cyclo­hexa­dienone component are disordered over two sets of sites (C4, O2, H2A and (C4′, O2′, H2B) with a site-occupancy factor of 0.6972:0.3028.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labeling and displacement ellipsoids drawn at the 50% probability level. The disordered hy­droxy group (C4—O2—H2A and C2′—O2′—H2B) is also shown, together with the intra­molecular O—H⋯O hydrogen bond.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by hy­droxy O5—H⋯O1ii hydrogen bonds to carbonyl O-atom acceptors (Table 1[link]), forming a primary large centrosymmetric R22(36) cyclic dimer (Fig. 2[link]). These dimers are, in turn, linked through the disordered C4 hy­droxy group [O2—H⋯O5i and O2′—H′⋯O5i], extending the structure into a one-dimensional ribbon along [1[\overline{1}]1] (Fig. 3[link]). No inter-ring ππ inter­actions are present in the structure (minimum ring-centroid separation = 5.66 Å).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O5i 0.83 2.18 3.004 (7) 174
O2′—H2B⋯O5i 0.82 1.86 2.565 (16) 143
O3—H3O⋯O4 0.86 1.64 2.440 (3) 153
O5—H5O⋯O1ii 0.83 1.86 2.687 (3) 172
Symmetry codes: (i) x+1, y-1, z+1; (ii) -x-1, -y+1, -z+1.
[Figure 2]
Figure 2
Centrosymmetric dimer formation in the crystal packing of the title compound, with inter­molecular hydrogen bonds shown as dashed lines.
[Figure 3]
Figure 3
A view of the crystal packing in the unit cell, showing dimer extension into one-dimensional ribbons extending along [1[\overline{1}]1]. Blue- and orange-coloured dashed lines indicate the intra- and inter­molecular O—H⋯O hydrogen bonding. Only H atoms involved in hydrogen bonds are shown.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, updates November, 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) has registered two hits for the compounds found in M. malabarica: malabaricone-A (Bauri et al., 2006a[Bauri, A. K., Foro, S., Lindner, H. J. & Nayak, S. K. (2006a). Acta Cryst. E62, o1338-o1339.]) and malabaricone-C monohydrate (Bauri et al., 2006b[Bauri, A. K., Nayak, S. K., Foro, S. & Lindner, H.-J. (2006b). Acta Cryst. E62, o2202-o2203.]), but no other examples were found resembling the title compound.

5. Synthesis and crystallization

The compound has been isolated as a very minor constituent from a methanol extraction of the fruit rind of M. malabarica by using CC/SiO2 with gradient solvent elution with a binary mixture of solvent methanol and chloro­form. Suitable crystals for X-ray data collection were obtained after recrystallization (×3) from hexa­ne:ethyl acetate (4:1), by slow evaporation at room temperature. The NMR spectroscopic analysis of the crystallized product has been inter­preted as follows. 1H NMR data (acetone-d6, 200 MHz): 8.80 (s, brs-OH, 1H), 6.89 (dd, 1H, J = 8.2 Hz, H-2′′ & H-6′′, 2 × Ar-H), 6.59 (dd, 2H, J = 8.2 Hz, H-3′′ & H-5′′, 2 × Ar-H), 4.20–4.15 (m, 1H, H-6), 2.90 (dd, 2H, J = 7.0 Hz, H-2′), 2.61–2.43 (dd, 2H, J = 2.20 Hz each, H-4), 2.39 (dd, 2H, J = 7.0 Hz, H-9) 1.67–1.40 (m, 4H, H-3′ & H-8′), 1.19 (s, 8H, 4 × –CH2 H-4′ H-5′, H-6′ & H-7′). 13C NMR data (50 MHz,acetone-d6): 205.69 (C-1′, >C=O), 198 (C-1, >C=O), 194 (C-3 & C-5, >C=C—OH), 156.20 (C-4′′, Ar—C—OH), 129.94 (C-2′′ & C-6′′, 2 × Ar—C—H), 116.6 (C-3′ & C-5′, Ar—C—H), 134.12 (C-6, >C=C<), 113.60 (C-2, >C=C<), 47.58 (C-2′, –CH2—CO–), 42.13 (C-9′, Ar—CH2), 40.57 (C-3′, –CH2—CH2), 35.56 (C-4′, –CH2—CH2–), 32.37 (C-6′, –CH2—CH2), 30.19 (C-3′, –CH2—CH2–), 25.40 (C-5′, –CH2).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were positioned with idealized geometry using a riding model with aromatic C—H = 0.93 Å (aromatic) or 0.97 Å (methyl­ene). The H atoms of the OH groups were located in a difference map and were refined as riding on their parent O atoms. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq of the parent atom. The atoms C4 and O2 are disordered and were refined using a split model with site-occupancy factors 0.6972:0.3028. The corresponding bond distances in the disordered groups were restrained to be equal. The reflections 0 [\overline{1}] 14 and 0 0 7 had poor disagreement with their calculated values and were omitted from the refinement.

