research communications
Crystal structures of the two a]isoindole-6-carboxylic acid, 5a(RS),6(SR),7(RS),9a(SR),9b(SR) and 5a(RS),6(RS),7(RS),9a(SR),9b(SR)
from the unusual thermal C6-epimerization of 5-oxo-1,2,3,5,5a,6,7,9b-octahydro-7,9a-epoxypyrrolo[2,1-aOrganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, bNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, cInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and dX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B–334, Moscow 119991, Russian Federation
*Correspondence e-mail: vnkhrustalev@gmail.com
The isomeric title compounds, C12H13NO4 (Ia) and C12H13NO4 (IIa), the products of an usual thermal C6-epimerization of 5-oxo-1,2,3,5,5a,6,7,9b-octahydro-7,9a-epoxypyrrolo[2,1-a]isoindole-6-carboxylic acid, represent the two different and have very similar molecular geometries. The molecules of both compounds comprise a fused tetracyclic system containing four five-membered rings (pyrrolidine, pyrrolidinone, dihydrofuran and tetrahydrofuran), all of which adopt the usual envelope conformations. The dihedral angle between the basal planes of the pyrrolidine and pyrrolidinone rings are 14.3 (2) and 16.50 (11)°, respectively, for (Ia) and (IIa). The nitrogen atom has a slightly pyramidalized geometry [bond-angle sum = 355.9 and 355.3°, for (Ia) and (IIa)], respectively. In the crystal of (Ia), molecules form zigzag-like hydrogen-bonded chains along [010] through strong O—H⋯O hydrogen bonds and are further linked by weak C—H⋯O hydrogen bonds into complex two-tier layers parallel to (100). Unlike (Ia), the crystal of (IIa) contains centrosymmetric cyclic hydrogen-bonded dimers [graph set R22(14)], formed through strong O—H⋯O hydrogen bonds and are further linked by weak C—H⋯O hydrogen bonds into ribbons extending across [101].
1. Chemical context
The intramolecular Diels–Alder furan (IMDAF) reaction between α,β-unsaturated acid and hydrogenated heterocycles, containing a furfurylamine moiety, has been studied for a long time (see, for example, Parker & Adamchuk, 1978; Blokzijl et al., 1991; Varlamov et al., 2006; Groenendaal et al., 2008; Nakamura et al., 2011; Zubkov et al., 2011, 2012, 2014; Toze et al., 2015) and used for diastereospecific synthesis of diverse fused-ring systems. It is arguable that the pathway with a simultaneous controlled formation of four or five new stereogenic centers is the best approach to epoxyisoindoles and affords target adducts under mild conditions with satisfactory yields. However, the simplest 2-furyl azaheterocycles (azetidine, pyrrolidine, piperidine, perhydroazepine) have not yet been studied in this reaction. One of the goals of our work is to fill the gap. Here we report on the utilization of 2-furyl pyrrolidine as an initial reagent in the IMDAF reaction.
The interaction between 2-furyl pyrrolidine and maleic anhydride at room temperature leads to the mixture of cyclic (Ia) and open-chain (Ib) tautomers, the crystallization of which results in the cyclic form (Ia) only (Fig. 1). In contrast, the same reaction at 413 K leads to the maleic amide fragment isomerization and affords a mixture of the adduct (IIa) and the amide (IIb) (Fig. 2). Similarly, the mixture crystallization gives rise the cyclic tautomer (IIa) only. The crystal structures of both (Ia) and (IIa) using synchrotron X-ray diffraction data have been determined and are reported herein.
2. Structural commentary
Compounds (Ia) and (IIa) represent two different diastereomers of 5-oxo-1,2,3,5,5a,6,7,9b-octahydro-7,9a-epoxypyrrolo[2,1-a]isoindole-6-carboxylic acid and have very similar molecular geometries (Figs. 3, 4). The molecules of (Ia) and (IIa) each comprise a fused tetracyclic system containing four five-membered rings (pyrrolidine, pyrrolidinone, dihydrofuran and tetrahydrofuran), all of which adopt the usual envelope conformations. The dihedral angles between the basal planes of the pyrrolidine and pyrrolidinone rings are 14.3 (2) and 16.50 (11)°, respectively, for (Ia) and (IIa). The nitrogen N4 atom has a slightly pyramidalized geometry [sum of the bond angles = 355.9 and 355.3°, respectively, for (Ia) and (IIa)]. The bond lengths and angles in both are in good agreement with those observed in a related structure (Lu et al., 2013).
The molecules possess five asymmetric centers at the C5, C6, C7, C9a and C9b carbon atoms. The crystals of (Ia) and (IIa) are racemic and consist of enantiomeric pairs with the following relative configurations of the centers: 5a(RS),6(SR),7(RS),9a(SR),9b(SR) and 5a(RS),6(RS),7(RS),9a(SR),9b(SR)
3. Supramolecular features
Although the similarity of the molecular geometries might lead to similar packing motifs, this is not found in the case of (Ia) and (IIa). The intermolecular interactions, namely strong O—H⋯O and weak C—H⋯O hydrogen bonding, combined in a different way, give rise to different packing networks. In the crystal of (Ia), molecules form zigzag-like hydrogen-bonded chains extending along [010] through strong O12—H12⋯O5i hydrogen bonds, which are further linked by weak C5A—H5A⋯O12ii hydrogen bonds into complex two-tier layers lying parallel to (100) (Table 1, Fig. 5).
|
However, unlike (Ia), the crystal of (IIa) contains centrosymmetric hydrogen-bonded cyclic dimers [graph set R22(14), formed through two strong O12—H12⋯O5i hydrogen bonds (Table 2, Fig. 6). The dimers are further linked by weak C9—H9⋯O11ii hydrogen bonds into ribbons extending across [101] (Table 2, Figs. 6 and 7).
4. Synthesis and crystallization
The initial 2-furyl pyrrolidine was synthesized according to the procedure described previously (Acher et al., 1981; Shono et al., 1981; Nikolic & Beak, 1997).
Synthesis of (Ia). A mixture of the initial 2-furyl pyrrolidine (0.30 g, 2.2 mmol) and maleic anhydride (0.23 g, 2.3 mmol) in dichloromethane (6 mL) was stirred for 5 h at r.t. [monitoring by TLC until disappearance of the starting compound spot, eluent–EtOAc: hexane (1:3), Sorbfil]. On completion of the reaction, the solvent was evaporated. The isomer (Ia) was isolated as fine needles by slow recrystallization of the residue from a mixture of EtOAc–EtOH. Yield 39%: m.p. = 413–414 K. IR (KBr), ν (cm−1): 1734, 1654. 1H NMR (CDCl3, 400 MHz, 300 K): δ = 1.98–1.69 (m, 4H, H1a, H1b, H2a, H2b), 2.42 (d, 1H, H6, J6,5a = 9.1), 2.94–2.88 (m, 2H, H3a, H3b), 3.10 (d, 1H, H5a, J5a,6 = 9.1), 4.41 (t, 1H, H9b, J9b,1a = 7.5, J9b,1 b = 7.5), 4.97 (d, 1H, H7, J7,8 = 1.6), 6.44 (dd, 1H, H8, J8,9 = 5.5, J8,7 = 1.6), 6.54 (d, 1H, H9, J9,8 = 5.5). 13C NMR (CDCl3, 100 MHz, 300 K): δ = 23.5, 26.2, 41.9 (C1, C2, C3), 46.9, 53.8 (C6, C5a), 60.0 (C9b), 80.5 (C7), 93.5 (C9a), 133.9 (C9), 137.1 (C8), 171.7, 173.2 (NCO, COOH). EI–MS (70 eV), m/z (rel. intensity): 235 (22), 217 (91), 137 (41), 136 (100), 108 (39), 80 (45), 70 (32), 54 (38), 45 (29), 42 (25).
Synthesis of (IIa). A mixture of the initial 2-furyl pyrrolidine (0.3 g, 2.2 mmol) and maleic anhydride (0.23 g, 2.3 mmol) in o-xylene (6 mL) was heated at reflux for 3 h. At the end of the reaction, the solvent was evaporated. The isomer (IIa) was isolated as fine needles by slow recrystallization of the residue from a mixture of EtOAc–EtOH. Yield: 0.33 45%; m.p. = 414–416 K. IR (KBr), ν (cm−1): 1738, 1658. 1H NMR (CDCl3, 400 MHz, 300 K): δ = 1.82–1.64 (m, 4H, H1a, H1b, H2a, H2b), 3.02 (d, 1H, H5a, J5a,6 = 3.4), 3.17 (dd, 1H, H6, J6,5a = 3.4, J6,5a = 3.4), 3.36–3.32 (m, 2H, H3a, H3b), 4.52 (t, 1H, H9b, J9b,1a = 7.6, J9b,1b = 7.6), 5.20 (dd, 1H, H7, J7,8 = 1.6, J7,6 = 4.8), 6.34 (dd, 1H, H8, J8,9 = 5.8, J8,7 = 1.6), 6.66 (d, 1H, H9, J9,8 = 5.8). 13C NMR (CDCl3, 100 MHz, 300 K): δ = 23.5, 26.2, 42.1 (C1, C2, C3), 47.0, 55.1 (C6, C5a), 61.0 (C9b), 79.2 (C7), 93.5 (C9a), 133.9 (C8), 135.2 (C9), 171.7, 173.2 (NCO, COOH). EI–MS (70 eV), m/z (rel. intensity): 235 (22), 217 (91), 137 (41), 136 (100), 108 (39), 80 (45), 70 (32), 54 (38), 45 (29), 42 (25).
5. Refinement
Crystal data, data collection and . X-ray diffraction studies were carried out on the `Belok' beamline (λ = 0.96990 Å) of the National Research Center "Kurchatov Institute" (Moscow, Russian Federation) using a MAR CCD detector.
details are summarized in Table 3The hydrogen atoms of the hydroxyl groups were localized in the difference-Fourier maps and refined in an isotropic approximation with fixed displacement parameters [Uiso(H) = 1.5Ueq(O)] [for (Ia)] or included in the with fixed positional (riding model) and isotropic displacement parameters [Uiso(H) = 1.5Ueq(O)] [for (IIa)]. Other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].
The insufficient data completeness of 94.1% in the case of (IIa) is the result of the low (triclinic) crystal symmetry, making it very difficult to obtain good data completeness using the φ scan mode only (`Belok' beamline limitation), even though we have used the two different crystal orientations.