Table 2
Experimental details

Crystal data
Chemical formula C21H26O5
Mr 358.42
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 5.6630 (8), 8.707 (1), 20.152 (3)
α, β, γ (°) 81.69 (1), 86.48 (1), 88.48 (1)
V3) 981.2 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.48 × 0.48 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.960, 0.983
No. of measured, independent and observed [I > 2σ(I)] reflections 6013, 3552, 2638
Rint 0.013
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.178, 1.10
No. of reflections 3552
No. of parameters 254
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.20
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

3,5-Dihydroxy-2-[9-(4-hydroxyphenyl)nonanoyl]cyclohexa-2,4-dien-1-one top
Crystal data top
C21H26O5Z = 2
Mr = 358.42F(000) = 384
Triclinic, P1Dx = 1.213 Mg m3
a = 5.6630 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.707 (1) ÅCell parameters from 2139 reflections
c = 20.152 (3) Åθ = 2.9–27.7°
α = 81.69 (1)°µ = 0.09 mm1
β = 86.48 (1)°T = 293 K
γ = 88.48 (1)°Prism, yellow
V = 981.2 (2) Å30.48 × 0.48 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2638 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray sourceRint = 0.013
Rotation method data acquisition using ω scansθmax = 25.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 66
Tmin = 0.960, Tmax = 0.983k = 1010
6013 measured reflectionsl = 2124
3552 independent reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.9321P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3552 reflectionsΔρmax = 0.36 e Å3
254 parametersΔρmin = 0.20 e Å3
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0508 (4)0.0225 (3)0.83338 (11)0.0664 (7)
O20.1863 (14)0.3525 (8)1.0267 (3)0.0655 (19)0.6972
H2A0.23650.29361.05100.079*0.6972
O2'0.254 (4)0.310 (2)1.0277 (7)0.069 (5)0.3028
H2B0.29330.22591.03800.083*0.3028
O30.6549 (4)0.3272 (3)0.82020 (11)0.0658 (7)
H3O0.65500.27960.77980.079*
O40.5334 (4)0.1694 (3)0.71742 (10)0.0673 (7)
O50.5995 (4)0.8647 (2)0.10839 (10)0.0617 (6)
H5O0.71280.90540.12830.074*
C10.3066 (5)0.1679 (3)0.81894 (13)0.0427 (6)
C20.1065 (5)0.1099 (3)0.85825 (14)0.0481 (7)
C30.0917 (6)0.1598 (4)0.93293 (15)0.0742 (11)
H30.01670.09880.96250.089*
C40.2009 (10)0.3083 (6)0.9562 (2)0.0636 (14)0.6972
C4'0.3050 (18)0.2280 (11)0.9622 (4)0.046 (2)0.3028
C50.4429 (6)0.3327 (4)0.92481 (15)0.0605 (9)