Supporting information
https://doi.org/10.1107/S2056989016014420/zs2368sup1.cif
contains datablocks global, Ia, IIa. DOI:Structure factors: contains datablock Ia. DOI: https://doi.org/10.1107/S2056989016014420/zs2368Iasup2.hkl
Structure factors: contains datablock IIa. DOI: https://doi.org/10.1107/S2056989016014420/zs2368IIasup3.hkl
For both compounds, data collection: Automar (MarXperts, 2015); cell
iMOSFLM (Battye et al., 2011); data reduction: iMOSFLM (Battye et al., 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C12H13NO4 | Dx = 1.415 Mg m−3 |
Mr = 235.23 | Melting point = 413–414 K |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.96990 Å |
a = 11.045 (2) Å | Cell parameters from 600 reflections |
b = 9.2023 (18) Å | θ = 4.5–38.0° |
c = 11.062 (2) Å | µ = 0.23 mm−1 |
β = 100.91 (3)° | T = 100 K |
V = 1104.1 (4) Å3 | Prism, colourless |
Z = 4 | 0.20 × 0.15 × 0.15 mm |
F(000) = 496 |
MAR CCD diffractometer | 1864 reflections with I > 2σ(I) |
φ scan | Rint = 0.085 |
Absorption correction: multi-scan (SCALA; Evans, 2006) | θmax = 38.5°, θmin = 4.5° |
Tmin = 0.950, Tmax = 0.960 | h = −13→14 |
12183 measured reflections | k = −11→10 |
2329 independent reflections | l = −13→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.072 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.189 | w = 1/[σ2(Fo2) + (0.08P)2 + 1.P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2329 reflections | Δρmax = 0.43 e Å−3 |
158 parameters | Δρmin = −0.43 e Å−3 |
0 restraints | Extinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.104 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8345 (2) | 0.9330 (3) | 0.5467 (2) | 0.0330 (6) | |
H1A | 0.8888 | 0.8929 | 0.4933 | 0.040* | |
H1B | 0.8859 | 0.9780 | 0.6202 | 0.040* | |
C2 | 0.7415 (2) | 1.0430 (3) | 0.4762 (2) | 0.0349 (6) | |
H2A | 0.7799 | 1.1002 | 0.4177 | 0.042* | |
H2B | 0.7123 | 1.1106 | 0.5341 | 0.042* | |
C3 | 0.6333 (2) | 0.9507 (3) | 0.4064 (2) | 0.0312 (6) | |
H3A | 0.5531 | 0.9989 | 0.4059 | 0.037* | |
H3B | 0.6426 | 0.9320 | 0.3205 | 0.037* | |
N4 | 0.64418 (17) | 0.8166 (2) | 0.47832 (17) | 0.0272 (5) | |
C5 | 0.60154 (19) | 0.6839 (2) | 0.4418 (2) | 0.0253 (5) | |
O5 | 0.52224 (14) | 0.65677 (18) | 0.34888 (14) | 0.0280 (5) | |
C5A | 0.66529 (19) | 0.5736 (2) | 0.53586 (19) | 0.0236 (5) | |
H5A | 0.6166 | 0.5553 | 0.6019 | 0.028* | |
C6 | 0.7153 (2) | 0.4306 (2) | 0.4908 (2) | 0.0254 (5) | |
H6 | 0.7007 | 0.3500 | 0.5470 | 0.030* | |
C7 | 0.8561 (2) | 0.4655 (3) | 0.5143 (2) | 0.0296 (6) | |
H7 | 0.9050 | 0.4068 | 0.4645 | 0.035* | |
C8 | 0.9021 (2) | 0.4591 (3) | 0.6528 (2) | 0.0330 (6) | |
H8 | 0.9504 | 0.3847 | 0.6980 | 0.040* | |
C9 | 0.8604 (2) | 0.5799 (3) | 0.6976 (2) | 0.0302 (6) | |
H9 | 0.8737 | 0.6103 | 0.7812 | 0.036* | |
C9A | 0.7874 (2) | 0.6583 (2) | 0.5868 (2) | 0.0251 (5) | |
C9B | 0.7500 (2) | 0.8164 (3) | 0.5827 (2) | 0.0291 (6) | |
H9B | 0.7224 | 0.8442 | 0.6606 | 0.035* | |
O10 | 0.85603 (14) | 0.62038 (18) | 0.49215 (14) | 0.0276 (4) | |
C11 | 0.6649 (2) | 0.3852 (2) | 0.3585 (2) | 0.0251 (5) | |
O11 | 0.71540 (16) | 0.4123 (2) | 0.27256 (16) | 0.0374 (5) | |
O12 | 0.56401 (14) | 0.30469 (18) | 0.35042 (15) | 0.0265 (4) | |
H12 | 0.539 (3) | 0.275 (3) | 0.272 (3) | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0350 (13) | 0.0293 (13) | 0.0289 (12) | −0.0063 (9) | −0.0086 (10) | −0.0015 (9) |
C2 | 0.0433 (15) | 0.0252 (13) | 0.0318 (14) | −0.0031 (10) | −0.0039 (11) | 0.0009 (9) |
C3 | 0.0333 (13) | 0.0261 (13) | 0.0304 (13) | 0.0025 (9) | −0.0033 (10) | 0.0043 (9) |
N4 | 0.0257 (10) | 0.0236 (11) | 0.0278 (10) | 0.0004 (7) | −0.0064 (8) | 0.0017 (7) |
C5 | 0.0192 (10) | 0.0290 (12) | 0.0246 (11) | −0.0003 (8) | −0.0036 (8) | 0.0016 (8) |
O5 | 0.0233 (8) | 0.0293 (9) | 0.0259 (9) | −0.0010 (6) | −0.0098 (6) | 0.0025 (6) |
C5A | 0.0190 (10) | 0.0270 (12) | 0.0214 (11) | −0.0001 (8) | −0.0052 (8) | 0.0018 (8) |
C6 | 0.0229 (11) | 0.0254 (12) | 0.0235 (11) | −0.0011 (8) | −0.0066 (8) | 0.0011 (8) |
C7 | 0.0215 (11) | 0.0309 (13) | 0.0314 (13) | 0.0017 (9) | −0.0075 (9) | −0.0039 (9) |
C8 | 0.0252 (11) | 0.0324 (13) | 0.0334 (14) | 0.0030 (9) | −0.0148 (9) | 0.0008 (9) |
C9 | 0.0268 (12) | 0.0341 (14) | 0.0237 (12) | −0.0021 (9) | −0.0102 (9) | 0.0011 (9) |
C9A | 0.0231 (11) | 0.0260 (12) | 0.0226 (11) | −0.0001 (8) | −0.0045 (8) | −0.0008 (8) |
C9B | 0.0269 (12) | 0.0323 (14) | 0.0236 (11) | 0.0001 (9) | −0.0066 (9) | −0.0003 (9) |
O10 | 0.0222 (8) | 0.0303 (9) | 0.0276 (9) | −0.0023 (6) | −0.0023 (6) | −0.0015 (7) |
C11 | 0.0221 (11) | 0.0246 (12) | 0.0254 (12) | 0.0003 (8) | −0.0036 (8) | 0.0000 (8) |
O11 | 0.0352 (10) | 0.0471 (12) | 0.0276 (10) | −0.0085 (8) | 0.0004 (7) | −0.0016 (7) |
O12 | 0.0205 (8) | 0.0301 (9) | 0.0251 (9) | −0.0027 (6) | −0.0053 (6) | −0.0030 (6) |
C1—C9B | 1.524 (4) | C6—C11 | 1.522 (3) |
C1—C2 | 1.544 (3) | C6—C7 | 1.561 (3) |
C1—H1A | 0.9900 | C6—H6 | 1.0000 |
C1—H1B | 0.9900 | C7—O10 | 1.446 (3) |
C2—C3 | 1.548 (3) | C7—C8 | 1.522 (3) |
C2—H2A | 0.9900 | C7—H7 | 1.0000 |
C2—H2B | 0.9900 | C8—C9 | 1.334 (4) |
C3—N4 | 1.461 (3) | C8—H8 | 0.9500 |
C3—H3A | 0.9900 | C9—C9A | 1.516 (3) |
C3—H3B | 0.9900 | C9—H9 | 0.9500 |
N4—C5 | 1.343 (3) | C9A—O10 | 1.447 (3) |
N4—C9B | 1.480 (3) | C9A—C9B | 1.511 (3) |
C5—O5 | 1.243 (3) | C9B—H9B | 1.0000 |
C5—C5A | 1.527 (3) | C11—O11 | 1.216 (3) |
C5A—C6 | 1.546 (3) | C11—O12 | 1.327 (3) |
C5A—C9A | 1.568 (3) | O12—H12 | 0.90 (3) |
C5A—H5A | 1.0000 | ||
C9B—C1—C2 | 102.2 (2) | C11—C6—H6 | 108.8 |
C9B—C1—H1A | 111.3 | C5A—C6—H6 | 108.8 |
C2—C1—H1A | 111.3 | C7—C6—H6 | 108.8 |
C9B—C1—H1B | 111.3 | O10—C7—C8 | 101.44 (18) |
C2—C1—H1B | 111.3 | O10—C7—C6 | 101.91 (17) |
H1A—C1—H1B | 109.2 | C8—C7—C6 | 107.0 (2) |
C1—C2—C3 | 105.63 (19) | O10—C7—H7 | 115.0 |
C1—C2—H2A | 110.6 | C8—C7—H7 | 115.0 |
C3—C2—H2A | 110.6 | C6—C7—H7 | 115.0 |
C1—C2—H2B | 110.6 | C9—C8—C7 | 105.6 (2) |
C3—C2—H2B | 110.6 | C9—C8—H8 | 127.2 |
H2A—C2—H2B | 108.7 | C7—C8—H8 | 127.2 |
N4—C3—C2 | 102.45 (18) | C8—C9—C9A | 105.3 (2) |
N4—C3—H3A | 111.3 | C8—C9—H9 | 127.3 |
C2—C3—H3A | 111.3 | C9A—C9—H9 | 127.3 |
N4—C3—H3B | 111.3 | O10—C9A—C9B | 112.83 (19) |
C2—C3—H3B | 111.3 | O10—C9A—C9 | 101.49 (18) |
H3A—C3—H3B | 109.2 | C9B—C9A—C9 | 125.67 (19) |
C5—N4—C3 | 128.07 (19) | O10—C9A—C5A | 98.78 (16) |
C5—N4—C9B | 114.43 (18) | C9B—C9A—C5A | 104.85 (17) |
C3—N4—C9B | 113.42 (18) | C9—C9A—C5A | 110.12 (18) |