H5A0.55670.28190.94800.073*
H5B0.48080.44300.93130.073*
C60.4698 (5)0.2731 (3)0.85166 (14)0.0470 (7)
C70.3503 (5)0.1185 (3)0.74718 (14)0.0467 (7)
C80.1815 (5)0.0110 (3)0.70682 (14)0.0501 (7)
H8A0.15660.08190.72790.060*
H8B0.03030.06160.70840.060*
C90.2634 (6)0.0367 (4)0.63382 (14)0.0566 (8)
H9A0.30250.05530.61310.068*
H9B0.40490.09810.63140.068*
C100.0701 (6)0.1314 (4)0.59556 (15)0.0598 (8)
H10A0.06720.06700.59590.072*
H10B0.02310.21860.61870.072*
C110.1480 (6)0.1921 (4)0.52332 (15)0.0627 (9)
H11A0.20420.10530.50100.075*
H11B0.27960.26120.52320.075*
C120.0481 (6)0.2792 (4)0.48314 (15)0.0614 (9)
H12A0.18080.21080.48360.074*
H12B0.10270.36720.50480.074*
C130.0332 (6)0.3360 (4)0.41130 (15)0.0599 (8)
H13A0.08650.24740.38990.072*
H13B0.16790.40260.41130.072*
C140.1574 (6)0.4262 (3)0.36914 (14)0.0528 (7)
H14A0.29630.36270.37050.063*
H14B0.20360.51970.38800.063*
C150.0638 (5)0.4693 (4)0.29700 (15)0.0553 (8)
H15A0.03140.37380.27830.066*
H15B0.08630.52010.29750.066*
C160.2175 (5)0.5731 (3)0.24928 (14)0.0433 (6)
C170.4281 (5)0.6465 (3)0.26883 (14)0.0486 (7)
H170.48190.62970.31380.058*
C180.5602 (5)0.7439 (3)0.22330 (14)0.0492 (7)
H180.70010.79060.23760.059*
C190.4795 (5)0.7697 (3)0.15660 (14)0.0458 (7)
C200.2681 (5)0.6987 (3)0.13615 (14)0.0528 (8)
H200.21280.71690.09130.063*
C210.1409 (5)0.6019 (3)0.18188 (14)0.0502 (7)
H210.00150.55500.16730.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0639 (14)0.0742 (15)0.0563 (13)0.0366 (12)0.0044 (10)0.0007 (11)
O20.082 (5)0.068 (4)0.043 (2)0.013 (3)0.005 (2)0.001 (2)
O2'0.107 (13)0.067 (9)0.032 (5)0.021 (6)0.013 (5)0.004 (5)
O30.0579 (13)0.0792 (15)0.0541 (12)0.0328 (12)0.0045 (10)0.0024 (11)
O40.0666 (15)0.0829 (16)0.0474 (12)0.0210 (12)0.0073 (10)0.0015 (11)
O50.0625 (14)0.0668 (14)0.0496 (12)0.0272 (11)0.0018 (10)0.0066 (10)
C10.0426 (15)0.0434 (15)0.0404 (14)0.0073 (12)0.0031 (11)0.0018 (11)
C20.0477 (16)0.0482 (16)0.0463 (16)0.0125 (13)0.0043 (13)0.0017 (13)
C30.073 (2)0.099 (3)0.0426 (17)0.044 (2)0.0076 (16)0.0028 (17)
C40.078 (4)0.070 (3)0.036 (2)0.032 (3)0.010 (2)0.006 (2)
C4'0.068 (7)0.040 (5)0.030 (5)0.002 (5)0.007 (4)0.005 (4)
C50.062 (2)0.068 (2)0.0464 (17)0.0210 (16)0.0074 (14)0.0038 (15)
C60.0430 (16)0.0492 (16)0.0470 (16)0.0106 (13)0.0005 (12)0.0041 (13)
C70.0523 (17)0.0438 (15)0.0437 (15)0.0036 (13)0.0044 (13)0.0053 (12)