O5—C5—N4 | 125.7 (2) | N4—C9B—C9A | 101.29 (17) |
O5—C5—C5A | 126.3 (2) | N4—C9B—C1 | 103.16 (18) |
N4—C5—C5A | 108.04 (17) | C9A—C9B—C1 | 120.6 (2) |
C5—C5A—C6 | 119.56 (18) | N4—C9B—H9B | 110.3 |
C5—C5A—C9A | 99.73 (17) | C9A—C9B—H9B | 110.3 |
C6—C5A—C9A | 101.74 (17) | C1—C9B—H9B | 110.3 |
C5—C5A—H5A | 111.5 | C7—O10—C9A | 95.65 (17) |
C6—C5A—H5A | 111.5 | O11—C11—O12 | 124.4 (2) |
C9A—C5A—H5A | 111.5 | O11—C11—C6 | 123.9 (2) |
C11—C6—C5A | 117.10 (17) | O12—C11—C6 | 111.56 (19) |
C11—C6—C7 | 112.8 (2) | C11—O12—H12 | 109.4 (19) |
C5A—C6—C7 | 100.16 (17) | ||
C9B—C1—C2—C3 | −35.5 (3) | C6—C5A—C9A—O10 | 40.32 (19) |
C1—C2—C3—N4 | 23.1 (3) | C5—C5A—C9A—C9B | 33.7 (2) |
C2—C3—N4—C5 | −157.3 (2) | C6—C5A—C9A—C9B | 156.88 (18) |
C2—C3—N4—C9B | −1.6 (3) | C5—C5A—C9A—C9 | 171.42 (19) |
C3—N4—C5—O5 | −16.7 (4) | C6—C5A—C9A—C9 | −65.4 (2) |
C9B—N4—C5—O5 | −172.2 (2) | C5—N4—C9B—C9A | 13.2 (3) |
C3—N4—C5—C5A | 164.6 (2) | C3—N4—C9B—C9A | −146.0 (2) |
C9B—N4—C5—C5A | 9.0 (3) | C5—N4—C9B—C1 | 138.6 (2) |
O5—C5—C5A—C6 | 45.6 (3) | C3—N4—C9B—C1 | −20.6 (3) |
N4—C5—C5A—C6 | −135.7 (2) | O10—C9A—C9B—N4 | 77.5 (2) |
O5—C5—C5A—C9A | 155.1 (2) | C9—C9A—C9B—N4 | −157.9 (2) |
N4—C5—C5A—C9A | −26.1 (2) | C5A—C9A—C9B—N4 | −29.0 (2) |
C5—C5A—C6—C11 | −18.4 (3) | O10—C9A—C9B—C1 | −35.3 (3) |
C9A—C5A—C6—C11 | −126.8 (2) | C9—C9A—C9B—C1 | 89.3 (3) |
C5—C5A—C6—C7 | 103.9 (2) | C5A—C9A—C9B—C1 | −141.8 (2) |
C9A—C5A—C6—C7 | −4.5 (2) | C2—C1—C9B—N4 | 33.3 (2) |
C11—C6—C7—O10 | 92.5 (2) | C2—C1—C9B—C9A | 145.2 (2) |
C5A—C6—C7—O10 | −32.8 (2) | C8—C7—O10—C9A | −50.66 (19) |
C11—C6—C7—C8 | −161.48 (19) | C6—C7—O10—C9A | 59.66 (18) |
C5A—C6—C7—C8 | 73.2 (2) | C9B—C9A—O10—C7 | −171.63 (16) |
O10—C7—C8—C9 | 32.0 (3) | C9—C9A—O10—C7 | 51.38 (18) |
C6—C7—C8—C9 | −74.4 (2) | C5A—C9A—O10—C7 | −61.36 (16) |
C7—C8—C9—C9A | 0.9 (3) | C5A—C6—C11—O11 | 95.3 (3) |
C8—C9—C9A—O10 | −33.6 (2) | C7—C6—C11—O11 | −20.2 (3) |
C8—C9—C9A—C9B | −162.9 (2) | C5A—C6—C11—O12 | −88.8 (2) |
C8—C9—C9A—C5A | 70.3 (3) | C7—C6—C11—O12 | 155.70 (19) |
C5—C5A—C9A—O10 | −82.84 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O12—H12···O5i | 0.90 (3) | 1.75 (3) | 2.613 (2) | 157 (3) |
C5A—H5A···O12ii | 1.00 | 2.51 | 3.234 (3) | 129 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1. |
C12H13NO4 | F(000) = 248 |
Mr = 235.23 | Dx = 1.426 Mg m−3 |
Triclinic, P1 | Melting point = 414–416 K |
a = 8.4700 (17) Å | Synchrotron radiation, λ = 0.96990 Å |
b = 8.5100 (17) Å | Cell parameters from 500 reflections |
c = 8.5900 (17) Å | θ = 3.6–36.0° |
α = 94.04 (3)° | µ = 0.23 mm−1 |
β = 111.12 (3)° | T = 100 K |
γ = 105.17 (3)° | Prism, colourless |
V = 548.0 (2) Å3 | 0.15 × 0.10 × 0.10 mm |
Z = 2 |
MAR CCD diffractometer | 1402 reflections with I > 2σ(I) |
φ scan | Rint = 0.061 |
Absorption correction: multi-scan (SCALA; Evans, 2006) | θmax = 38.1°, θmin = 3.4° |
Tmin = 0.960, Tmax = 0.969 | h = −10→10 |
7090 measured reflections | k = −10→10 |
2104 independent reflections | l = −10→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.099 | H-atom parameters constrained |
wR(F2) = 0.240 | w = 1/[σ2(Fo2) + (0.06P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.93 | (Δ/σ)max < 0.001 |
2104 reflections | Δρmax = 0.45 e Å−3 |
155 parameters | Δρmin = −0.36 e Å−3 |
0 restraints | Extinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.138 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1779 (3) | 0.0068 (2) | 0.2264 (2) | 0.0322 (5) | |
H1A | 0.0733 | −0.0331 | 0.1171 | 0.039* | |
H1B | 0.2531 | −0.0668 | 0.2374 | 0.039* | |
C2 | 0.1215 (3) | 0.0169 (2) | 0.3765 (2) | 0.0324 (5) | |
H2A | 0.0900 | −0.0932 | 0.4081 | 0.039* | |
H2B | 0.0181 | 0.0592 | 0.3486 | 0.039* | |
C3 | 0.2874 (2) | 0.1392 (2) | 0.5222 (2) | 0.0288 (5) | |
H3A | 0.2529 | 0.2089 | 0.5934 | 0.035* | |
H3B | 0.3628 | 0.0797 | 0.5949 | 0.035* | |
N4 | 0.37879 (19) | 0.23864 (17) | 0.42848 (16) | 0.0261 (4) | |
C5 | 0.5531 (2) | 0.3199 (2) | 0.4832 (2) | 0.0250 (4) | |
O5 | 0.65982 (17) | 0.35299 (15) | 0.63512 (13) | 0.0299 (3) | |
C5A | 0.5950 (2) | 0.3619 (2) | 0.3297 (2) | 0.0233 (4) | |
H5A | 0.5949 | 0.4769 | 0.3127 | 0.028* | |
C6 | 0.7574 (2) | 0.32415 (19) | 0.3142 (2) | 0.0245 (4) | |
H6 | 0.8150 | 0.2754 | 0.4140 | 0.029* | |
C7 | 0.6593 (3) | 0.1818 (2) | 0.1503 (2) | 0.0276 (5) | |
H7 | 0.7338 | 0.1138 | 0.1333 | 0.033* | |
C8 | 0.5722 (2) | 0.2548 (2) | −0.0027 (2) | 0.0264 (5) | |
H8 | 0.6108 | 0.2775 | −0.0921 | 0.032* | |
C9 | 0.4292 (3) | 0.2805 (2) | 0.0152 (2) | 0.0284 (5) | |
H9 | 0.3431 | 0.3223 | −0.0598 | 0.034* | |
C9A | 0.4358 (2) | 0.2276 (2) | 0.1826 (2) | 0.0256 (5) | |
C9B | 0.2840 (2) | 0.1875 (2) | 0.24142 (19) | 0.0267 (5) | |
H9B | 0.2022 | 0.2541 | 0.1950 | 0.032* | |
O10 | 0.51146 (16) | 0.09341 (13) | 0.18544 (14) | 0.0258 (3) | |
C11 | 0.8967 (2) | 0.4657 (2) | 0.2990 (2) | 0.0259 (5) | |
O11 | 0.88416 (17) | 0.60281 (15) | 0.27854 (15) | 0.0338 (4) | |
O12 | 1.04071 (16) | 0.42233 (14) | 0.31124 (15) | 0.0312 (4) | |
H12 | 1.1355 | 0.5093 | 0.3163 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0352 (10) | 0.0244 (9) | 0.0294 (8) | −0.0016 (8) | 0.0132 (7) | −0.0032 (7) |
C2 | 0.0364 (10) | 0.0254 (9) | 0.0311 (8) | −0.0003 (8) | 0.0158 (7) | 0.0030 (7) |
C3 | 0.0365 (9) | 0.0234 (9) | 0.0290 (8) | 0.0035 (8) | 0.0201 (6) | 0.0019 (7) |
N4 | 0.0308 (8) | 0.0214 (7) | 0.0246 (6) | 0.0012 (6) | 0.0152 (5) | −0.0014 (5) |
C5 | 0.0316 (9) | 0.0159 (7) | 0.0263 (8) | 0.0045 (7) | 0.0131 (6) | −0.0028 (6) |
O5 | 0.0364 (7) | 0.0281 (6) | 0.0205 (5) | 0.0017 (5) | 0.0130 (4) | −0.0033 (5) |
C5A | 0.0284 (9) | 0.0177 (8) | 0.0227 (7) | 0.0022 (7) | 0.0131 (6) | −0.0005 (6) |
C6 | 0.0355 (9) | 0.0164 (8) | 0.0232 (7) | 0.0043 (7) | 0.0165 (6) | 0.0005 (6) |
C7 | 0.0335 (9) | 0.0192 (8) | 0.0277 (8) | −0.0004 (7) | 0.0169 (6) | −0.0048 (6) |
C8 | 0.0373 (10) | 0.0199 (8) | 0.0209 (7) | 0.0025 (7) | 0.0158 (6) | −0.0026 (6) |
C9 | 0.0368 (10) | 0.0211 (8) | 0.0229 (8) | 0.0029 (8) | 0.0118 (7) | −0.0001 (6) |
C9A | 0.0344 (9) | 0.0168 (8) | 0.0239 (7) | 0.0043 (7) | 0.0128 (6) | 0.0000 (6) |
C9B | 0.0327 (9) | 0.0214 (8) | 0.0240 (8) | 0.0032 (7) | 0.0134 (6) | −0.0021 (6) |
O10 | 0.0337 (6) | 0.0164 (5) | 0.0277 (5) | 0.0033 (5) | 0.0165 (4) | −0.0009 (4) |
C11 | 0.0316 (9) | 0.0227 (9) | 0.0204 (7) | 0.0024 (7) | 0.0126 (6) | −0.0045 (6) |
O11 | 0.0375 (7) | 0.0228 (6) | 0.0390 (6) | 0.0042 (6) | 0.0170 (5) | 0.0031 (5) |