C80.0565 (18)0.0486 (16)0.0429 (15)0.0030 (14)0.0080 (13)0.0019 (12)
C90.071 (2)0.0545 (18)0.0433 (16)0.0027 (15)0.0105 (14)0.0005 (13)
C100.078 (2)0.0532 (18)0.0467 (17)0.0009 (16)0.0139 (15)0.0031 (14)
C110.081 (2)0.0580 (19)0.0471 (17)0.0033 (17)0.0151 (16)0.0034 (14)
C120.081 (2)0.0522 (18)0.0492 (17)0.0053 (16)0.0117 (16)0.0014 (14)
C130.074 (2)0.0544 (18)0.0488 (17)0.0063 (16)0.0148 (15)0.0037 (14)
C140.0605 (19)0.0465 (16)0.0492 (17)0.0035 (14)0.0075 (14)0.0018 (13)
C150.0510 (18)0.0560 (18)0.0542 (18)0.0050 (14)0.0073 (14)0.0082 (14)
C160.0428 (15)0.0400 (14)0.0455 (15)0.0013 (12)0.0052 (12)0.0001 (12)
C170.0486 (17)0.0539 (17)0.0400 (15)0.0034 (13)0.0017 (12)0.0012 (13)
C180.0437 (16)0.0503 (17)0.0518 (17)0.0084 (13)0.0025 (13)0.0048 (13)
C190.0462 (16)0.0431 (15)0.0461 (15)0.0081 (13)0.0040 (12)0.0003 (12)
C200.0544 (18)0.0581 (18)0.0424 (15)0.0147 (15)0.0031 (13)0.0009 (13)
C210.0461 (17)0.0520 (17)0.0504 (16)0.0140 (13)0.0004 (13)0.0039 (13)
Geometric parameters (Å, º) top
O1—C21.238 (3)C10—C111.518 (4)
O2—C41.415 (7)C10—H10A0.9700
O2—H2A0.8256C10—H10B0.9700
O2'—H2B0.8247C11—C121.534 (4)
O3—C61.305 (3)C11—H11A0.9700
O3—H3O0.8588C11—H11B0.9700
O4—C71.268 (3)C12—C131.509 (4)
O5—C191.382 (3)C12—H12A0.9700
O5—H5O0.8342C12—H12B0.9700
C1—C61.408 (4)C13—C141.543 (4)
C1—C71.456 (4)C13—H13A0.9700
C1—C21.463 (4)C13—H13B0.9700
C2—C31.503 (4)C14—C151.514 (4)
C3—C41.446 (5)C14—H14A0.9700
C3—C4'1.452 (10)C14—H14B0.9700
C3—H30.9300C15—C161.519 (4)
C4—C51.497 (5)C15—H15A0.9700
C4'—C51.449 (9)C15—H15B0.9700
C5—C61.490 (4)C16—C211.390 (4)
C5—H5A0.9700C16—C171.400 (4)
C5—H5B0.9700C17—C181.395 (4)
C7—C81.510 (4)C17—H170.9300
C8—C91.517 (4)C18—C191.382 (4)
C8—H8A0.9700C18—H180.9300
C8—H8B0.9700C19—C201.400 (4)
C9—C101.531 (4)C20—C211.379 (4)
C9—H9A0.9700C20—H200.9300
C9—H9B0.9700C21—H210.9300
C4—O2—H2A119.3C10—C11—C12113.8 (3)
C6—O3—H3O105.4C10—C11—H11A108.8
C19—O5—H5O107.1C12—C11—H11A108.8
C6—C1—C7117.7 (2)C10—C11—H11B108.8
C6—C1—C2119.2 (2)C12—C11—H11B108.8
C7—C1—C2123.1 (2)H11A—C11—H11B107.7
O1—C2—C1123.6 (3)C13—C12—C11112.6 (3)
O1—C2—C3118.4 (3)C13—C12—H12A109.1
C1—C2—C3118.0 (2)C11—C12—H12A109.1
C4—C3—C2116.1 (3)C13—C12—H12B109.1
C4'—C3—C2116.5 (4)C11—C12—H12B109.1
C4—C3—H3122.0H12A—C12—H12B107.8
C2—C3—H3122.0C12—C13—C14114.5 (3)
O2—C4—C3115.1 (5)C12—C13—H13A108.6
O2—C4—C5113.0 (5)C14—C13—H13A108.6
C3—C4—C5114.4 (4)C12—C13—H13B108.6