O12 | 0.0309 (7) | 0.0232 (6) | 0.0403 (6) | 0.0040 (5) | 0.0189 (5) | 0.0015 (5) |
C1—C2 | 1.532 (3) | C6—C11 | 1.500 (3) |
C1—C9B | 1.534 (3) | C6—C7 | 1.590 (2) |
C1—H1A | 0.9900 | C6—H6 | 1.0000 |
C1—H1B | 0.9900 | C7—O10 | 1.427 (2) |
C2—C3 | 1.552 (2) | C7—C8 | 1.521 (3) |
C2—H2A | 0.9900 | C7—H7 | 1.0000 |
C2—H2B | 0.9900 | C8—C9 | 1.344 (3) |
C3—N4 | 1.472 (2) | C8—H8 | 0.9500 |
C3—H3A | 0.9900 | C9—C9A | 1.522 (2) |
C3—H3B | 0.9900 | C9—H9 | 0.9500 |
N4—C5 | 1.341 (2) | C9A—O10 | 1.446 (2) |
N4—C9B | 1.485 (2) | C9A—C9B | 1.513 (3) |
C5—O5 | 1.250 (2) | C9B—H9B | 1.0000 |
C5—C5A | 1.526 (3) | C11—O11 | 1.218 (2) |
C5A—C6 | 1.540 (3) | C11—O12 | 1.336 (2) |
C5A—C9A | 1.576 (2) | O12—H12 | 0.9239 |
C5A—H5A | 1.0000 | ||
C2—C1—C9B | 102.15 (14) | C11—C6—H6 | 108.7 |
C2—C1—H1A | 111.3 | C5A—C6—H6 | 108.7 |
C9B—C1—H1A | 111.3 | C7—C6—H6 | 108.7 |
C2—C1—H1B | 111.3 | O10—C7—C8 | 102.71 (15) |
C9B—C1—H1B | 111.3 | O10—C7—C6 | 99.48 (13) |
H1A—C1—H1B | 109.2 | C8—C7—C6 | 109.15 (14) |
C1—C2—C3 | 104.39 (16) | O10—C7—H7 | 114.6 |
C1—C2—H2A | 110.9 | C8—C7—H7 | 114.6 |
C3—C2—H2A | 110.9 | C6—C7—H7 | 114.6 |
C1—C2—H2B | 110.9 | C9—C8—C7 | 105.52 (17) |
C3—C2—H2B | 110.9 | C9—C8—H8 | 127.2 |
H2A—C2—H2B | 108.9 | C7—C8—H8 | 127.2 |
N4—C3—C2 | 102.16 (13) | C8—C9—C9A | 104.59 (17) |
N4—C3—H3A | 111.3 | C8—C9—H9 | 127.7 |
C2—C3—H3A | 111.3 | C9A—C9—H9 | 127.7 |
N4—C3—H3B | 111.3 | O10—C9A—C9B | 111.77 (14) |
C2—C3—H3B | 111.3 | O10—C9A—C9 | 102.12 (14) |
H3A—C3—H3B | 109.2 | C9B—C9A—C9 | 126.44 (16) |
C5—N4—C3 | 127.10 (15) | O10—C9A—C5A | 100.18 (14) |
C5—N4—C9B | 115.10 (15) | C9B—C9A—C5A | 105.83 (13) |
C3—N4—C9B | 113.07 (13) | C9—C9A—C5A | 107.50 (14) |
O5—C5—N4 | 124.50 (18) | N4—C9B—C9A | 102.11 (13) |
O5—C5—C5A | 127.21 (17) | N4—C9B—C1 | 101.06 (14) |
N4—C5—C5A | 108.28 (14) | C9A—C9B—C1 | 120.38 (16) |
C5—C5A—C6 | 117.75 (15) | N4—C9B—H9B | 110.7 |
C5—C5A—C9A | 101.00 (14) | C9A—C9B—H9B | 110.7 |
C6—C5A—C9A | 101.86 (13) | C1—C9B—H9B | 110.7 |
C5—C5A—H5A | 111.7 | C7—O10—C9A | 96.02 (13) |
C6—C5A—H5A | 111.7 | O11—C11—O12 | 123.30 (17) |
C9A—C5A—H5A | 111.7 | O11—C11—C6 | 125.93 (18) |
C11—C6—C5A | 117.00 (15) | O12—C11—C6 | 110.77 (15) |
C11—C6—C7 | 113.55 (15) | C11—O12—H12 | 113.8 |
C5A—C6—C7 | 99.72 (13) | ||
C9B—C1—C2—C3 | −40.2 (2) | C6—C5A—C9A—O10 | 32.99 (16) |
C1—C2—C3—N4 | 24.99 (19) | C5—C5A—C9A—C9B | 27.56 (18) |
C2—C3—N4—C5 | −154.32 (18) | C6—C5A—C9A—C9B | 149.26 (14) |
C2—C3—N4—C9B | −0.1 (2) | C5—C5A—C9A—C9 | 165.01 (15) |
C3—N4—C5—O5 | −16.0 (3) | C6—C5A—C9A—C9 | −73.29 (18) |
C9B—N4—C5—O5 | −169.80 (16) | C5—N4—C9B—C9A | 8.4 (2) |
C3—N4—C5—C5A | 163.66 (15) | C3—N4—C9B—C9A | −149.09 (15) |
C9B—N4—C5—C5A | 9.9 (2) | C5—N4—C9B—C1 | 133.04 (17) |
O5—C5—C5A—C6 | 47.1 (2) | C3—N4—C9B—C1 | −24.4 (2) |
N4—C5—C5A—C6 | −132.62 (15) | O10—C9A—C9B—N4 | 85.85 (15) |
O5—C5—C5A—C9A | 156.89 (18) | C9—C9A—C9B—N4 | −148.99 (15) |
N4—C5—C5A—C9A | −22.81 (19) | C5A—C9A—C9B—N4 | −22.27 (18) |
C5—C5A—C6—C11 | −123.93 (16) | O10—C9A—C9B—C1 | −24.8 (2) |
C9A—C5A—C6—C11 | 126.75 (15) | C9—C9A—C9B—C1 | 100.3 (2) |
C5—C5A—C6—C7 | 113.23 (14) | C5A—C9A—C9B—C1 | −132.96 (15) |
C9A—C5A—C6—C7 | 3.91 (16) | C2—C1—C9B—N4 | 38.51 (18) |
C11—C6—C7—O10 | −165.65 (15) | C2—C1—C9B—C9A | 149.76 (16) |
C5A—C6—C7—O10 | −40.40 (16) | C8—C7—O10—C9A | −49.46 (13) |
C11—C6—C7—C8 | −58.5 (2) | C6—C7—O10—C9A | 62.79 (14) |
C5A—C6—C7—C8 | 66.71 (18) | C9B—C9A—O10—C7 | −171.68 (12) |
O10—C7—C8—C9 | 30.75 (16) | C9—C9A—O10—C7 | 50.59 (14) |
C6—C7—C8—C9 | −74.15 (18) | C5A—C9A—O10—C7 | −59.96 (14) |
C7—C8—C9—C9A | 1.83 (16) | C5A—C6—C11—O11 | −8.9 (2) |
C8—C9—C9A—O10 | −33.38 (16) | C7—C6—C11—O11 | 106.5 (2) |
C8—C9—C9A—C9B | −162.43 (15) | C5A—C6—C11—O12 | 171.02 (12) |
C8—C9—C9A—C5A | 71.53 (17) | C7—C6—C11—O12 | −73.58 (19) |
C5—C5A—C9A—O10 | −88.71 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O12—H12···O5i | 0.92 | 1.70 | 2.607 (2) | 165 |
C9—H9···O11ii | 0.95 | 2.42 | 3.362 (3) | 172 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z. |
Acknowledgements
This work was supported by the Ministry of Education and Science of the Russian Federation (Agreement 02.a03.21.0008), and the Russian Foundation for Basic Research (grant No. 15-33-50016).
References
Asher, V., Becu, C., Anteunis, M. J. O. & Callens, R. (1981). Tetrahedron Lett. 22, 141–144. CrossRef CAS Web of Science Google Scholar
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blokzijl, W., Blandamer, M. J. & Engberts, J. (1991). J. Am. Chem. Soc. 113, 4241–4246. CrossRef CAS Web of Science Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groenendaal, B., Ruijter, E., de Kanter, F., Lutz, M., Spek, A. L. & Orru, R. V. (2008). Org. Biomol. Chem. 6, 3158–3165. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lu, Q., Huang, X., Song, G., Sun, C.-M., Jasinski, J. P., Keeley, A. C. & Zhang, W. (2013). ACS Comb. Sci. 15, 350–355. Web of Science CSD CrossRef CAS PubMed Google Scholar
MarXperts. (2015). Automar. MarXperts GmbH, D-22844 Norderstedt, Germany. Google Scholar
Nakamura, M., Takahashi, I., Yamada, S., Dobashi, Y. & Kitagawa, O. (2011). Tetrahedron Lett. 52, 53–55. Web of Science CrossRef CAS Google Scholar
Nikolic, N. A. & Beak, P. (1997). Org. Synth. 74, 23–32. CAS Google Scholar
Parker, K. A. & Adamchuk, M. R. (1978). Tetrahedron Lett. 19, 1689–1692. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shono, T., Matsumura, Y., Tsubata, K. O. & Takata, J. (1981). Chem. Lett. 10, 1121–1124. CrossRef Web of Science Google Scholar
Toze, F. A. A., Poplevin, D. S., Zubkov, F. I., Nikitina, E. V., Porras, C. & Khrustalev, V. N. (2015). Acta Cryst. E71, o729–o730. Web of Science CSD CrossRef IUCr Journals Google Scholar
Varlamov, A. V., Boltukhina, E. V., Zubkov, F. I., Nikitina, E. V. & Turchin, K. F. (2006). J. Heterocycl. Chem. 43, 1479–1495. CSD CrossRef CAS Google Scholar
Zubkov, F. I., Airiyan, I. K., Ershova, J. D., Galeev, T. R., Zaytsev, V. P., Nikitina, E. V. & Varlamov, A. V. (2012). RSC Adv. 2, 4103–4109. Web of Science CrossRef CAS Google Scholar
Zubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659–1690. Web of Science CSD CrossRef CAS Google Scholar
Zubkov, F. I., Zaytsev, V. P., Nikitina, E. V., Khrustalev, V. N., Gozun, S. V., Boltukhina, E. V. & Varlamov, A. V. (2011). Tetrahedron, 67, 9148–9163. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.