C5—C4'—C3117.1 (6)C14—C13—H13B108.6
C4'—C5—C6112.4 (4)H13A—C13—H13B107.6
C6—C5—C4114.3 (3)C15—C14—C13110.4 (3)
C6—C5—H5A108.7C15—C14—H14A109.6
C4—C5—H5A108.7C13—C14—H14A109.6
C6—C5—H5B108.7C15—C14—H14B109.6
C4—C5—H5B108.7C13—C14—H14B109.6
H5A—C5—H5B107.6H14A—C14—H14B108.1
O3—C6—C1122.7 (3)C14—C15—C16118.1 (3)
O3—C6—C5114.7 (2)C14—C15—H15A107.8
C1—C6—C5122.6 (2)C16—C15—H15A107.8
O4—C7—C1119.1 (2)C14—C15—H15B107.8
O4—C7—C8119.0 (2)C16—C15—H15B107.8
C1—C7—C8122.0 (2)H15A—C15—H15B107.1
C7—C8—C9114.7 (3)C21—C16—C17117.4 (2)
C7—C8—H8A108.6C21—C16—C15118.1 (3)
C9—C8—H8A108.6C17—C16—C15124.5 (3)
C7—C8—H8B108.6C18—C17—C16122.4 (3)
C9—C8—H8B108.6C18—C17—H17118.8
H8A—C8—H8B107.6C16—C17—H17118.8
C8—C9—C10110.7 (3)C19—C18—C17118.8 (3)
C8—C9—H9A109.5C19—C18—H18120.6
C10—C9—H9A109.5C17—C18—H18120.6
C8—C9—H9B109.5O5—C19—C18122.4 (2)
C10—C9—H9B109.5O5—C19—C20117.9 (2)
H9A—C9—H9B108.1C18—C19—C20119.7 (2)
C11—C10—C9113.2 (3)C21—C20—C19120.6 (3)
C11—C10—H10A108.9C21—C20—H20119.7
C9—C10—H10A108.9C19—C20—H20119.7
C11—C10—H10B108.9C20—C21—C16121.2 (3)
C9—C10—H10B108.9C20—C21—H21119.4
H10A—C10—H10B107.8C16—C21—H21119.4
C6—C1—C2—O1176.9 (3)C6—C1—C7—C8177.6 (3)
C7—C1—C2—O15.0 (5)C2—C1—C7—C84.3 (4)
C6—C1—C2—C33.0 (4)O4—C7—C8—C95.2 (4)
C7—C1—C2—C3175.1 (3)C1—C7—C8—C9176.1 (3)
O1—C2—C3—C4152.2 (4)C7—C8—C9—C10174.2 (3)
C1—C2—C3—C427.6 (5)C8—C9—C10—C11176.0 (3)
O1—C2—C3—C4'164.8 (5)C9—C10—C11—C12176.6 (3)
C1—C2—C3—C4'15.4 (7)C10—C11—C12—C13179.1 (3)
C2—C3—C4—O2179.6 (5)C11—C12—C13—C14179.2 (3)
C2—C3—C4—C546.1 (6)C12—C13—C14—C15176.4 (3)
C2—C3—C4'—C540.0 (10)C13—C14—C15—C16173.8 (3)
C3—C4'—C5—C643.6 (9)C14—C15—C16—C21174.6 (3)
O2—C4—C5—C6174.4 (5)C14—C15—C16—C177.6 (5)
C3—C4—C5—C639.9 (6)C21—C16—C17—C180.6 (4)
C7—C1—C6—O30.4 (4)C15—C16—C17—C18178.4 (3)
C2—C1—C6—O3178.6 (3)C16—C17—C18—C190.4 (5)
C7—C1—C6—C5179.6 (3)C17—C18—C19—O5179.9 (3)
C2—C1—C6—C52.2 (5)C17—C18—C19—C200.2 (4)
C4'—C5—C6—O3155.7 (5)O5—C19—C20—C21179.6 (3)
C4—C5—C6—O3163.2 (4)C18—C19—C20—C210.7 (5)
C4'—C5—C6—C125.0 (6)C19—C20—C21—C160.5 (5)
C4—C5—C6—C116.1 (5)C17—C16—C21—C200.1 (4)
C6—C1—C7—O41.1 (4)C15—C16—C21—C20178.1 (3)
C2—C1—C7—O4177.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O5i0.832.183.004 (7)174
O2—H2B···O5i0.821.862.565 (16)143
O3—H3O···O40.861.642.440 (3)153
O5—H5O···O1ii0.831.862.687 (3)172
Symmetry codes: (i) x+1, y1, z+1; (ii) x1, y+1, z+1.
 

Acknowledgements

The authors thank Professor Dr Hartmut Fuess, FG Strukturforschung, Material und Geowissenschaften, Technische Universität Darmstadt, Petersenstrasse 23, 64287 Darmstadt, and Professor Kingston, Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA, for their kind co-operation to record X-ray diffraction data of the crystal, to provide diffractometer time and to carry out an anti­proliferative bioassay against a cancer cell line.

References

First citationBanerjee, D., Bauri, A. K., Guha, R. K., Bandyopadhyay, S. K. & Chattopadhyay, S. (2008). Eur. J. Pharmacol. 578, 300–312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBanerjee, D., Maity, B., Bauri, A. K., Bandyopadhyay, S. K. & Chattopadhyay, S. (2007). J. Pharma. Pharmacol. 59, 1555–1565.  Web of Science CrossRef Google Scholar
First citationBauri, A. K., Foro, S. & Nhu Do, Q. N. (2016). IUCrData, 1, x160577.  Google Scholar
First citationBauri, A. K., Foro, S., Lindner, H. J. & Nayak, S. K. (2006a). Acta Cryst. E62, o1338–o1339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBauri, A. K., Nayak, S. K., Foro, S. & Lindner, H.-J. (2006b). Acta Cryst. E62, o2202–o2203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChong, Y. M., Yin, W. F., Ho, C. Y., Mustafa, M. S., Hadi, A. H. A., Awang, K., Narrima, P., Koh, C.-L., Appleton, D. R. & Chan, K.-G. (2011). J. Nat. Prod. 74, 2261–2264.  Web of Science CrossRef CAS PubMed Google Scholar
First citationForrest, J. E. & Heacock, R. A. (1972). Lloydia, 35, 440–449.  CAS PubMed Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaity, B., Yadav, S. K., Patro, B. S., Tyagi, M., Bandyopadhyay, S. K. & Chattopadhyay, S. (2012). Free Radic. Biol. Med. 52, 1680–1691.  Web of Science CrossRef CAS PubMed Google Scholar
First citationManna, A., De Sarkar, S., De, S., Bauri, A. K., Chattopadhyay, S. & Chatterjee, M. (2015). Phytomedicine, 22, 713–723.  Web of Science CrossRef CAS PubMed Google Scholar
First citationManna, A., De Sarkar, S., De, S., Bauri, A. K., Chattopadhyay, S. & Chatterjee, M. (2016). Int. Immunopharmacol. 39, 34–40.  CrossRef CAS PubMed Google Scholar
First citationManna, A., Saha, P., Sarkar, A., Mukhopadhyay, D., Bauri, A. K., Kumar, D., Das, P., Chattopadhyay, S. & Chatterjee, M. (2012). PLoS One, 45, 518–526.  Google Scholar
First citationMorita, T., Jinno, K., Kawagishi, H., Arimoto, Y., Suganuma, H., Inakuma, T. & Sugiyama, K. (2003). J. Agric. Food Chem. 51, 1560–1565.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOlajide, O. A., Ajayi, F. F., Ekhelar, A. L., Awe, O. S., Makinde, J. M. & Alada, A. R. (1999). Phytother. Res. 13, 344–345.  CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPatro, B. S., Bauri, A. K., Mishra, S. & Chattopadhyay, S. (2005). J. Agric. Food Chem. 53, 6912–6918.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatro, B. S., Tyagi, M., Saha, J. & Chattopadhyay, S. (2010). Bioorg. Med. Chem. 18, 7043–7051.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPurushothaman, K. K., Sarada, A. & Connolly, J. D. (1974). Indian J. Chem. Sect. B, 23, 46–48.  Google Scholar
First citationPurushothaman, K. K., Sarada, A. & Connolly, J. D. (1977). J. Chem. Soc. Perkin Trans. 1, pp. 587–588.  CrossRef Web of Science Google Scholar
First citationSen, R., Bauri, A. K., Chattopadhyay, S. & Chatterjee, M. (2007). Phytother. Res. 21, 592–595.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTalukdar, A. C., Jain, N., De, S. & Krishnamurty, H. G. (2000). Phytochemistry, 53, 155–157.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTyagi, M., Bhattacharyya, R., Bauri, A. K., Patro, B. S. & Chattopadhyay, S. (2014). Biochim. Biophys. Acta, 1840, 1014–1027.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds